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Abstract 

With innovations in technology, alternate energies like solar and wind are becoming 

more popular. Utilities in some parts of the world rely on Wind energy over coal or gas 

fired power. Wind energy output is highly mercurial in nature, it changes rapidly even 

within the course of minutes. Hence, power system operators have to predict changes of 

the wind power production in order to schedule the Spinning reserve capacity and to 

manage the grid operations. To reduce the reserve capacity and increase the wind power 

penetration, the accurate forecasting of wind speed is needed. In addition, wind power 

forecasting plays an important role in the allocation of balancing power. Although the 

prediction accuracy of wind power forecasting is lower than the prediction accuracy of 

load forecasting, wind power forecasts still play a key role to address the operation 

challenges in electricity supply. This paper deals with Long-term forecast of wind energy 

for the state grid of Karnataka by employing a simple time series multiplicative 

modelling. Wind energy production is predicted for the year 2015 using the data collected 

from 2011-2014. 
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1. Introduction 

Energy forecasting has become vital to alternate energy generation as there are no 

models for the underlying natural processes in alternate energy generations. Forecasting 

deals with making an assessment of the future, with a knowledge of present and the past. 

This paper makes use of time series data, where the prediction of the future value is solely 

based on past values. The pattern of historical data series is simply captured and 

extrapolated into the future. Due to the random behavior of wind power productions, the 

output predictions of the productions are really helpful to increase the efficiency of wind 

power [1-2]. Because “capacity reserve” of a certain amount of electricity will be needed 

to compensate for the fluctuation if there are some unbalance between the electricity 

production and consumption. But the capacity reserves raise the economic and 

environment cost of electricity production because most capacity reserves are generated 

by conventional power plant [3]. Therefore, the predictions which are delivered to the 

Power System Operators to suggest the electricity system’s adjustment for the reserves 

can reduce the cost of the short-term capacity reservations and hence make wind power 

more valuable. The predictions could also be used for other relevant purposes such as 

generation and transmission maintenance planning, economic dispatch, energy storage 

optimization and energy trading [4-7]. Various methods classified according to time-

scales or methodology like Ultra-short-term forecasting, which is from few minutes to 1 

hour ahead, Short-term forecasting, which is from 1 hour to several hours ahead, 

Medium-term forecasting, which is from several hours to 1 week ahead and Long-term 
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forecasting, which is from 1 week to 1 year or more ahead are available for wind 

forecasting. Minute-wise wind data collected of the state pool for three years from 2011-

13 is as shown in Figure 1. This paper deals with Long-term forecasting which plays an 

important role in maintenance planning and operational management. 

 

2. Understanding the Data 

Time series data reveals trends over time, regular seasonal behavior and random 

patterns in the data [8]. There are three types of time series patterns as shown in Figure 2. 

 

2.1. Trend Pattern (Tt )  

A trend exists when there is a long-term increase or decrease in the data. For example, 

power demand increases every year. It does not have to be linear  

 

2.2. Seasonal Pattern (St) 

When the pattern is dependent on the season (e.g., the quarter of the year, the month, or 

day of the week). Seasonality is always of a fixed and known period. 

 

2.3. Cyclic Pattern 

A cyclic pattern exists when data exhibit rises and falls that are not of fixed period. 

Wind power typically contains both a seasonal and trend component. If Et is the 

random component in the data and Yt is the actual data at time t, then a multiplicative 

decomposition is given by 

Yt = St * Tt * Et       ………………                                                                                (2.1) 

Figure 1. Minute-Wise Wind Power of the State Pool of Karnataka from  
2011-13 

3. Forecasting Minute-Wise Data 

The first step in a classical decomposition is to use a moving average method to 

estimate the trend-cycle. One way of modifying the influence of all past data is to specify 

how many past values will be included in the mean, which depicts an idea that future 

values will be affected only by recent past [8-12].  
                       t 

Ft+1 = (1/k)*∑  Yi       ………..….                                                        (3.1) 

                      (i=t-k+1) 

It is called Moving average of order k, MA (k). Since, the paper deals with forecasting 

for each month separately, k is the period of that respective month as shown in Table 1. 



International Journal of u- and e- Service, Science and Technology 

Vol.9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC  181 

 

Moving average eliminates some of the randomness in the data, leaving a smooth trend-

cycle component. Period (k) is calculated w.r.t minutes in a month as it is a minute-wise 

forecast. For example, for January it is 60*24*31 (minutes*hours*days) = 44640. 

Similarly, for February it is 40320 for non – leap years. 

Figure 2. Decomposed Time Series Wind Data of the Year, 2013 

Table 1. K Considered for Each Month 

MONTH PERIOD (k) 

January 44640 

February 40320 

March 44640 

April 43200 

May 44640 

June 43200 

July 44640 

August 44640 

September 43200 

October 44640 

November 43200 

December 44640 

 

The next step is making the results symmetric by making use of "centred moving 

average (CMA)” of order 44640, which takes the average of two consecutive MA.  

CMAt = (1/2)*(MAt + MAt+1)………                                                                         (3.2) 

After finding the CMA or baseline for the data, we can find the seasonal and random 

component (St,Et), which is given by 

St,Et = Yt / CMAt …………                                                                         ……….   (3.3) 
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Extraction of the seasonal and random component of the data is shown in Figure 

4, extraction of only seasonal component is as shown in Figure 5. 

 

Figure 3. January Forecast Showing Actual Wind Data and Moving Average 

Figure 4. January Forecast with Seasonal and Irregular Components Shown 
in Green 

Next step is to de-seasonalize the data in order to further smoothen the data for 

forecasting as shown in Figure 6. Using de-seasonalized components as y variables in 

simple linear regression, we find the trend component. Simple regression refers to any 

mapping of single variable y, which is the forecast variable, on a single variable x, which 

is independent. Simple linear regression is used for three main purposes like describing 

the linear dependence of one variable on another, to predict values of one variable from 

values of another, for which more data is available and to correct for the linear 

dependence of one variable on another, in order to clarify other features of its variability. 

However, in excel one can use the DATA ANALYSIS add – in to get the output in a 

single step. The output obtained for the month of January is as shown in Figure 7. 
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Figure 5. January Forecast with only Seasonal Components Shown in 
Yellow 

Figure 6. January Forecast with De- Seasonal Components Shown in 
Orange 

Trend component is calculated by making use of the regression output using the 

formula, 

Tt = Intercept + Slope * time codet  …………                                                          (3.4) 

For example for the month of January, Intercept and slope are 172.673 and 0.00111 

respectively as shown in Figure 7 and for the first value considered time code is 1, for 

525th value time code is 525 and so on. Trend line is shown in Figure 8. Finally, the 

forecasted value is given by, 

FORECASTt = St * Tt ……………                                                                            (3.5) 
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Figure 7. Output Obtained for Simple Linear Regression 

Figure 8. Trend Obtained for the Month of January 

Figure 9. Minute-Wise Forecast Vs Actual Data for the Month of January 

The obtained forecast value is plotted against the actual value as shown in Figure 

9. These values can be extended to the future by a simple drag in excel worksheet to 

obtain the future forecast as shown in Figure 10. 
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Figure 10. Minute- Wise Forecast for January – 2015 

4. Forecast Accuracy 

Accuracy is the major criterion for selecting a particular forecasting model. If Ft 

is the forecast value and Y t is the actual value for period t, the error is given by,  

et = Yt  -  Ft   ………………………                                                                  (4.1) 

Mean error (ME) is given by, 

ME = (e1+e2+……+en) /n   ……                                                                      (4.2) 

Mean absolute error (MAE) is given by, 

MAE = (|e1|+|e2|+……+|en|) /n      ..                                                                (4.3) 

Mean squared error (MSE) is given by, 

MSE = ((e1)
2
 + (e2)

2
 +……+ (en)

2
) / n  ..                                                        (4.4) 

Percentage error (PE) is given by, 

PEt = (et /Yt) * 100% … …. …………                                                             (4.5) 

Mean absolute percentage error (MAPE) is given by, 

MAPE =(|PE1| +|PE2|+     …     .+ |PEn|) /n                                                    (4.6) 

These errors quantify the accuracy of the forecast model. The mean error doesn’t 

signify much, as the negative terms cancel out the positive terms. So, MAE gives a 

better measure. MAPE is the most commonly used error to measure the accuracy of 

the forecast model [12-14]. 
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Table 2. Forecast Accuracy Measurements 

Month ME MAE MAPE MSE 

January -18.3 110.0 65 19997.6 

February -47.1 116.3 50 23280.2 

March 0.4 105.0 43 18925.1 

April -17.5 97.5 70 18265.3 

May -11.6 156.1 52 38696.6 

June -28.9 185.8 42 59074.5 

July -7.8 180.7 31 56051.9 

August -1.8 202.5 56 69576.7 

September -1.6 212.2 43 71156.0 

October -14.7 146.4 62 34657.8 

November -18.4 143.0 58 32087.3 

December -19.1 116.4 44 27810.5 

 

Minute-wise forecasting has its own disadvantages when compared to hourly or 

daily forecasts. Accuracy of the forecast is highly questionable sometimes [15]. 

Classical multiplicative model is used for forecasting in this paper. Forecasts show 

what is likely to happen “on average”, it is rarely perfect. So it is a good practice to 

complement forecasts with measures of the forecast uncertainty [16]. Errors have 

been tabulated for each month as shown in Table 2. The model was tested in real 

time at the SCADA centre from 8th to 10th December 2014 and the plot of actual 

data Vs Forecast data is as shown in Figure 11. 

 

Figure 11. Minute-Wise Forecast Model Tested with Real Time Data from 08 
to 10 December 2014 

5. Conclusion 

Minute-wise forecast was performed using the classical multiplicative model 

considering each month separately. Considering the data collected from 2011 to 

2014, the forecast was performed for the year 2015. This paper clearly explains the 
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steps involved in minute-wise forecasting. Platforms like R, MATLAB and Excel 

were used to analyze the data and carry out the forecast. Accuracy is dealt with in 

brief and errors are tabulated. This model was tested in real time at the SCADA 

center and the forecast data had the same trend has the actual wind data. Hence, the 

classical multiplicative forecast model is tested successfully and minute-wise data 

forecast is obtained. 
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