[1] Allahviranloo, T. and Ahmadi, M. B. “Fuzzy Laplace Transforms”, Soft Computing, vol. 14, (2010), pp. 235-243.
[2] Anuradha, M. N. L., Vasavi, C. H. and Suresh Kumar, G., “Fuzzy Integro- Dynamic Equations on Time Scales”, Journal of Advanced Research in Dynamical and Control Systems, vol. 12, no. 2, (2020), pp. 1788-1792.
[3] Anuradha, M. N. L., Vasavi, C. H. and Kumar, S., “Fuzzy Integro Nabla Dynamic Equations on Time Scales”, Advances in Mathematics: Scientific Journal, vol. 7, no. 12, (2020), pp. 10251-10260.
[4] Appa Rao, B. V. and Prasad, K. A. S. N. V., “Existence of Ψ-bounded solutions for Sylvester matrix dynamical systems on time scales”, Filomat, vol. 32, no. 12, (2018), pp. 4209-4219.
[5] Appa Rao, B. V. and Rao, T. S. “Moore-penrose generalized inverse to Kronecker product matrix boundary value problems”, International Journal of Recent Technology and Engineering, vol. 8, no. 3, (2019), pp. 3230-3235.
[6] Bohner, M. and Peterson, A., “Dynamic equations on time scales: An Introduction with Applications”, Birkhauser, Boston, (2001).
[7] Humaira, M., Sarwar, M. and Kishore, G. N. V., “Fuzzy Fixed Point Results for Phi Contractive Mapping with Applications”, Complexity, (2018), pp. 1-12.
[8] Naga Jyothi, G., Rao, T. S., Suresh Kumar, G. and Nageswara Rao, T., “Strong stability of a nonlinear difference system”, International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 8, (2019), pp. 20-25.
[9] Naga Jyothi, G., Rao, T. S., Vasavi, C. H., Suresh Kumar, G. and Srinivasa Rao, T., “On the Ψ-conditional exponential asymptotic stability of linear matrix difference equations”, Advances in Mathematics: Scientific Journal, vol. 9, no. 12, (2020), pp. 10763-10769.
[10] Leelavathi, R., Suresh Kumar, G., Murty, M. S. N. and Srinivasa Rao, R. V. N., “Existence-uniqueness of solutions for fuzzy nabla initial value problems on time scales”, Advances in Difference Equations, vol. 1, (2019), pp. 2019:269.
[11] Leelavathi, R., Suresh Kumar, G. and Murty, M. S. N., “Characterization theorem for fuzzy functions on time scales under generalized nabla hukuhara difference”, International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 8, (2019), pp. 1704-1706.
[12] Leelavathi, R., Suresh Kumar, G. and Murty, M. S. N., “Nabla Hukuhara differentiability for fuzzy functions on time scales”, IAENG International Journal of Applied Mathematics, vol. 49, no. 1, (2019), pp. 114-121.
[13] Leelavathi, R., Suresh Kumar, G. and Murty, M. S. N., “Nabla integral for fuzzy functions on time scales”, International Journal of Applied Mathematics, vol. 31, no. 5, (2018), pp. 669-680.
[14] Rao, T. S., Suresh Kumar, G. and Murty, M. S. N., “Ψ- stability for nonlinear difference equations”, Thai Journal of Mathematics, vol. 16, no. 3, (2018), pp. 801-815.
[15] Srinivasa Rao, T., Suresh Kumar, G., Vasavi, C. H. and Appa Rao, B. V., “On the Controllability of Fuzzy Difference Control Systems”, International Journal of Civil Engineering and Technology, vol. 8, no. 12, (2017), pp. 723-732.
[16] Someswari, T. Anil Kumar, T. and Nagaraj, R., “Performance Enhancement by using Fuzzy with sliding mode controller for navigational Systems”, International Journal of Grid and Distributed Computing, vol. 13, no. 2, (2020), pp. 51-64.
[17] Udayasree, R. V. N., Rao, T. S., Vasavi, C. H. and Suresh Kumar, G., “Interval integro dynamic equations on time scales under generalized Hukuhara delta derivative”, Advances in Mathematics: Scientific Journal, vol. 9, no. 11, (2020), pp. 9069-9078.
[18] Vasavi, C. H., Suresh Kumar, G., and Murty, M. S. N., “Fuzzy Hukuhara delta differential and applications to fuzzy dynamic equations on time scales”, Journal of Uncertain Systems, vol. 10, no. 3, (2016), pp. 163-180.
[19] Vasavi, C. H., Suresh Kumar, G. and Murty, M. S. N., “Fuzzy dynamic equations on time scales under second type Hukuhara delta derivative”, International Journal of Chemical Sciences, vol. 14, no. 1, (2016), pp. 49-66.
[20] Vasavi, C. H., Suresh Kumar, G. and Murty, M. S. N., “Generalized differentiability and integrability for fuzzy set- valued functions on time scales”, Soft Computing, Springer, vol. 20, (2016), pp. 1093-1104.
[21] Vasavi, C. H., Suresh Kumar, G. and Murty, M. S. N., “Fuzzy dynamic equations on time scales under generalized delta derivative via contractive-like mapping principles”, Indian Journal of Science and Technology, vol. 9, no. 25, (2016), pp.1-6.
[22] Vardhana, M., “Fuzzy Logic Based Performance Analysis of various Antenna Structures”, International Journal of Grid and Distributed Computing, vol. 12, no. 1, (2019), pp. 1-10.
[23] Vyshnavi, G. and Prasad, A., “High Impedance Fault Detection using Fuzzy Logic Technique”, International Journal of Grid and Distributed Computing, vol. 11, no. 9, (2018), pp. 13-22.
[24] Yong Lee, J. and Lee, D., “Improving Network Lifetime using Fuzzy Logic in Cluster-Based WSN Protocol”, International Journal of Grid and Distributed Computing, vol. 11, no. 8, (2018), pp. 23-32.