
International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015), pp.245-256

 http://dx.doi.org/10.14257/ijgdc.2015.8.5.24

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2015 SERSC

Task Scheduling Using PSO Algorithm in Cloud Computing

Environments

1
Ali Al-maamari and

2
Fatma A. Omara

1
Department of Computer Science, Cairo University, Egypt

Alialmamri2011@gmail.com
2
Professor, Department of Computer Science, Faculty of Computers &

Information,

Cairo University, Egypt

Abstract

The Cloud computing has become the fast spread in the field of computing, research

and industry in the last few years. As part of the service offered, there are new

possibilities to build applications and provide various services to the end user by

virtualization through the internet. Task scheduling is the most significant matter in the

cloud computing because the user has to pay for resource using on the basis of time,

which acts to distribute the load evenly among the system resources by maximizing

utilization and reducing task execution Time. Many heuristic algorithms have been

existed to resolve the task scheduling problem such as a Particle Swarm Optimization

algorithm (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Cuckoo

search (CS) algorithms, etc. In this paper, a Dynamic Adaptive Particle Swarm

Optimization algorithm (DAPSO) has been implemented to enhance the performance of

the basic PSO algorithm to optimize the task runtime by minimizing the makespan of a

particular task set, and in the same time, maximizing resource utilization. Also, .a task

scheduling algorithm has been proposed to schedule the independent task over the Cloud

Computing. The proposed algorithm is considered an amalgamation of the Dynamic PSO

(DAPSO) algorithm and the Cuckoo search (CS) algorithm; called MDAPSO. According

to the experimental results, it is found that MDAPSO and DAPSO algorithms outperform

the original PSO algorithm. Also, a comparative study has been done to evaluate the

performance of the proposed MDAPSO with respect to the original PSO.

Keywords: Cloud computing, Particle Swarm Optimization, Task scheduling

1. Introduction

Cloud computing is a new computing technology to enhance the virtualized resources

designed for end users in a dynamic environment in order to provide reliable and trusted

service [1]. The offered services includes but not limited to the possibility of building

application & other various services through internet virtualization which is the main

technique which improve physical resources utilization in cloud computing [2]. It allows

abstraction and isolation of underlying physical resources and reduce required hardware

equipment. The technique – virtualization – include network virtualization end enable the

operator to create virtual machines on a single physical server. Specifically, virtual

machines can be designed by increasing or decreasing CPU power & number of CPUs, in

order to efficiently utilize the virtualized resources that execute the computing intense

application [3].

Establish an efficient load balanced algorithm would be proposed to ensure cloud

computing could be used efficiently & effectively which is a fundamental goal of the

service providers. There is a real need to develop new task scheduling algorithm to meet

the virtualization principles & demand. The objective of the task scheduling algorithm is

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

246 Copyright ⓒ 2015 SERSC

to achieve high system throughput, improve the load balance and reduce the completion

period while ensuing in the same time meeting the job requirement with available

virtualized resources. According to the task scheduling, a set of an appropriate number of

tasks is to be scheduled to the virtual machines. Tasks scheduling over the Cloud

Computing resources are the most important task because the user will have to pay for

resource use on the basis the time.

Many meta-heuristic algorithms have been proposed such as PSO algorithm that is

appropriate for dynamic task scheduling include. On the other hand, Particle Swarm

Optimization (PSO) has become popular because of its simplicity and its effectiveness in

a broad range of application. Some of the applications that have used PSO to solve NP-

Hard problems like Scheduling problem [4], and the task allocation problem [5].

Kennedy and Eberhart [6] have presented a self-adaptive global search based

optimization technique. The algorithm is similar to other population-based algorithms as

Genetic algorithms (GA) without direct recombination of individuals of the population.

Instead, it relies on the social behavior of the particles. In every generation, all particles

adjust its trajectory based on its best position and the position of the best particle (global

best) of the entire population. These concepts increase the stochastic nature of the particle

and converge quickly to a global reduce with a reasonable right solution. Xin, G. Chen [7]

has proposed a dynamic adaptive particle swarm optimization. The target of this

algorithm is improve the PSO algorithm affinity problem in inertia weight where great

inertia weight facilitates a global search while a little inertia weight facilitates a local

optimal of the High dimensional function optimization problems to improve its global

optimal and Affinity speed. A dynamic adaptive strategy was offered into the variant to

edit the inertia weight value according to the current swarm variety and collection degree,

as well as, the effect on the search performance of the swarm.

According to the work in this paper, an algorithm based on particle swarm optimization

algorithm called Dynamic Adaptive Particle Swarm Optimization (DAPSO) algorithm

has been proposed. Also, another algorithm has been proposed by amalgamation the

proposed DAPSO with a cuckoo search algorithm, called (MDAPSO), to optimize the

task scheduling in the Cloud environment to minimize the completion time and increase

the resource utilization.

The rest of this paper is organized as follows. Section 2 summarizes previous related

work in this field. Section 3 describes the proposed system, model. Sections 4, 5 and 6

describe the intelligent PSO, DAPSO, and MDAPSO algorithms, and Sect. 7 describes

proposed algorithm in detail. Section 8 compares our proposed algorithm with several

similar algorithms, and the final section presents our conclusion.

2. Related Work

Task scheduling has been a significant research topic whose objective is to ensure that

every computing resource is distributed efficiently and equitably and at the end improves

resource utility. In traditional computing environments of distributed computing, grid and

parallel computing, a set of scheduling strategies have been proposed.

R. P. BRENT [8] has proposed a first-fit strategy, and it is used by some cloud system

such as Eucalyptus in Nurmi, D. Wolski et al., [9] In these methods, the starvation

problem is nearly solved, and the makespan is reduced. But, the requests will execute on

each resource and would not support the optimal usage of resources and appropriate load

balancing.

Wang, X., Yeo et al., [10] has proposed the Look-Ahead Genetic Algorithm (LAGA)

for large-scale distributed systems such as Grid and Cloud, based on GA algorithm. It is a

computation-intensive and reliability driven reputation algorithm that considers the tasks

runtime using the task failure rate (task failures each unit time) of resources in order to

define the status and evaluate the reliability of resources. This algorithm computes a task

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

Copyright ⓒ 2015 SERSC 247

ordering procedure by the resource completion time in all generation and choice a

resource with the least failure rate in mutation operation. It focuses on completion time

and schedule failure rate.

Singh, J., Singh, H. [11] has proposed the Node duplication Genetic (NGA) algorithm

which has been used for heterogeneous multiprocessor systems, based on GA method.

The algorithm concerns about the completion time of application and communication

delay time. The fitness function in NGA algorithm does the evolution in two different

stages. The first stage is the fitness of task that the authors said it equipped the system

with the knowledge of all the tasks are executed and scheduled in a legal order. Here the

legal system is scheduled a pair of tasks on a single processor while the pair of tasks is

independent of each other. The second stage is the fitness of processor that attempts to

minimize the processing time.

Pooranian et al., [12] have proposed a task scheduling technique for grid computing

based on a merge PSO with the gravitational emulation local search (GELS) algorithm

that minimizes makespan and the number of tasks that fail to meet their deadlines.

Lee [13], has proposed a dynamic load balancing algorithm on the basis of an existing

algorithm called WLS (weighted least connection). According to this algorithm, the tasks

are assigned to node according to the number of connections that exist for this node. It is

comparing a set of connections from each node in the cloud and the task assigned to the

node with the lowest number of connections. Nonetheless, weighted least connection

would not take into account the capabilities of each node, such as processing speed,

storage, capacity, and bandwidth.

Ren [14], has improved the algorithm of the WLC [13], with taking into account the

time series and trials. This modified algorithm called Exponential Smooth Forecast based

on Weighted Least Connection (ESWLC).The ESWLC steps are; 1) build the conclusion

of the assignment of a particular task to the node after having a number of tasks assigned

to that node and identify node capabilities. 2) Build a decision on the basis of the

experience of the node’s memory, CUP memory, the number of connections and the

amount of disk space currently being used. 3) Then, predict which node is to be chosen on

the basis on exponential smoothing.

L. Zhang, et al., [15] has proved that the particle swarm optimization algorithm can get

the better schedule than the genetic algorithm in grid computing. A. Salman [16] has

illustrated that the performance of Particle Swarm Optimization (PSO) algorithm is better

than GA algorithm in distributed system. Not only is the PSO algorithm solution quality

better than GA in a majority of the test cases, but also PSO algorithm run quicker than

GA.

Xin Lu, Zilong Gu. [17] Dong, Wang, D. [18] and Song, X., L.[19] have proposed a

Load balancing task scheduler to balance the fully system load while trying to minimize

the makespan of a specific task set. They used two different load balancing scheduling

algorithms based on the solution of ant colony optimization (ACO) technique, which aims

to minimize the completion time based on pheromone.

A. Al-maamari, F. Omara.[20] have proposed a task scheduling algorithm for cloud

computing based on a merge PSO algorithm with the Cuckoo Search (CS) algorithm,

called (PSOCS), the task assigned to the virtual machine, that aims to minimizes

makespan and the maximum resource utilization .

According to the work in a paper, the Particle Swarm Optimization has been concerned

to optimize the task scheduling problem with focusing on minimizing the total executing

time.

3. The Scheduling System

Figure 1 illustrates an overview of the scheduling system. the system consists of three

modules, the first module is the application which represents the set of the cloudlets

(tasks). The second module is the Mapping Algorithms (MA) which estimates the

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

248 Copyright ⓒ 2015 SERSC

expected time for each cloudlet to allocate on each virtual machine, and it is assumed that

these values are available to the scheduler. A third module is a virtual machine (VMs)

which used to execute the cloudlets. The cloudlets expected time have been stored in an m

× n matrix, where m is the number of virtual machines, and n is the number of cloudlets.

Obviously, n/m will generally be greater than 1, with more cloudlets than virtual

machines, so that some machines will need to be assigned multiple cloudlets. The

Estimated Running Time (ERT) is defined as the time of executing task j on resource r

[21]. Each column of the expected running times (ERT) matrix contains the expected

running time (ERT) of each cloudlet j on machine .

Figure 1. Scheduling System

The main objective of allocating tasks on virtual machines is to reduce the makespan.

The makespan of a task is defined as the overall task completion time. We denote
completion time of task T i o n V M j a s CTij. Hence, the makespan is defined using

the following equation [22]:

Makespan = | i ϵ T, i = 1,2, … n and j ϵ VM, j = 1,2,…m (1)

Where is the maximum completion time of task i on a VM j., and n, m are the

number of tasks and virtual machines respectively.

Let be the number of m virtual machines that must be

processed n tasks represented by the group . The virtual machines are

parallel and independent, and the schedule allocates independent tasks to these . Also,

the Processing a task on a virtual machine cannot interrupt (i.e.) Non-preemption. We

denote end time of a task by . The aim of the proposed algorithms is to reduce the

which can be denoted as . The run time of each task for each virtual

machine must be calculated for the purpose of scheduling, If the processing speed of a

virtual machine is , then the processing time for task can be calculated by

equation. (2) [23]:

Tij = Ci/ PSj (2)

Where Pij is the processing time of task Pi by virtual machine VM j and CI is the

computational complexity of the task Pi [23]. The processing time P ij of each task Pi on

VM j are stored in the runtime matrix. The processing time of each task in the virtual

machines can be calculated by equation (3):

According to (1), (2) and (3), the task scheduling algorithm should satisfy the

following equation

 (4)

By considering the load balancing, the tasks will be transferred from one VM to other

to reduce CTmax, as well as, response time. The processing time of a task varies from one

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

Copyright ⓒ 2015 SERSC 249

VM to another based on the speed of the virtual machines. In case of transferring, the

completion time of a task may vary because of load balancing, optimally.

The main objective of the proposed task scheduling MDAPSO algorithm is that the

tasks should be allocated on the virtual machine in order to minimize the makespan and

maximize the resource utilization. Therefore, the proposed DAPSO algorithm has been

introduced to enhance the performance of the original PSO algorithm.

4. The Basic Particle Swarm Optimization (Pso) Algorithm

The PSO algorithm has been introduced by Kennedy and Eberhartin 1995 [6], [24].

According to the PSO algorithm, the particle set of a process can be presented according

to the following equations.

Where Vid and Xid are the velocity of particle i at iteration d, and are

random numbers between 0 and 1, where V is constant, c1 and

c2 are learning factors called the cognition and the social parameters. The ith particles in a

D-dimensional vector is) in the space of flight speed is Vi

and). The ith is known so far to search the optimum position

is), and the particle swarm so far to search the optimal position is

). In [25], the speed equation (5) has submitted the following

changes:

Where W is inertia weight. Equations (5) and (7) are considered the basic of PSO

iterative formula. For more details about w value see [24], also in section 5.

Resolving the task scheduling problem using PSO algorithms that how to enter a

schedule as a search solution, find appropriate maps among problem solutions and PSO

particles. According to the proposed DAPSO algorithm, each particle represents a

possible solution for the task assigned using an array of n elements, where all elements

randomly produce integer values between 1 and m. Figure 2 shows the assignment of ten

tasks to five virtual machines. For Example, in Particle 1 or nest 1, tasks , and are

assigned to and tasks , and are assigned to and is assigned to

and and are assigned to , and is assigned to .

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T1

0

Particl

e1

V

M1

V

M2

V

M1

V

M2

V

M1

V

M2

V

M3

V

M4

V

M4

V

M5

Particl

e2

V

M2

V

M2

V

M3

V

M2

V

M4

V

M1

V

M1

V

M5

V

M3

V

M5

Particl

e3

V

M3

V

M3

V

M2

V

M3

V

M5

V

M4

V

M1

V

M4

V

M2

V

M4

 ………. ……….

Figure 2. Particle Representation

5. Dynamic Adaptive Particle Swarm Optimization

The objective of the proposed DAPSO is to solve the PSO affinity problem in inertia

weight where great inertia weight facilitates a global search while a little inertia weight

facilitates a local search. The inertia weight formula that was used is represented in Eq (8)

[26]:

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

250 Copyright ⓒ 2015 SERSC

 (8)

Where Wmin and Wmax are the minimum and maximum inertia weight values, t is the

current number of iterations, the diversity function Ft and adjustment function , both in

the ith iteration, are represented in equations (9) and (10), respectively:

 (9)

Where 𝐸 is the group fitness as shown in equation (11):

 (10)

Where 𝜎 = 𝑇/3 and 𝑇are the total numbers of iterations:

 (11)

Where 𝑁 is the swarm size, f(xi) is the fitness of particle i, and favg is the current

average fitness of the swarm, and it is represented in equation (12):

 (12)

The proposed dynamic adaptive particle swarm optimization (DAPSO) algorithm

can be summarized as follows:

1. Initialize the particle swarm randomly.

2. Evaluate the fitness function for each particle.

3. Compare the optimization fitness value of each particle with its previous

best position pbest, If the pbest is better than the previous pbest values, then set

the current pbest value as the best value of the particle.

4. Compare the fitness function value of each particle with the previous

gbest value, if the current value is better than the previous gbest values, then reset

the current value as the global best value of the swarm.

5. To all particles of particle swarm, execute the following operations:

 Update the position and velocity of particles by using equations

(6) and (7).

 Update the inertia weight by using equations (11) (12) (8) and

(10).

6. Check if a stop criterion is met. I fit is met, the execution is terminated.

Otherwise, go to Step 2.

6. Cuckoo Search Algorithm

The CS is an optimization algorithm developed by Xin-she Yang and Suash Deb in

2009 [27]. It was inspired by the obligate brood parasitism of some cuckoo species by

laying their eggs in the nests of other host birds (of other species). Some host birds can

engage direct conflict with the intruding cuckoos. For example, if a host bird discovers

the eggs are not their own, it will either throw these alien eggs away or simply abandon its

nest and build a new nest elsewhere. According to the CS algorithm, when generating

new solutions for a cuckoo i, a Lévy flight is performed using the equation (13)

[27].

 (13)

Where represents the current location, is the step size, which should be

related to the scales of the problem that the algorithm is trying to solve. In most cases,

, and λ Є(0, 3) are used. Equation (13) is in core stochastic equation for a random

walk which is similarly of a Markov chain who’s next location (status) depends on two

parameters; current location (the first term in equation. 13) and the possibility of

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

Copyright ⓒ 2015 SERSC 251

transmission (the second term in Eq. 13).The product ^ represents entry-wise

multiplication [28].

Cuckoo characteristics could be described, as a model for good behavior other animals

have extensive use in computing Intelligence Systems [29]. According to the CS

algorithm, an initial set of nests, which represent the solutions, are randomly generated.

These solutions are then updated over multiple generations. The process of updating an

individual solution is as follows; a random nest is chosen, and a new solution is generated

by random walking from this previous solution. This new solution can then replace a

different randomly chosen solution if it has a fitness value better than the original. After

this possible replacement of a solution, all of the nests are ranked by fitness and the worst

fraction of the nests is replaced with random solutions. This combination of mechanisms

allows the solutions to search locally and globally at the same time for the optimal

solution [28].

7. The Proposed Mdapsotask Scheduling Algorithm

The PSO algorithm uses different search stages, and these stages are close to the

optimum stage with their pbest and gbest values. PSO can be used for continuous and

discrete problems, and it is good for global searches in the problem space. But it is weak

for local searches, with a large possibility of becoming trapped in a local optimum in the

last iteration. PSO converges globally because it searches globally. It always tries to move

to solutions that have better fitness functions in a purely stochastic search problem space.

It does not pay close attention to local subspaces so it is unable to recognize and avoid

local optima. As a result, PSO may become trapped in local optima and have a low

convergence rate in the late iterative process. There is option for addressing this problem

is to use local search algorithms such as CS algorithm that can avoid local optima.

According to the proposed MDAPSO task scheduling algorithm, the PSO algorithm

has been used as the main search algorithm, while the DAPSO and CS algorithm are used

to improve the population. There are two reasons for using both algorithms. First, we

needs an algorithm that based on a population to search the entire cloud space for this

problem. Second, the cloud environment is dynamic. So, the scheduling algorithm must

be fast enough to adapt with the natural cloud environment and must be able to converge

faster than other algorithms. Moreover, DAPSO has been introduced to overcome the

weakness of the original PSO algorithm for local searches because the inertia weight

technique is very useful to ensure convergence. However, there is a disadvantage of

DAPSO algorithm is that once the inertia weight is decreased, it cannot increase if the

swarm needs to search new areas. This algorithm not able to recover its exploration mode.

Therefore, by combining the DAPSO algorithm with CS algorithm is considered powerful

in searches addresses this problem because CS has a set of mechanisms allows the

solutions to search locally and globally at the same time for the optimal solution.

Generally, the DAPSO algorithm is used to solve the PSO convergence problem in inertia

weight where great inertia weight facilitates a global search while a little inertia weight

facilitates a local search, also control the balance between global and local exploration, to

obtain quick convergence, and to reach an optimum. CS algorithm is run on the global

result of the last iteration of the DAPSO. That is an initial solution for CS which is

provided by DAPSO during the mix search process.

8. The Performance Evaluation

8.1. Experimental Settings

Cloudsim3.0.3 is an open source simulator which has been developed by Gridbus

project team and the grid Laboratory of the University of Melbourne in Australia. The

Cloudsim can run on Linux and Windows systems [30]. CloudSim has been used to

implement the proposed MDAPSO task scheduling algorithm. Also, a comparative study

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

252 Copyright ⓒ 2015 SERSC

has been done to evaluate the performance of the proposed DAPSO, and MDAPSO

algorithms with respect to the PSOCS algorithm [20], and the original PSO algorithm.

This simulation mainly validates the advantage of the makespan and the resource

utilization among these scheduling algorithms in the Cloud Computing environment.

8.2. Performance Results

To evaluate the performance of the four algorithms; original PSO, DAPSO, PSOCS

and MDAPSO, 5 five and ten Virtual machines are considered with 10, 20, 30, and 40

cloudlets.

Tables 1 represent the makespan of PSO, DAPSO, PSOCS and MDAPSOalgorithms

using five virtual machines and a set of various cloudlets respectively.

Table 1. Compared Scheduling Algorithm With Execution Time (Sec)

PSO DAPSO PSOCS MDAPS

O

VM Cloudlet

3.200596 2.619682 2.254691 2.154

5

10

5.627895 4.514721 3.59614 3.475 20

8.896552 8.246502 6.436863 4.691 30

13.31111 10.25296 9.242986 8.48 40

According to the results in Figure 3, the proposed MDAPSO algorithm, with the

respect to the execution time using 5 VMs, outperforms the default PSO, DAPSO and

PSOCS algorithms by 38.63% and 25.30% respectively.

Figure 3. The ExecutionTime when No. VMs (5)

Tables 2. represent the makespan of PSO, DAPSO, PSOCS and MDAPSO algorithms

using ten virtual machines and a set of various cloudlets respectively.

Table 2. Compared Scheduling Algorithm with Execution Time (Sec)

PSO DAPSO PSOCS MDAPSO VM Cloudlet

2.259 1.7412 1.4830 1.372

10

10

3.893 2.9823 2.8084 2.093 20

7.235 5.7235 4.2235 3.981 30

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

Copyright ⓒ 2015 SERSC 253

8.595 5.2986 4.8917 4.581 40

According to the results in Figure 4, the proposed MDAPSO algorithm, with the

respect to the execution time using 10 VMs, outperforms the default PSO, DAPSO and

PSOCS algorithms by 44.29% and 23.75% respectively.

Figure 4. The Execution Time Of All Cloudlet when No. VMs (10)

The simulation results of the resource utilization of PSO, DAPSO, PSOCS and

MDAPSO algorithms using five virtual machines and a set of various cloudlets

respectively are described in Table 3. and Figure 5.

Table 3. Compared Scheduling Algorithm With Utilization

PSO DAPSO PSOCS MDAPSO VM Cloudlet

0.626073 0.733601 0.854172 0.8672

5

10

0.594803 0.718096 0.919375 0.954354 20

0.616211 0.681181 0.92038 0.972168 30

0.52374 0.57813 0.843596 0.961894 40

According to the results in Figure 5, the proposed MDAPSO algorithm, with the

respect to the resource utilization using 5 VMs, outperforms the default PSO, DAPSO

and PSOCS algorithms by 36.19% and 20.60% respectively.

Figure 5. Comparison Utilization Of Number Of Cloudlets

Table 4. represent the resource utilization of PSO, DAPSO, PSOCS and

MDAPSO algorithms using 10 virtual machines and a set of various cloudlets

respectively.

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

254 Copyright ⓒ 2015 SERSC

Table 4. Compared Scheduling Algorithm With Resource Utilization

PSO DAPSO PSOCS MDAPSO VM Cloudlet

0.42966 0.60066 0.65233 0.7012

10

10

0.43191 0.62932 0.69743 0.7933 20

0.32182 0.45051 0.56571 0.7572 30

0.39871 0.71601 0.80701 0.8909 40

According to the results in Figure 6 the proposed MDAPSO algorithm, with the

respect to the resource utilization using 10 VMs, outperforms the default PSO,

DAPSO and PSOCS algorithms by 49.26% and 23.79% respectively.

Figure 6. Comparison Utilization of Number of Cloudlets

9. Conclusion

According to the work in this paper, a dynamic adaptive particle swarm optimization

(DAPSO) has been introduced and implemented to solve the PSO affinity problem in

inertia weight where great inertia weight facilitates a global search while a little inertia

weight facilitates a local search. Also, a new task scheduling algorithm has been

introduced to minimize the makespan and increase the utilization ratio of application

workflows on the Cloud computing. This new algorithm is considered an amalgamation

of the DAPSO and CS algorithms, called MDAPSO algorithm, where DAPSO algorithm

is used to improve the inertia weight and CS algorithm is used in the local search where

the performance is improved by changing inertia weight and trapping on local search has

been improved. To evaluate the proposed MDAPSO task scheduling algorithm, a

comparative study among the proposed MDAPSO, original PSO, DAPSO, and PSOCS

algorithms has been done. According to the experimental results, it is found that the

proposed MDAPSO algorithm outperforms the original PSO, DAPSO, and PSOCS

algorithms with respect to the makspam and resource utilization. In addition, the

MDAPSO and DAPSO algorithms perform better performance than the original PSO

algorithm.

References

[1] T. Dillon, C. Wu, and E. Chang, "Cloud computing: issues and challenges", in Advanced Information

Networking and Applications (AINA), 2010 24th IEEE International Conference on, (2010), pp. 27-33.

[2] F. Baroncelli, B. Martini and P. Castoldi, "Network virtualization for cloud computing", annals of
telecommunications-annales des télécommunications, vol. 65, (2010), pp. 713-721.

[3] D. Hensgen and R. F. Freund, "Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous

Computing Systems", Journal of Distributed Computing, Special Issue on software support for

distributed computing, vol. 59, (1999).
[4] B. Yu, X. Yuan and J. Wang, "Short-term hydro-thermal scheduling using particle swarm optimization

method", Energy Conversion and Management, vol. 48, (2007), pp. 1902-1908.

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

Copyright ⓒ 2015 SERSC 255

[5] P. -Y. Yin, S. -S. Yu, P. -P. Wang and Y. -T. Wang, "A hybrid particle swarm optimization algorithm

for optimal task assignment in distributed systems”, Computer Standards & Interfaces, vol. 28, (2006),
pp. 441-450.

[6] J. Kennedy and R. Eberhart, "Particle swarm optimization”, in Neural Networks, 1995. Proceedings,

IEEE International Conference on, vol. 4, (1995), pp. 1942-1948.

[7] J. Xin, G. Chen and Y. Hai, "A particle swarm optimizer with multi-stage linearly-decreasing inertia
weight”, in Computational Sciences and Optimization, 2009 CSO 2009, International Joint Conference

on, (2009), pp. 505-508.

[8] R. P. Brent, "Efficient implementation of the first-fit strategy for dynamic storage allocation”, ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 11, (1989), pp. 388-403.
[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, et al., "The eucalyptus open-

source cloud-computing system”, in Cluster Computing and the Grid, 2009. CCGRID'09. 9th

IEEE/ACM International Symposium on, (2009), pp. 124-131.

[10] X. Wang, C. S. Yeo, R. Buyya and J. Su, "Optimizing the makespan and reliability for workflow
applications with reputation and a look-ahead genetic algorithm”, Future Generation Computer Systems,

vol. 27, (2011), pp. 1124-113.

[11] J. Singh and H. Singh, "Efficient tasks scheduling for heterogeneous multiprocessor using genetic

algorithm with node duplication”, Indian J. Comput. Sci. Eng, vol. 2, (2011), pp. 402.
[12] Z. Pooranian, M. Shojafar, J. H. Abawajy and A. Abraham, "An efficient meta-heuristic algorithm for

grid computing”, Journal of Combinatorial Optimization, (2013), pp. 1-22.

[13] R. Lee and B. Jeng, "Load-balancing tactics in cloud”, in Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC), 2011 International Conference on, (2011), pp. 447-454.
[14] X. Ren, R. Lin and H. Zou, "A dynamic load balancing strategy for cloud computing platform based on

exponential smoothing forecast”, in Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE

International Conference on, (2011), pp. 220-224.

[15] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang, "A task scheduling algorithm based on PSO for grid
computing”, International Journal of Computational Intelligence Research, vol. 4, (2008), pp. 37-43.

[16] A. Salman, I. Ahmad and S. Al-Madani, "Particle swarm optimization for task assignment problem”,

Microprocessors and Microsystems, vol. 26, (2002), pp. 363-371.

[17] X. Lu and Z. Gu, "A load-adapative cloud resource scheduling model based on ant colony algorithm”, in
Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference on, (2011), pp.

296-300.

[18] K. Li, G. Xu, G. Zhao, Y. Dong and D. Wang, "Cloud task scheduling based on load balancing ant

colony optimization”, in Chinagrid Conference (ChinaGrid), 2011 Sixth Annual, (2011), pp. 3-9.
[19] X. Song, L. Gao and J. Wang, "Job scheduling based on ant colony optimization in cloud computing”, in

Computer Science and Service System (CSSS), 2011 International Conference on, (2011), pp. 3309-

3312.

[20] A. Al-maamari and F. Omara, "Task Scheduling using Hybrid Algorithm in Cloud Computing
Environments”, IOSR Journal of Computer Engineering (IOSR-JCE), vol. 17, (2015), pp. 96-106.

[21] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, et al., "Task scheduling strategies for

workflow-based applications in grids”, in Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE

International Symposium on, (2005), pp. 759-767.
[22] P. Brucker and P. Brucker, "Scheduling algorithms", vol. 3, (2007), Springer.

[23] B. Kruekaew and W. Kimpan, "Virtual Machine Scheduling Management on Cloud Computing Using

Artificial Bee Colony”, in Proceedings of the International MultiConference of Engineers and

Computer Scientists, (2014).

[24] S. Uma, K. R. Gandhi, E. Kirubakaran and E. Kirubakaran, "A hybrid PSO with dynamic inertia weight

and GA approach for discovering classification rule in data mining”, International Journal of Computer

Applications, vol. 40, (2012).

[25] R. C. Eberhart and Y. Shi, "Tracking and optimizing dynamic systems with particle swarms”, in
Evolutionary Computation, 2001, Proceedings of the 2001 Congress on, (2001), pp. 94-100.

[26] S. Xianjun, C. Zhifeng, Y. Jincai and C. CaiXia, "Particle Swarm Optimization with Dynamic Adaptive

Inertia Weight”, in Challenges in Environmental Science and Computer Engineering (CESCE), 2010

International Conference on, (2010), pp. 287-290.
[27] X. -S. Yang and S. Deb, "Cuckoo search via Lévy flights”, in Nature & Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on, (2009), pp. 210-214.

[28] X. -S. Yang and S. Deb, "Engineering optimisation by cuckoo search”, International Journal of
Mathematical Modelling and Numerical Optimisation, vol. 1, (2010), pp. 330-343.

[29] T. Rambharose and A. Nikov, "Computational intelligence-based personalization of interactive web

systems”, (2011).

[30] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose and R. Buyya, "CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning

algorithms”, Software: Practice and Experience, vol. 41, (2011), pp. 23-50.

International Journal of Grid Distribution Computing

Vol. 8, No.5, (2015)

256 Copyright ⓒ 2015 SERSC

