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Abstract 

The Cloud computing has become the fast spread in the field of computing, research 

and industry in the last few years. As part of the service offered, there are new 

possibilities to build applications and provide various services to the end user by 

virtualization through the internet. Task scheduling is the most significant matter in the 

cloud computing because the user has to pay for resource using on the basis of time, 

which acts to distribute the load evenly among the system resources by maximizing 

utilization and reducing task execution Time. Many heuristic algorithms have been 

existed to resolve the task scheduling problem such as a Particle Swarm Optimization 

algorithm (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Cuckoo 

search (CS) algorithms, etc. In this paper, a Dynamic Adaptive Particle Swarm 

Optimization algorithm (DAPSO) has been implemented to enhance the performance of 

the basic PSO algorithm to optimize the task runtime by minimizing the makespan of a 

particular task set, and in the same time, maximizing resource utilization. Also, .a task 

scheduling algorithm has been proposed to schedule the independent task over the Cloud 

Computing. The proposed algorithm is considered an amalgamation of the Dynamic PSO 

(DAPSO) algorithm and the Cuckoo search (CS) algorithm; called MDAPSO. According 

to the experimental results, it is found that MDAPSO and DAPSO algorithms outperform 

the original PSO algorithm. Also, a comparative study has been done to evaluate the 

performance of the proposed MDAPSO with respect to the original PSO. 
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1. Introduction 

Cloud computing is a new computing technology to enhance the virtualized resources 

designed for end users in a dynamic environment in order to provide reliable and trusted 

service [1]. The offered services includes but not limited to the possibility of building 

application & other various services through internet virtualization which is the main 

technique which improve physical resources utilization in cloud computing [2]. It allows 

abstraction and isolation of underlying physical resources and reduce required hardware 

equipment. The technique – virtualization – include network virtualization end enable the 

operator to create virtual machines on a single physical server. Specifically, virtual 

machines can be designed by increasing or decreasing CPU power & number of CPUs, in 

order to efficiently utilize the virtualized resources that execute the computing intense 

application [3]. 

Establish an efficient load balanced algorithm would be proposed to ensure cloud 

computing could be used efficiently & effectively which is a fundamental goal of the 

service providers. There is a real need to develop new task scheduling algorithm to meet 

the virtualization principles & demand. The objective of the task scheduling algorithm is 
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to achieve high system throughput, improve the load balance and reduce the completion 

period while ensuing in the same time meeting the job requirement with available 

virtualized resources. According to the task scheduling, a set of an appropriate number of 

tasks is to be scheduled to the virtual machines. Tasks scheduling over the Cloud 

Computing resources are the most important task because the user will have to pay for 

resource use on the basis the time.  

Many meta-heuristic algorithms have been proposed such as PSO algorithm that is 

appropriate for dynamic task scheduling include. On the other hand, Particle Swarm 

Optimization (PSO) has become popular because of its simplicity and its effectiveness in 

a broad range of application. Some of the applications that have used PSO to solve NP-

Hard problems like Scheduling problem [4], and  the task allocation problem [5]. 

Kennedy and Eberhart [6] have presented a self-adaptive global search based 

optimization technique. The algorithm is similar to other population-based algorithms as 

Genetic algorithms (GA) without direct recombination of individuals of the population. 

Instead, it relies on the social behavior of the particles. In every generation, all particles 

adjust its trajectory based on its best position and the position of the best particle (global 

best) of the entire population. These concepts increase the stochastic nature of the particle 

and converge quickly to a global reduce with a reasonable right solution. Xin, G. Chen [7] 

has proposed a dynamic adaptive particle swarm optimization. The target of this 

algorithm is improve the PSO algorithm affinity problem in inertia weight where great 

inertia weight facilitates a global search while a little inertia weight facilitates a local 

optimal of the High dimensional function optimization problems to improve its global 

optimal and Affinity speed. A dynamic adaptive strategy was offered into the variant to 

edit the inertia weight value according to the current swarm variety and collection degree, 

as well as, the effect on the search performance of the swarm. 

According to the work in this paper, an algorithm based on particle swarm optimization 

algorithm called Dynamic Adaptive Particle Swarm Optimization (DAPSO) algorithm 

has been proposed. Also, another algorithm has been proposed by amalgamation the 

proposed DAPSO with a cuckoo search algorithm, called (MDAPSO), to optimize the 

task scheduling in the Cloud environment to minimize the completion time and increase 

the resource utilization. 

The rest of this paper is organized as follows. Section 2 summarizes previous related 

work in this field. Section 3 describes the proposed system, model. Sections 4, 5 and 6 

describe the intelligent PSO, DAPSO, and MDAPSO algorithms, and Sect. 7 describes 

proposed algorithm in detail. Section 8 compares our proposed algorithm with several 

similar algorithms, and the final section presents our conclusion. 

 

2. Related Work 

Task scheduling has been a significant research topic whose objective is to ensure that 

every computing resource is distributed efficiently and equitably and at the end improves 

resource utility. In traditional computing environments of distributed computing, grid and 

parallel computing, a set of scheduling strategies have been proposed. 

R. P. BRENT [8] has proposed a first-fit strategy, and it is used by some cloud system 

such as Eucalyptus in Nurmi, D. Wolski et al., [9] In these methods, the starvation 

problem is nearly solved, and the makespan is reduced. But, the requests will execute on 

each resource and would not support the optimal usage of resources and appropriate load 

balancing. 

Wang, X., Yeo et al., [10] has proposed the Look-Ahead Genetic Algorithm (LAGA) 

for large-scale distributed systems such as Grid and Cloud, based on GA algorithm. It is a 

computation-intensive and reliability driven reputation algorithm that considers the tasks 

runtime using the task failure rate (task failures each unit time) of resources in order to 

define the status and evaluate the reliability of resources. This algorithm computes a task 
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ordering procedure by the resource completion time in all generation and choice a 

resource with the least failure rate in mutation operation. It focuses on completion time 

and schedule failure rate. 

Singh, J., Singh, H. [11] has proposed the Node duplication Genetic (NGA) algorithm 

which has been used for heterogeneous multiprocessor systems, based on GA method. 

The algorithm concerns about the completion time of application and communication 

delay time. The fitness function in NGA algorithm does the evolution in two different 

stages. The first stage is the fitness of task that the authors said it equipped the system 

with the knowledge of all the tasks are executed and scheduled in a legal order. Here the 

legal system is scheduled a pair of tasks on a single processor while the pair of tasks is 

independent of each other. The second stage is the fitness of processor that attempts to 

minimize the processing time. 

Pooranian et al., [12] have proposed a task scheduling technique for grid computing 

based on a merge PSO with the gravitational emulation local search (GELS) algorithm 

that minimizes makespan and the number of tasks that fail to meet their deadlines. 

Lee [13], has proposed a dynamic load balancing algorithm on the basis of an existing 

algorithm called WLS (weighted least connection). According to this algorithm, the tasks 

are assigned to node according to the number of connections that exist for this node. It is 

comparing a set of connections from each node in the cloud and the task assigned to the 

node with the lowest number of connections. Nonetheless, weighted least connection 

would not take into account the capabilities of each node, such as processing speed, 

storage, capacity, and bandwidth.  

Ren [14], has improved the algorithm of the WLC [13], with taking into account the 

time series and trials. This modified algorithm called Exponential Smooth Forecast based 

on Weighted Least Connection (ESWLC).The ESWLC steps are; 1) build the conclusion 

of the assignment of a particular task to the node after having a number of tasks assigned 

to that node and identify node capabilities. 2) Build a decision on the basis of the 

experience of the node’s memory, CUP memory, the number of connections and the 

amount of disk space currently being used. 3) Then, predict which node is to be chosen on 

the basis on exponential smoothing. 

L. Zhang, et al., [15] has proved that the particle swarm optimization algorithm can get 

the better schedule than the genetic algorithm in grid computing. A. Salman [16] has 

illustrated that the performance of Particle Swarm Optimization (PSO) algorithm is better 

than GA algorithm in distributed system. Not only is the PSO algorithm solution quality 

better than GA in a majority of the test cases, but also PSO algorithm run quicker than 

GA.  

Xin Lu, Zilong Gu. [17] Dong, Wang, D. [18] and Song, X., L.[19] have proposed a 

Load  balancing task scheduler to balance the fully system load while trying to minimize 

the makespan of a specific task set. They used two different load balancing scheduling 

algorithms based on the solution of ant colony optimization (ACO) technique, which aims 

to minimize the completion time based on pheromone.  

A. Al-maamari, F. Omara.[20] have proposed a task scheduling algorithm for cloud 

computing based on a merge PSO algorithm with the Cuckoo Search (CS) algorithm, 

called (PSOCS), the task assigned to the virtual machine, that aims to minimizes 

makespan and the maximum resource utilization . 

According to the work in a paper, the Particle Swarm Optimization has been concerned 

to  optimize the task scheduling problem with focusing on minimizing the total executing 

time. 

 

3. The Scheduling System 

Figure 1 illustrates an overview of the scheduling system. the system  consists of three 

modules, the first module is the application which represents the set of the cloudlets 

(tasks). The second module is the Mapping Algorithms (MA) which estimates the 
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expected time for each cloudlet to allocate on each virtual machine, and it is assumed that 

these values are available to the scheduler. A third module is a virtual machine (VMs) 

which used to execute the cloudlets. The cloudlets expected time have been stored in an m 

× n matrix, where m is the number of virtual machines, and n is the number of cloudlets. 

Obviously, n/m will generally be greater than 1, with more cloudlets than virtual 

machines, so that some machines will need to be assigned multiple cloudlets. The 

Estimated Running Time (ERT) is defined as the time of executing task j on resource r 

[21]. Each column  of the expected running times (ERT) matrix contains the expected 

running time (ERT) of each cloudlet j on machine . 

 

 

Figure 1. Scheduling System 

The main objective of allocating tasks on virtual machines is to reduce the makespan. 

The makespan of a task is defined as the overall task completion time. We denote 
completion time of task T i  o n  V M j  a s CTij. Hence, the makespan is defined using 

the  following  equation [22]:  

Makespan = | i ϵ T,  i = 1,2, … n and j ϵ VM, j = 1,2,…m        (1) 

Where is the maximum completion time of task i on a VM j., and n, m are the 

number of tasks and virtual machines respectively. 

Let be the number of m virtual machines that must be 

processed n tasks represented by the group . The virtual machines are 

parallel and independent, and the schedule allocates independent tasks to these . Also, 

the Processing a task on a virtual machine cannot interrupt (i.e.) Non-preemption. We 

denote end time of a task   by . The aim of the proposed algorithms is to reduce the 

which can be denoted as . The run time of each task for each virtual 

machine must be calculated for the purpose of scheduling, If the processing speed of a 

virtual machine is , then the processing time for task can be calculated by 

equation. (2) [23]: 

Tij = Ci/ PSj                                                                                                (2)  

Where Pij is the processing time of task Pi by virtual machine VM j and CI is the 

computational complexity of the task Pi [23]. The processing time P ij of each task Pi on 

VM j  are stored in the runtime matrix. The processing time of each task in the virtual 

machines can be calculated by equation (3): 
                 

                 

 
According to (1), (2) and (3), the task scheduling algorithm should satisfy the 

following equation 

                                                                                                 (4)                                     

By considering the load balancing, the tasks will be transferred from one VM to other 

to reduce CTmax, as well as, response time. The processing time of a task varies from one 
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VM to another based on the speed of the virtual machines. In case of transferring, the 

completion time of a task may vary because of load balancing, optimally.  

The main objective of the proposed task scheduling MDAPSO algorithm is that the 

tasks should be allocated on the virtual machine in order to minimize the makespan and 

maximize the resource utilization. Therefore, the proposed DAPSO algorithm has been 

introduced to enhance the performance of the original PSO algorithm. 

 

4. The Basic Particle Swarm Optimization (Pso) Algorithm  

The PSO algorithm has been introduced by Kennedy and Eberhartin 1995 [6], [24]. 

According to the PSO algorithm, the particle set of a process can be presented according 

to the following equations. 

 

                 

Where Vid and Xid are the velocity of particle i at iteration d, and are 

random numbers between 0 and 1, where V  is constant, c1 and 

c2 are learning factors called the cognition and the social parameters. The ith particles in a 

D-dimensional vector is ) in the space of flight speed is Vi 

and ). The ith is known so far to search the optimum position 

is ), and the particle swarm so far to search the optimal position is 

 ). In [25], the speed equation (5) has submitted the following 

changes:  

          
Where W is inertia weight. Equations (5) and (7) are considered the basic of PSO 

iterative formula. For more details about w  value  see [24], also in section 5. 

Resolving the task scheduling problem using PSO algorithms that how to enter a 

schedule as a search solution, find appropriate maps among problem solutions and PSO 

particles. According to the proposed DAPSO algorithm, each particle represents a 

possible solution for the task assigned using an array of n elements, where all elements 

randomly produce integer values between 1 and m. Figure 2 shows the assignment of ten 

tasks to five virtual machines. For Example, in Particle 1 or nest 1, tasks ,  and  are 

assigned to  and tasks ,  and  are assigned to  and  is assigned to  

and  and  are assigned to , and  is assigned to . 
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Figure 2. Particle Representation 

5. Dynamic Adaptive Particle Swarm Optimization 

The objective of the proposed DAPSO is to solve the PSO affinity problem in inertia 

weight where great inertia weight facilitates a global search while a little inertia weight 

facilitates a local search. The inertia weight formula that was used is represented in Eq (8) 

[26]: 
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                                                   (8) 

Where Wmin and Wmax are the minimum and maximum inertia weight values, t is the 

current number of iterations, the diversity function Ft and adjustment function , both in 

the ith  iteration, are represented in equations (9) and (10), respectively:  

                                                        (9) 

Where 𝐸 is the group fitness as shown in equation (11): 

                                                          (10) 

Where 𝜎 = 𝑇/3 and 𝑇are the total numbers of iterations: 

                                                    (11) 

Where 𝑁 is the swarm size, f(xi) is the fitness of particle i, and favg is the current 

average fitness of the swarm, and it is represented in equation (12):  

                                                                  (12) 

The proposed dynamic adaptive particle swarm optimization (DAPSO) algorithm 

can be summarized as follows: 

1. Initialize the particle swarm randomly. 

2. Evaluate the fitness function for each particle.  

3. Compare the optimization fitness value of each particle with its previous 

best position pbest, If the pbest is better than the previous pbest values, then set 

the current pbest value as the best value of the particle. 

4. Compare the fitness function value of each particle with the previous 

gbest value, if the current value is better than the previous gbest values, then reset 

the current value as the global best value of the swarm. 

5. To all particles of particle swarm, execute the following operations:  

 Update the position and velocity of particles by using equations 

(6) and (7). 

 Update the inertia weight by using equations (11) (12) (8) and 

(10). 

6. Check if a stop criterion is met. I fit is met, the execution is terminated. 

Otherwise, go to Step 2. 

 

6. Cuckoo Search Algorithm 

The CS is an optimization algorithm developed by Xin-she Yang and Suash Deb in 

2009 [27]. It was inspired by the obligate brood parasitism of some cuckoo species by 

laying their eggs in the nests of other host birds (of other species). Some host birds can 

engage direct conflict with the intruding cuckoos. For example, if a host bird discovers 

the eggs are not their own, it will either throw these alien eggs away or simply abandon its 

nest and build a new nest elsewhere. According to the CS algorithm, when generating 

new solutions  for a cuckoo i, a Lévy flight is performed using the equation (13) 

[27]. 

                                                        (13) 

Where  represents the current location,  is the step size, which should be 

related to the scales of the problem that the algorithm is trying to solve. In most cases, 

, and λ Є(0, 3) are used. Equation (13) is in core stochastic equation for a random 

walk which is similarly of a Markov chain who’s next location (status) depends on two 

parameters; current location (the first term in equation. 13) and the possibility of 
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transmission (the second term in Eq. 13).The product ^ represents entry-wise 

multiplication [28].  

Cuckoo characteristics could be described, as a model for good behavior other animals 

have extensive use in computing Intelligence Systems [29]. According to the CS 

algorithm, an initial set of nests, which represent the solutions, are randomly generated. 

These solutions are then updated over multiple generations. The process of updating an 

individual solution is as follows; a random nest is chosen, and a new solution is generated 

by random walking from this previous solution. This new solution can then replace a 

different randomly chosen solution if it has a fitness value better than the original. After 

this possible replacement of a solution, all of the nests are ranked by fitness and the worst 

fraction of the nests is replaced with random solutions. This combination of mechanisms 

allows the solutions to search locally and globally at the same time for the optimal 

solution [28]. 

 

7. The Proposed Mdapsotask Scheduling Algorithm 

The PSO algorithm uses different search stages, and these stages are close to the 

optimum stage with their pbest and gbest values. PSO can be used for continuous and 

discrete problems, and it is good for global searches in the problem space. But it is weak 

for local searches, with a large possibility of becoming trapped in a local optimum in the 

last iteration. PSO converges globally because it searches globally. It always tries to move 

to solutions that have better fitness functions in a purely stochastic search problem space. 

It does not pay close attention to local subspaces so it is unable to recognize and avoid 

local optima. As a result, PSO may become trapped in local optima and have a low 

convergence rate in the late iterative process. There is option for addressing this problem 

is to use local search algorithms such as CS algorithm that can avoid local optima.  

According to the proposed MDAPSO task scheduling algorithm, the PSO algorithm 

has been used as the main search  algorithm, while the DAPSO and CS algorithm are used 

to improve the population. There are two reasons for using both algorithms. First, we  

needs an algorithm that  based on a population to search the entire cloud space for this 

problem. Second, the cloud environment is dynamic. So, the scheduling algorithm must 

be fast enough to adapt with the natural cloud environment and must be able to converge 

faster than other algorithms. Moreover, DAPSO has been introduced to overcome the 

weakness of the original PSO algorithm for local searches because the inertia weight 

technique is very useful to ensure convergence. However, there is a disadvantage of 

DAPSO algorithm is that once the inertia weight is decreased, it cannot increase if the 

swarm needs to search new areas. This algorithm not able to recover its exploration mode. 

Therefore, by combining the DAPSO algorithm with CS algorithm is considered powerful 

in searches addresses this problem because CS has a set of mechanisms allows the 

solutions to search locally and globally at the same time for the optimal solution. 

Generally, the DAPSO algorithm is used to solve the PSO convergence problem in inertia 

weight where great inertia weight facilitates a global search while a little inertia weight 

facilitates a local search, also control the balance between global and local exploration, to 

obtain quick convergence, and to reach an optimum. CS algorithm is run on the global 

result of the last iteration of the DAPSO. That is an initial solution for CS which is 

provided by DAPSO during the mix search process. 

 

8. The Performance Evaluation 
 

8.1. Experimental Settings   

Cloudsim3.0.3 is an open source simulator which has been developed by Gridbus 

project team and the grid Laboratory of the University of Melbourne in Australia. The 

Cloudsim can run on Linux and Windows systems [30]. CloudSim has been used to 

implement the proposed MDAPSO task scheduling algorithm. Also, a comparative study 
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has been done to evaluate the performance of the proposed DAPSO, and MDAPSO 

algorithms with respect to the PSOCS algorithm [20], and the original PSO algorithm. 

This simulation mainly validates the advantage of the makespan and the resource 

utilization among these scheduling algorithms in the Cloud Computing environment. 

 

8.2. Performance Results 

To evaluate the performance of the four algorithms; original PSO, DAPSO, PSOCS 

and MDAPSO, 5 five and ten Virtual machines are considered with 10, 20, 30, and 40 

cloudlets. 

Tables 1 represent the makespan of PSO, DAPSO, PSOCS and MDAPSOalgorithms 

using five virtual machines and a set of various cloudlets respectively.  

Table 1. Compared Scheduling Algorithm With Execution Time (Sec) 

PSO DAPSO PSOCS MDAPS

O 

VM Cloudlet 

3.200596 2.619682 2.254691 2.154  

5 

10 

5.627895 4.514721 3.59614 3.475 20 

8.896552 8.246502 6.436863 4.691 30 

13.31111 10.25296 9.242986 8.48 40 

 

According to the results in Figure 3, the proposed MDAPSO algorithm, with the 

respect to the execution time using 5 VMs, outperforms the default PSO, DAPSO and 

PSOCS algorithms by 38.63% and 25.30%  respectively. 

 

 

Figure 3. The ExecutionTime when No. VMs (5) 

Tables 2. represent the makespan of PSO, DAPSO, PSOCS and MDAPSO algorithms 

using ten virtual machines and a set of various cloudlets respectively.  

Table 2. Compared Scheduling Algorithm with Execution Time (Sec) 

PSO DAPSO PSOCS MDAPSO VM Cloudlet 

2.259 1.7412 1.4830 1.372  

10 

10 

3.893 2.9823 2.8084 2.093 20 

7.235 5.7235 4.2235 3.981 30 
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8.595 5.2986 4.8917 4.581 40 

 

According to the results in Figure 4, the proposed MDAPSO algorithm, with the 

respect to the execution time using 10 VMs, outperforms the default PSO, DAPSO and 

PSOCS algorithms by 44.29%  and 23.75% respectively. 

 

 

Figure 4. The Execution Time Of All Cloudlet when No. VMs (10) 

The simulation results of the resource utilization of PSO, DAPSO, PSOCS and 

MDAPSO algorithms using five virtual machines and a set of various cloudlets 

respectively are described in Table 3. and Figure 5. 

Table 3. Compared Scheduling Algorithm With Utilization 

PSO DAPSO PSOCS MDAPSO VM Cloudlet 

0.626073 0.733601 0.854172 0.8672  

5 

10 

0.594803 0.718096 0.919375 0.954354 20 

0.616211 0.681181 0.92038 0.972168 30 

0.52374 0.57813 0.843596 0.961894 40 

 

According to the results in Figure 5, the proposed MDAPSO algorithm, with the 

respect to the resource utilization using 5 VMs, outperforms  the default PSO, DAPSO 

and PSOCS algorithms by 36.19% and 20.60% respectively. 

 

 

Figure 5. Comparison Utilization Of Number Of Cloudlets 

Table 4. represent the resource utilization of PSO, DAPSO, PSOCS and 

MDAPSO algorithms using 10 virtual machines and a set of various cloudlets 

respectively. 
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Table 4. Compared Scheduling Algorithm With Resource Utilization  

PSO DAPSO PSOCS MDAPSO VM Cloudlet 

0.42966 0.60066 0.65233 0.7012  

 

10 

10 

0.43191 0.62932 0.69743 0.7933 20 

0.32182 0.45051 0.56571 0.7572 30 

0.39871 0.71601 0.80701 0.8909 40 

According to the results in Figure 6 the proposed MDAPSO algorithm, with the 

respect to the resource utilization using 10 VMs, outperforms the default PSO, 

DAPSO and PSOCS algorithms by  49.26% and 23.79% respectively. 

 

Figure 6. Comparison Utilization of Number of Cloudlets 

9. Conclusion  

According to the work in this paper, a dynamic adaptive particle swarm optimization 

(DAPSO) has been introduced and implemented to solve the PSO affinity problem in 

inertia weight where great inertia weight facilitates a global search while a little inertia 

weight facilitates a local search. Also, a new task scheduling algorithm has been 

introduced to minimize the makespan and increase the utilization ratio of application 

workflows on the Cloud computing. This new algorithm is considered an amalgamation 

of the DAPSO and CS algorithms, called MDAPSO algorithm, where DAPSO algorithm 

is used to improve the inertia weight and CS algorithm is used in the local search where  

the performance is improved by changing inertia weight and  trapping on local search has 

been improved. To evaluate the proposed MDAPSO task scheduling algorithm, a 

comparative study among the proposed MDAPSO, original PSO, DAPSO, and PSOCS 

algorithms has been done. According to the experimental results, it is found that the 

proposed MDAPSO algorithm outperforms the original PSO, DAPSO, and PSOCS 

algorithms with respect to the makspam and resource utilization. In addition, the 

MDAPSO and DAPSO algorithms perform better performance than the original PSO 

algorithm. 
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