[1] Ning, T. H., “Why BiCMOS and SOI BiCMOS”, IBM Journal of research and development, vol. 46, no. 2/3, (2020) March, pp. 181-86.
[2] Sun, I. S. M., Ng, W. T., Kanekiyo, K., Kobayashi, T., Mochizuki, H., Toita, M., Imai, H., Ishikawa, A., Tamura, S. and Takasuka, K., “Lateral high speed bipolar transistors on SOI for RF SoC applications”, IEEE Transactions on Electron Devices, vol. 52, no. 7, (20015) July, pp. 1376-1383.
[3] Matsuzawa, A., “RF-SoC Expectations and required conditions”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, (2002) January, pp. 245-253.
[4] Nehrer, W., Anderson, L., Debolske, T., Efland, T., and Fleischmann, P., “Power BiCMOS process with high voltage device implementation for 20V mixed signal circuit applications”, Proceedings of ISPSD and ICs, Osaka, (2001) June, pp. 263-266.
[5] Masuda, H., Nakai, M., and Kubo, M., “Characteristics and Limitation of scaled-down MOSFETs due to two-dimensional Field Effect”, IEEE Transactions on Electron Devices, vol. 26, no. 6, (1979) June, pp. 980-986.
[6] McFarland, G. and Flynn, M., “Limits of scaling MOSFETs”, Technical report CSL-TR-95-662, (1995) January.
[7] Loan, S. A., Qureshi, S. and Kumar Iyer, S. S., “A Novel Partial-Ground-Plane- Based MOSFET on selective buried oxide: A 2-D simulation study”, IEEE Transactions on Electron Device, vol. 57, no. 3, (2020) March, pp. 671-680.
[8] Loan, S. A., Qureshi, S. and Kumar Iyer, S. S., “A novel high breakdown voltage lateral bipolar transistor on SOI with Multizone doping and multistep oxide”, IOP Semiconductor Science and Technology, vol. 24, no. 2, (2009) January, 025017.
[9] Bashir, F., Loan, S. A., Rafat, M., Abbasi, S. A. and Alamoud, A. R. M., “A High performance source engineered charge plasma based schottky MOSFET on SOI”, IEEE Transactions on Electron Devices, vol. 62, no. 10, (2015) October, pp. 3357-3364.
[10] Loan, S. A., Bashir, F., Rafat, M., Abbasi, S. A. and Alamoud, A. R. M., “A high performance charge plasma PN-Schottky collector transistor on silicon-on- insulator”, IOP Semiconductor Science and Technology, vol. 29, no. 9, (2014) July, 095001.
[11] Loan, S. A., Bashir, F., Rafat, M., Abbasi, S. A. and Alamoud, A. R. M., “A high performance charge plasma based lateral bipolar transistor on selective buried oxide”, IOP Semiconductor Science and Technology, vol. 29, no. 1, (2013) December 2013, 015011.
[12] Iijima, S., “Helical microtubules of graphitic carbon”, Nature, vol. 354, (1991) November, pp. 56-58.
[13] Bethune, D. S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., “Cobalt-Catalysed Growth of Carbon Nanotubes with single-atomic-layer walls”, Nature, vol. 363, no. 6430, (1993) June, pp. 605-607.
[14] Saito, R., Dresselhaus, G. and Dresselhaus, M. S., “Physical properties of carbon nanotubes”, World Scientific Publishing Company Inc., (1998).
[15] Kim, Y.-B., “Integrated circuit design based on Carbon Nanotube Field Effect Transistor”, Transactions on Electrical and Electronic Materials, vol. 12, no. 5, (2011) October, pp. 175-188.
[16] Raychowdhury, A. and Roy, K., “Carbon Nanotube Electronics: Design of high- performance and low power digital circuits”, IEEE Transactions on Circuits and Systems- I: Regular Papers, vol. 54, no. 11, (2007) November, pp. 2391-2401.
[17] Nizamuddin, M., Loan, S. A., Abbasi, S. A. and Alamoud, A. R. M., “Design, Simulation and Comparative Analysis of CNT based Cascode Operational Transconductance Amplifiers”, IOP Nanotechnology, vol. 26, no. 39, (2015) September, 395201.
[18] Sajad A. Loan, M. Nizamuddin, A. R. M. Alamoud and Shuja A Abbasi, Design and Comparative Analysis of High Performance Carbon Nanotube based Operational Transconductance Amplifiers”, World Scientific journal Nano, vol. 10, no. 3, (2015) April, 1550039.
[19] Usmani, F. A. and Hasan, M., “Carbon nanotube field effect transistors for high performance analog applications: An optimum design approach”, Microelectronics Journal, vol. 41, no. 7, (2010) July, pp. 395-402.
[20] Kureshi, A. K. and Hasan, M., “Performance Comparison of CNFET and CMOS based 6T SRAM cell in deep submicron”, Elsevier’s Microelectronics Journal, vol. 40, no. 6, (2009) June, pp. 979-982.
[21] Avouris, P., Chen, Z. and Perebeinos, V., “Carbon-based Electronics”, Nature Nanotechnology, vol. 2, no. 10, (2007) September, pp. 605-615.
[22] Guo, J., Javey, A., Dai, H., Datta, S. and Lundstrom, M., “Predicted performance advantages of carbon nanotube transistors with doped nanotubes as source/drain”, (2003). Available from: http://arxiv.org/abs/cond-mat/0309039.
[23] Guo, J., Javey, A., Dai, H., and Lundstrom, M., “Performance analysis and design optimization of near ballistic Carbon Nanotube Field-Effect Transistors”, IEDM Technical Digest IEEE International, (2004) December, pp. 703-706.
[24] Javey, A., Guo, J., Farmer, D. B., Wang, Q., Yenilmez, E., Gordon, R. G., Lundstrom, M. and Dai, H., “Self-Aligned ballistic molecular transistors and electrically parallel nanotube arrays”, Nano Letters, vol. 4, no. 7, (2004) June, pp. 1319-1322.
[25] Javey, A., Guo, J., Farmer, D. B., Wang, Q., Wang, D., Gordon, R. G., Lundstrom, M. and Dai, H., “Carbon Nanotube Field-Effect Transistors with Integrated Ohmic contacts and High-k Gate Dielectrics, Nano Letters, vol. 4, no. 3, (2004) February, pp. 447-450.