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Abstract 

Based on the diversity, complexity and uncertainty of the fault information of complex 

mechanical equipment, this paper conducts extension analysis about the failure diagnosis 

for complex mechanical equipment and provides the extension model. This model carries 

out knowledge modeling about the failure diagnosis information based on matter element 

model, acquires the weight of different kinds of fault by grey correlation analysis, and 

establishes extensible dependence between different features of failure diagnosis 

according to extension data. Analysis of different fault information is conducted by 

identifying the type of faults based on extensible dependence. At last, the model and 

algorithm are testified through design examples. 
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1. Introduction 

Failure of the mechanical equipment refers to the abnormal condition of the 

equipment when its function is partly or totally lost. The failure will lead to the 

change of the output state and may even cause industrial accident and endanger life 

safety of operation staff. The equipment failure contains various changes of failure 

information, so it is of great analysis value and application value to study the 

methods to acquire typical information and apply it to failure diagnosis. Currently, 

there are mainly three kinds of methods for failure diagnosis: (1) method based on 

signal processing [1-3]; (2) method based on analytical model [4-6]; (3) knowledge-

based diagnosis [7-10]. 

However, these traditional methods are ambiguous and uncertain, unable to 

provide more accurate failure diagnosis model for the faults with smaller sample 

and little information. Extenics analyzes the possibility of extension as well as rules 

and solutions of contradictory problems by using formal model, which is 

mathematized, logicalized and formalized. The failure diagnosis based on extension 

theory means to combine failure diagnosis with extension theory according to 

certain programs and algorithms and to set up models to find the cause of equipment 

faults. It is meaningful both theoretically and practically to conduct research on the 

application of this new method in order to enhance the intelligence, efficiency and 

accuracy of failure diagnosis. 

 

2. Failure Diagnosis of Complex Mechanical Equipment based on 

Extension Model 
 
2.1 Matter Element Modeling of Equipment Failure Information 

Extenics is an interdisciplinary subject established by Chinese scholar Professor Cai 

Wen. It expresses design object by formalized knowledge modeling, studies the 
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possibility and feasibility of the extension of the object and discusses general patterns and 

methods of extension creativity. Matter element is one of the logical cells of extension 

theory, which is used to establish the extension model, a formal tool that can solve design 

problems and knowledge modeling [15-16]. Failure information of mechanical equipment 

has different characteristics and the corresponding characteristic value, so the 

establishment of failure information model is the formal description of such 

characteristics and characteristic value.  

Matter element uses an ordered triple 
 , ,R O c v

 as the basic element to describe 

failure information. O  Represents the name of the fault, c  refers to the characteristics of 

the fault while v  stands for the measurement value of O  on c . One fault may have 

several characteristics, and if we use n-kinds of characteristics 1 2, , nc c c
 and their 

corresponding value 1 2, , nv v v
 to describe the fault O , then the corresponding matter 

element model will form a matrix array with n-sphere matter elements as follows: 
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                       (1) 

In the formula,
 1 2, , ,

T

nC c c c
,

 1 2, , ,
T

nV v v v
. 

During the process of failure analysis, different types of failure information will be 

described by matter element and the corresponding information element will be 

generated, providing the formal tool for the implementation of computer intelligence for 

product design. 

The selection of evaluation indexes of assimilability of complex product assembling 

scheme is based on the assembling features of the components and parts themselves and 

the features of generative process of assembling scheme. The former considers mainly 

about the effects characteristic parameters of components have on the assembling 

features. The latter focuses on the effects the assembling path and crafting have on the 

product assembling features from the perspective at scheme level. 

 

2.2 Establishing Extension Model for Failure Diagnosis 

The establishment of the mechanical equipment failure diagnosis model is the basis of 

failure diagnosis. With the theoretical development of failure diagnosis, especially the 

improvement and application of expert system theory, failure diagnosis techniques with 

information processing as the core have developed in the direction of intelligent diagnosis 

based on knowledge. But expert diagnosis system relies on the knowledge of experts, and 

has limitations in adaptation ability, learning ability as well as timeliness.  

The establishment of failure diagnosis model based on extension theory makes use of 

the matter element theory and contributes to a formal expression of the failure model. It is 

not only simple, normative, logical and easy to operate, but also overcomes the limitation 

of knowledge scope. General failure model based on extension theory is as follows: 

1
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In the formula, RX refers to equipment object, RI refers to failure mode, and m stands 

for the number of failure modes. C means the characteristics of the faults, n means the 

number of characteristics of the ith failure mode in RI system, and vxi(j) means the 

characteristic value of the jth characteristics.  

Due to the measuring error of the equipment and the uncertainty of other factors, the 

characteristic value of the failure is usually an interval. Thus, the foregoing characteristic 

value can be altered as characteristic interval, and the standard failure model is as follows: 
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In the formula, 
      min min,i i iVX j vx j vx j 

 means the characteristic interval of 

the jth characteristics. 
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                                                                    (4) 

Failure diagnosis requires comparative analysis between the data measured and the 

standard failure model in order to find the closest standard failure model and make 

judgment about the equipment failure. Therefore the modeling of the acquired data is 

needed as well. It is shown as follows: 
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                                                                       (4) 

RI0 represents the failure modes waiting to be diagnosed, and vx0(j) refers to the 

failure data which can either be the specific failure value or the failure interval. 

 

2.3 Analysis of Weight of Failure Characteristics 

Weight represents the significance level of failure characteristics. The more 

complicated the model is, the more characteristic value it has, and the weight of each 

characteristic varies. Failure diagnosis is related with a large number of characteristic 

data, therefore the weight of each characteristic is influential in the final result. The more 

accurate, scientific and objective the weight is, the closer the result is to the real fact, and 

the more convincing and practical the outcome is. Grey correlation analysis makes up the 

disadvantage of traditional mathematical statistics and can conduct systematic analysis 

with small sample, little information and no regular patterns, whose result is close to 

qualitative analysis. Grey correlation analysis uses the degree of similarity to judge the 

correlation degree. The closer the curves are, the more correlation they have, and vice 

versa. 

The analysis on a failure system or model can select characteristic values that can 

reflect the model’s features as data. If the kth characteristic of failure model Xi is written 

as xi(k), then there is the sequence: 

Xi=(xi(1) , xi(2) , xi(3) ,… ,xi(k))k=1,2,3…,n, 

The data being measured or compared can be written as:  
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 X0=(x0(1) , x0(2) , x0(3) ,… ,x0(k))k=1,2,3…,n. 

The system analysis requires the correlation degree between the data measured and the 

standard data. The formula to calculate the correlation coefficient ξ  of the index point k 

is as follows: 

0 0

0 0

min min ( ) ( ) max max ( ) ( )
( )     (0,1),   1,2,

( ) ( ) max max ( ) ( )

i i
i k i k
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－ －
   (5) 

After calculating the correlation degree of all the equipment failure characteristics and 

the normalization of the data, the weight of each characteristic w  can be obtained.  

 

2.4 Calculation of Failure Correlation based on Extension Theory 

The extension theory provides an effective tool to evaluate the current state. Its feature 

is to establish matter element model with multiple indicators by using correlation function 

based on matter-element characteristics. In order to describe the degree of a certain 

quality, Extenics defines “distance” to express the distance between the point and the 

interval.  

If x is the failure data measured, and the interval X0=<a,b> represents the type of 

failure, then  

( , )
2 2

a b a b
x X x

 
  

                                                        (6) 

is the distance between x and X0. <a,b> can either be open or closed interval, or half 

closed interval.  

From this we can know that no matter the measured data lie within the interval or not, 

the correlation degree between the measured data and standard failure model can be 

reflected.  

After the calculation of “distance” between measured data and the characteristic value 

of a certain failure model, the sequence of “distance” is obtained 

as ))( ，(2), (1),( ni   , and the initialization of “distance” is as follows: 

))( ，,(2) ,(1)( 111 dnddi                                             (7) 

In the formula, 1( ) ( ) / (1)i d i  
,ρ (1)≠ 0,i=1,2,…,n. Initialization is to compare 

the sequential value of each “distance” with the first value so that they can be put in the 

same formula after the nondimensionalization.  

Apply the concept of “distance” to the formula of grey correlation coefficient and then 

the improved formula of extensive correlation coefficient can be obtained: 
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In the formula, 
)1,0(

, k = 1 , 2 , 3 ,…,n ,  i = 1 , 2 , 3 , … , m 

The correlation coefficient between the characteristic data of the failure to be detected 

and the standard failure model can be drawn from the formula above. Considering the 

weight of different indicators, the correlation coefficient is calculated as follows: 

0 0

1

( )    1,2,
n

i k i

k

w k i m 


 
                                                                     (9) 

The type of failure can be judged according to the correlation coefficient. The higher 

the correlation coefficient is, the closer the failure to be detected is to the corresponding 

standard failure model, leading to the judgment of the type of the equipment failure. If the 

correlation coefficient between the data to be tested and the two standard failure models 
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are much higher than other coefficient, then it can be considered that more than one fault 

occur to the equipment.  

 

2.5 Extension Algorithm Implementation for Failure Diagnosis 

After failure modeling, it is required to conduct comparative analysis between data of 

the failure model acquired in the real situation and the standard failure model data. After 

the correlation coefficient between the two, the diagnosis of the failure model of the 

mechanical equipment can be drawn.  

The specific diagnosis steps are as follows: 

1) Identify failure model RX0 that is to be detected and all standard failure model 

RXi(i=1, 2 ,3,…,m) based on formula (1)-(4).  

2) Decide the weight of each characteristic according to formula (5). 

3) Calculate the distance between characteristic value of the model to be detected and 

the standard model by formula (6). 

4) Use formula (7) to standardize the failure distance to obtain dimensionless 

sequences. 

5) Use formula (8) to acquire the formula of correlation coefficient between data to be 

detected and the standard failure model, and then calculate the correlation coefficient 

according to the formula. 

6) Based on formula (9), multiply each correlation coefficient by its weight, and the 

correlation degree between the failure to be detected and standard failure model can be 

obtained. 

7) Identify the failure model. The correlation degree reflects the closeness of the 

unknown failure and a certain kind of failure. After the six steps above, the correlation 

degree can be obtained. According to the principle of maximum correlation, list them in 

the descending order, and the model with highest correlation is the failure model. In next 

chapter, the failure diagnosis of transformers is presented to show the feasibility and 

practicability of this method. 

 

3. Application Case 

Failure diagnosis of a transformer is shown in this paper to further illustrate this 

method. Dissolved gas analysis in oil (DGA) is an important tool to identify the failure of 

transformers, and can discover the internal fault of the transformer in time. Gases 

analyzed by DGA mainly include H2、CH4、C2H4、C2H6、C2H2, so these five gases can 

be regarded as characteristic parameter of the standard failure models. 9 characteristic 

models are selected: normal without failure, low temperature overheat (＜300℃), middle 

temperature overheat (300~700 ℃ ), high temperature overheat (＞ 700 ℃ ), partial 

discharge, low energy discharge, high energy discharge, low energy discharge with 

overheat, and high energy discharge with overheat. The corresponding relations between 

standard failure models and gases are as follows: 

 

Table 1.  Failures and Corresponding Feature Values of Transformer 

Failure 

model 

H2 

Minimum 

H2 

maximum 

CH4 

Minimum 

CH4 

maximum 

C2H4 

Minimum 

normal 28.395 34.705 13.248 16.192 9.729 

Low 

temperature 

overheat 9.45 11.55 22.68 27.72 16.533 

middle 

temperature 

overheat 17.676 21.604 30.96 37.84 29.547 
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high 

temperature 

overheat 10.233 12.507 19.449 23.771 47.907 

Partial 

discharge 78.57 96.03 5.814 7.106 0.963 

Low energy 

discharge 48.753 59.587 19.503 23.837 4.437 

High energy 

discharge 43.407 53.053 17.361 21.219 17.424 

Low energy 

discharge with 

overheat  11.106 13.574 35.532 43.428 8.1 

High energy 

discharge with 

overheat  11.178 13.662 28.665 35.035 24.093 

 

Table 1 (Continue) 

Failure 

model 

H2 

Minimum 

H2 

maximum 

CH4 

Minimum 

CH4 

maximum 

C2H4 

Minimum 

normal 11.891 37.881 46.299 0.747 0.913 

Low 

temperature 

overheat 20.207 41.337 50.523 0 0 

middle 

temperature 

overheat 36.113 11.817 14.443 0 0 

high 

temperature 

overheat 58.553 10.197 12.463 2.214 2.706 

Partial 

discharge 1.177 4.653 5.687 0 0 

Low energy 

discharge 5.423 1.053 1.287 16.254 19.866 

High energy 

discharge 21.296 1.341 1.639 10.467 12.793 

Low energy 

discharge with 

overheat  9.9 1.98 2.42 33.282 40.678 

High energy 

discharge with 

overheat  29.447 6.696 8.184 19.368 23.672 

 

The failure data of the transformer to be tested is shown in Table 2: 

 

Table 2.  Feature Value of Failures to be Tested 
 

Feature 

value 

H2 CH4 C2H4 C2H6 C2H2 

Failures to 

be tested 

1565.00 93.00 47.00 34.00 0.00 
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Standard failure model established by the replacement of failure characteristics with 

each indicator is as follows: 

1 1

2

1 3

4

5

RI (28.395,34.705)

(13.248,16.192)

RX (9.729,11.891)

(37.881,46.299)

(0.747,0.913)

c

c

c

c

c

 
 
 
 
 
 
   ; 

2 1

2

2 3

4

5

RI (9.45,11.55)

(22.68,27.72)

RX (16.533,20.207)

(41.337,50.523)

(0,0)

c

c

c

c

c

 
 
 
 
 
 
   ; 

 

3 1

2

3 3

4

5

RI (17.676,21.604)

(30.96,37.84)

RX (29.547,36.113)

(11.817,14.443)

(0,0)

c

c

c

c

c

 
 
 
 
 
 
   ; 

4 1

2

4 3

4

5

RI (10.233,12.507)

(19.449,23.771)

RX (47.907,58.553)

(10.197,12.463)

(2.214,2.706)

c

c

c

c

c

 
 
 
 
 
 
   ; 

 

5 1

2

5 3

4

5

RI (78.57,96.03)

(5.814,7.106)

RX (0.963,1.177)

(4.653,5.687)

(0,0)

c

c

c

c

c

 
 
 
 
 
 
   ; 

6 1

2

6 3

4

5

RI (48.753,59.587)

(19.503,23.837)

RX (4.437,5.423)

(1.053,1.287)

(16.254,19.866)

c

c

c

c

c

 
 
 
 
 
 
   ; 

 

7 1

2

7 3

4

5

RI (43.407,53.053)

(17.361,21.219)

RX (17.424,21.296)

(1.341,1.639)

(10.467,12.793)

c

c

c

c

c

 
 
 
 
 
 
   ; 

8 1

2

8 3

4

5

RI (11.106,13.574)

(35.532,43.428)

RX (8.1,9.9)

(1.98,2.42)

(33.282,40.678)

c

c

c

c

c

 
 
 
 
 
 
   ;  

9 1

2

9 3

4

5

RI (11.178,13.662)

(28.665,35.035)

RX (24.093,29.447)

(6.696,8.184)

(19.368,23.672)

c

c

c

c

c

 
 
 
 
 
 
   .

 

Failure model to be tested: 

0 1

2

0 3

4

5

RI 1565

93

RX 47

34

0.00

c

c

c

c

c

 
 
 
 
 
 
   .

 

Based on the method of weight analysis of characteristics, the weight of each failure 

characteristic is obtained:  
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Table 3. Weighs of Features 

Feature H2 CH4 C2H4 C2H6 C2H2 

Weight 0.170 0.179 0.215 0.160 0.275 

 

Determine the distance between failure data to be tested and the standard failure model 

and standardize it. The standardized distance is as follows: 

 

Table 4. Standard Deviation 

Number C1 C2 C3 C4 C5 

X1 1.000 1.000 1.000 1.000 1.000 

X2 1.419 2.194 1.968 1.096 0.000 

X3 1.237 3.242 3.821 0.274 0.000 

X4 1.401 1.784 6.434 0.229 2.963 

X5 -0.109 0.059 0.217 0.075 0.000 

X6 0.550 1.792 0.247 0.019 21.759 

X7 0.668 1.521 2.095 0.009 14.012 

X8 1.382 3.821 0.768 0.000 44.554 

X9 1.380 2.951 3.044 0.132 25.928 

 

Based on the weight and standard distance above, the correlation coefficient between 

failure to be tested and standard failure model can be obtained. Multiply correlation 

coefficient by corresponding weight, and the correlation degree can be obtained: 

 

Table 5. Correlation Coefficient and Correlation Degree 

Number C1 C2 C3 C4 C5 Correlati

on degree 

X1 0.952 0.952 0.952 0.952 0.952 0.947 

X2 0.936 0.906 0.914 0,948 0.995 0.944 

X3 0.943 0.869 0.849 0.982 0.955 0.931 

X4 0.936 0.921 0.772 0.985 0.878 0.891 

X5 1.000 0.992 0.985 0.991 0.955 0.992 

X6 0.971 0.921 0.984 0.995 0.503 0.840 

X7 0.966 0.931 0.909 0.995 0.610 0.885 

X8 0.937 0.849 0.962 0.995 0.331 0.770 

X9 0.937 0.879 0.875 0.989 0.459 0.791 

 

Through the comparison of the correlation degree, we can find that the failure 

model to be tested has highest correlation with standard failure model X5. Therefore, 

the failure of the equipment is X5, namely partial discharge. This finding is in 

accordance with the real situation, showing the effectiveness and feasibility of this 

failure diagnosis method based on extension theory. When two or more figures are 

much higher than others, it can be inferred that more than one fault occur to the 

equipment. The traditional DGA can only detect one failure model. Thus, when 

more than one fault occur, the method based on extension theory is more effective.  

 

4. Conclusion 

This paper proposes an extension model and algorithms for the failure diagnosis 

of complex equipment based on extension theory. First, it establishes failure 

analysis models by analyzing different failure diagnosis information based on matter 

element model. Next, it provides the extensive distance of the failure information 
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analysis, extensive correlation functions and algorithms for extensive correlation 

degree, based on which determines the failure type and conducts fast analysis of 

equipment failure. It is seen from the real case that the extension model of failure 

diagnosis for complex mechanical equipment based on extension theory can 

effectively support failure diagnosis and improve efficiency, providing a solution to 

the implementation of intelligent design of products. 
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