EFFECT OF CARBONIZATION TEMPERATURE ON ELECTRICAL CONDUCTIVITY OF BIOCARBON WATER HYACINTH COMPOSITES

Published 30 Sep 2019 •  vol 12  •  no 9  • 


Authors:

 

Azam Muzakhim Imammuddin, Department of Electrical Engineering, State Polytechnic of Malang, Indonesia
Sudjito Soeparman, Department of Mechanical Engineering, Universitas Brawijaya Malang, Indonesia
Wahyono Suprapto, Department of Mechanical Engineering, Universitas Brawijaya Malang, Indonesia
Achmad As’ad Sonief, Department of Mechanical Engineering, Universitas Brawijaya Malang, Indonesia

Abstract:

 

This paper presents the usage of water hyacinth as the base material of activated carbon or biocarbon, using carbonization temperature 500oC, 600oC, 700oC, 800oC, 900oC, and 1000oC. The SEM results show that the pore structure of the biocarbon is shaped like a coral, the higher the temperature the more open pores and the smaller the diameter, with about 2μm at 1000oC. The XRD results show that the carbonization temperature affects the percentage of the carbon crystal of the biocarbon formed, the higher the temperature the percentage increases by reaching 14% at 1000oC, the carbon crystals are rhombohedral and graphite-like. The structure of the pores and the percentage of the carbon crystal has the effect of the value of electrical conductivity, the higher the temperature resulting in an increase in the value of the composite electrical conductivity, the water hyacinth biocarbon composite has a range of electrical conductivity values ranging from 2,697 × 10-6 S / cm (500oC) to 1,767 × 10-2 S / cm (1000oC) is included in a suitable conductive composite applied to the sensor and EMI (Electromagnetic Interference) Shielding.

Keywords:

 

Biocarbon; Temperature; Electrical conductivity; Hyacinth Composites

References:

 

[1] Ezquerra, T. A., Connor, M. T., Roy, S., Kulescza, M., Fernandes, N. J., & Balta, C. F. J. (2001). Alternating-current electrical properties of graphite , carbon-black and carbon- fiber polymeric composites. Composite Science and Technology, 61, 903–909.
[2] Jing, L. ., Yern, C. ., Gan, S. N., Rozali, S., & Julai, S. (2016). Effects of Oil Palm Empty Fruit Bunch Fiber on Electrical and Mechanical Properties of Conductive. BioResources, 11(1), 913–928.
[3] Khan, S. ud D., Arora, M., Puri, C., Wahab, M. A., & Saini, P. (2014). Synthesis and characterization of acrylic resin / activated carbon composites. Indian Journal of Pure & Applied Physics, 52(April), 251–254.
[4] Barranco, V., Lillo-Rodenas, M. A., Linares-Solano, A., Oya, A., Pico, F., Iba?fez, J., … Rojo, J. M. (2010). Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. Journal of Physical Chemistry C, 114(22), 10302–10307.
[5] Liu, S., Chen, X., Zhang, A., Yan, K., & Ye, Y. (2014). Electromagnetic Performance of Rice Husk Ash. BioResources, 9, 2328–2340.
[6] Wu, K. H. (2008). Science and Electromagnetic and microwave absorbing properties of Ni 0 . 5 Zn 0 . 5 Fe 2 O 4 / bamboo charcoal core – shell nanocomposites. Composites Science and Technology, 68, 132–139.
[7] Suliyanti, M. M., Yudasari, N., Indayaningsih, N., Tresna, W. P., Wahyu, Y., & Puspiptek, K. (2012). Pembuatan rf absorber berbasis karbon lokal untuk aplikasi radar. In InSinas (pp. 137–140).
[8] Liu, Q., & Zhang, W. (2012). Biomorphic porous graphitic carbon for electromagnetic interference shielding. Journal of Material Chemistry, 22, 21183–21188.
[9] Velev, P. N., Nenkova, S. K., & Kulevski, M. N. (2012). Polymer composites on the basis of lignocellulose containing copper sulfide for electromagnetic wave protection. Bulgarian Chemical Communications, 44(2), 164–171.
[10] Rani, A., Nam, S.-W., Oh, K.-A., & Park, M. (2010). Electrical Conductivity of Chemically Reduced Graphene Powders under Compression. Carbon Letters, 11(2), 90–95.
[11] Hao, W. (2014). Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications. Stockholm University.
[12] Reventós, M. M., Rius, J., & Amigó, J. M. (2012). Mineralogy And Geology : The Role Of Crystallography Since The Discovery Of X-Ray Diffraction In 1912. Revista de La Sociedad Geológica de España, 25(3–4), 133–143.
[13] Zhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3(1), 3448. https://doi.org/10.1038/srep03448.
[14] Heaney, M. B. (2004). Electrical Conductivity and Resistivity. In Electrical Measurement, Signal Processing, and Displays (pp. 7–1–7–14).
[15] Nam, I. W., & Lee, H. K. (2015). Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix. International Journal of Concrete Structures and Materials, 9(4), 427–438.
[16] Mittal, G., Rhee, K. Y., & Park, S. J. (2016). The effects of cryomilling CNTs on the thermal and electrical properties of CNT/PMMA composites. Polymers, 8(5).
[17] Pang, H., Xu, L., Yan, D. X., & Li, Z. M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39(11), 1908–1933.

Citations:

 

APA:
Imammuddin, A. M., Soeparman, S., Suprapto, W., & Sonief, A. A. (2019). Effect of Carbonization Temperature on Electrical Conductivity of Biocarbon Water Hyacinth Composites. International Journal of Control and Automation (IJCA), ISSN: 2005-4297 (Print); 2207-6387 (Online), NADIA, 12(9), 23-30. doi: 10.33832/ijca.2019.12.9.03.

MLA:
Imammuddin, Azam Muzakhim, et al. “Effect of Carbonization Temperature on Electrical Conductivity of Biocarbon Water Hyacinth Composites.” International Journal of Control and Automation, ISSN: 2005-4297 (Print); 2207-6387 (Online), NADIA, vol. 12, no. 9, 2019, pp. 23-30. IJCA, http://article.nadiapub.com/IJCA/vol12_no9/3.html.

IEEE:
[1] A. Muzakhim Imammuddin, S. Soeparman, W. Suprapto, and A. As’ad Sonief, "Effect of Carbonization Temperature on Electrical Conductivity of Biocarbon Water Hyacinth Composites." International Journal of Control and Automation (IJCA), ISSN: 2005-4297 (Print); 2207-6387 (Online), NADIA, vol. 12, no. 9, pp. 23-30, Sep 2019.