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Abstract 

In many emergency management operations, an efficient evacuation strategy is of 

great importance because if it is successful, it has the ability to significantly reduce the 

loss of property and human life. This paper develops a routing and scheduling 

optimization framework for large-scale vehicular evacuation.  To guarantee high 

optimization efficiency, we consider the routing and scheduling optimization as a two-

stage problem instead of optimizing them as a whole (i.e. using time-space network).  In 

the first phase, a multiple-objective mixed integer programming (MIP) model, with the 

objectives of minimizing the total in-network time and network clearance time is proposed 

to find an optimal routing plan. In the second phase, a simulation-based scheduling 

Heuristic is proposed to dynamically generate the time-dependent departure rates.  A 

real-world evacuation scenario in Eastern Shore of Maryland is studied by using the 

proposed optimization model. The calculation results indicate a good optimization 

capability and flexibility of the proposed model. 
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1. Introduction 

Potential hazards exist in people’s daily lives every day. From the perspective of cause, 

hazards can be classified into two categories: manmade hazards and natural hazards.  

Manmade hazards are events like terrorist attacks, chemical leaks or explosions and 

nuclear leakage. Natural hazards are events like hurricanes, earthquakes, tsunamis and 

other naturally occurring disasters. To prepare for these events, society should be alert and 

have a set of integrated operation plans to respond to these hazards. Due to high 

population density, urban areas are extremely vulnerable to the above-mentioned hazards. 

In urban areas, designing efficient evacuation plans is the responsibility of emergency 

management agencies or authorities. Emergency evacuation is generally defined as the 

immediate movement of human and properties from the potential threat or actual 

occurrence of a hazard. Appropriate routing and scheduling of the whole evacuation 

process are the most critical questions need to be addressed. Specifically, evacuation 

routing optimization aims to figure out a set of transportation routes, by which the 

evacuees can be evacuated out as soon as possible. On the other hand, the scheduling 

optimization is to find out a set of time stamps, when the evacuation should start (at 

different locations) in order to optimally utilize the transportation facilities. In evacuation 

scenarios with extremely high demand, another necessary output of the scheduling 

optimization is the time-dependent evacuee discharge rate. In other words, the evacuee 

should be evacuated in a proper order so as to maintain the maximal throughput of the 

evacuation process. 
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However, the problem is not that easy to solve. The high density of evacuee population 

and the complexity of the urban transportation network can pose challenges. The most 

critical problem for a large-scale urban evacuation is the intersection control and 

bottleneck identification. Actually, the intersection cannot be viewed as simply a network 

transshipment node. One reason is that the movements happening inside an intersection 

have multiple constraints. Another important reason is that a turn movement inside an 

intersection always has a relatively low travelling speed in comparison with the travelling 

speed in a general roadway link. As a consequence, the bottleneck is more likely to occur 

at an intersection due the low speed of turn movements. The proposed optimization 

framework consists of two parts. They are, evacuation routing optimization, which aims 

to figure out a set of transportation routes delivering the evacuee, and evacuation 

scheduling optimization, which calculates the time-dependent discharging rate of the 

vehicles at each origin. Moreover, traffic movement within intersection is explicitly 

considered in the routing optimization model to guarantee evacuation being conducted in 

a smooth way (i.e., without traffic flow conflicts).  

The paper is organized as follows. In Section 2, a brief literature review is provided in 

terms of the related evacuation planning techniques in three levels. They are, macroscopic 

level, mesoscopic level and microscopic level. Section 3 describes the development of the 

evacuation routing optimization model from a macroscopic level. In Section 4, to come up 

with an optimal demand discharging strategy, a simulation-based evacuation heuristic is 

developed and discussed. Section 5 conducts a real-world case study to test the proposed 

optimization framework, and the experiment results are summarized and discussed.  

Finally, Section 6 concludes the overall work. 

 

2. Literature Review 

Evacuation research can be further divided into two main tracks. One is pedestrian-

specific evacuation, and the other one is vehicle-based evacuation. Detailed literatures on 

pedestrian-based evacuations can be found in [1][1]. Only vehicle-based evacuation 

techniques are reviewed here. 

Macroscopic approaches are mainly used to approximately estimate the lower 

bounds for the evacuation time, like network clearance time and total evacuation 

time [3].Models belonging to this type of approach do not consider any individual 

behaviors during the evacuation process. Yamada proposed a network flow approach 

to a city emergency evacuation planning[4]. Prescriptive evacuation routes and lower 

bounds of evacuation time were outputs of his model.  However, due to the absence 

of a real-world simulation study, the lower bound is not validated.  Cova et al., 

formulated the evacuation process as a lane-based mixed-integer programming 

problem with the objective of minimizing total evacuation distance[5]. With the 

consideration of traffic conflict within intersections, this model firstly distinguished 

the vehicle-based evacuation problem with other flow-based evacuation problems in 

history. Kim et al., presented the first macroscopic approach for finding a 

contraflow network reconfiguration to minimize the evacuation time[6]. Using the 

same concepts as [6], Xie et al. came up with a bi-level optimization model in which 

lane reversal and conflict elimination were optimized to assist the dynamic traffic 

assignment optimization[7], and Kalafatas et al., developed a CTM-based 

optimization model[8]. In addition, the geographical information system (GIS) has 

gradually become an important part in evacuation optimization and management 

because of its excellent capacity of processing big data and a more intuitional 

visualization. For instance, a multi-objective evolutionary algorithms under GIS 

system with the goal of optimally routing the evacuees into the safe areas was 

proposed in [9]. 
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In the microscopic level, optimization models are mostly simulation-based since it is 

difficult to capture all network operational constraints and driver responses fully with 

mathematical formulations. Zou et al., developed a simulation-based framework for the 

Ocean City area (Maryland) and investigated the efficiency of six given evacuation 

plans[10]. With consideration of traffic dynamics, an agent-based microscopic simulation 

model was used to analyze the efficiency of simultaneous and staging evacuation 

strategies, respectively[11]. A key conclusion is that staging evacuation strategy has a 

better performance in an urban evacuation scenario given the high evacuee demand. In 

addition, Lämmel et al., developed a simulation model based on the MATSim framework 

to generate an optimal evacuation traffic assignment (i.e., Nash equilibrium)[12]. By 

studying the human behavior in an emergency, Lindell developed an empirically based 

large-scale evacuation time estimate model (EMBLEM2)[13]. Different from the 

macroscopic models, human preparation time during an evacuation is always considered 

as part of the overall evacuation time. A comprehensive review on travel behavior 

modeling in dynamic traffic simulation models for evacuation can be found in [14]. 

Macroscopic models only have the capability of roughly estimating the evacuation 

time. As a result, the corresponding optimal routing and scheduling guidance are 

generated in ideal conditions and by relying on too many assumptions. Even though 

evaluating an evacuation plan in a microscopic way is able to incorporate more realistic 

details, it always take a huge amount of calculation time. Thus, some mesoscopic 

optimization approaches emerged by considering the performance gap between these two 

methodologies. Based on a vehicular traffic flow queueing model, Stepanov et al., 

proposed an integer programming model to minimize the average travel distance and 

network clearance time[15]. However, only routing guidance was provided using this 

model. Afshar et al., developed a scheduling heuristic framework for dynamic evacuation 

with the Spread-Squeeze concept[16]. Traffic dynamics were incorporated by a 

mesoscopic traffic simulator. But only evacuation scheduling information was generated. 

In order to reduce the “stop-and-go” delay, Bretschneider et al., developed a mixed-

integer programming model with constraints of eliminating movement conflicts at an 

intersection to optimize the routing and scheduling problem by using a time-space 

network [17]. Although they named their model as a basic mathematical flow 

optimization framework, traffic dynamics with lane-based resolution were integrated. 

However, due to extremely high complexity of the time-space network, their model could 

not be solved directly. Specific Heuristic was proposed. 

In the literature so far, seldom are there works directly dealing with large-scale 

evacuation routing and scheduling planning inside an urbanized area with many of 

evacuation sources. For large-scale evacuation planning with extremely high evacuee 

demand, the traditional time-space based optimization model becomes invalid. On the 

other hand, any simple macroscopic planning model might underestimate the evacuation 

time to large extend. Specifically, the existing evacuation planning models often ignores 

the impedance effect of uncontrolled intersection. Since the bottleneck is more likely to 

occur at an intersection due to the low speed of turn movements. Therefore, this research 

uses these considerations to propose a realistic and efficient evacuation operation 

framework specifically in an urbanized area. 

 

3. Routing Optimization Model 
 

3.1. Transportation Network Representation 

The real world transportation network is abstractly represented by a directed graph G 

(N, A) with node set N and arc set A. In this model, every roadway intersection of the 

evacuation network is replaced by a set of intersection nodes (Figure 1). The 

decomposition of an intersection aims to further model the movement conflicts within an 
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intersection. Thus, node set N consists of four types of nodes: source nodes, 

transshipment nodes, sink nodes as well as a dummy node connecting every sink. The 

travel time and capacity on any arc connecting the real destination node and the dummy 

node are set to 0 and infinity, respectively. In a real world scenario, a source node might 

be any evacuation assembly point, like exit point of a specific district block, or entrance 

ramp of a freeway. Sink nodes can be shelters or exits of a particular hazard area. 

Transshipment nodes usually denote intersections or some specific roadway inner points. 

Sometimes a source node or a sink node can also function as a transshipment node. Arc 

set A consists of all the directed arcs connecting nodes in N. 

 

 

Figure 1. An Abstract Evacuation Network Representation 

To facilitate the representation of movement conflicts within an intersection, a two-

index based node notation is used here. The detailed demonstration of this type of 

network element notation was illustrated in [17]. For this type of notation, any node is 

labeled with a unique number pair (i,m). The first index i usually classifies a set of nodes 

with common properties or sharing a common intersection. For example, all nodes 

adjacent to intersection i can be labeled as (i,m), which indicates this is the mth node 

within intersection i. Thus, a directed arc can be labeled as [(i,m),(j,n)], which represents 

the arc from node (i,m) to node (j,n). In addition, to facilitate the conflicts modeling 

within an intersection i, we assume the nodes are incrementally labeled clockwise within 

an intersection (see Figure 2). 

 

 

Figure 2. Node Labelling Illustration on a 4-leg (Left) and a 6-leg Intersection 
(Right) 
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3.2. Mathematical Model Parameters and Variables 

Network elements:  

𝑁𝑠 Set of evacuation source nodes 

𝑁𝑡 Set of transshipment nodes 

Ni Set of intersection nodes, which is a subset of Nt. 

𝑁𝑑  Set of evacuation sink nodes 

𝑁0 Dummy node connecting every real sink node 

𝑁 = 𝑁𝑠 ∪ 𝑁𝑡 ∪ 𝑁𝑑 ∪ 𝑁0 Set of network node 

𝐴𝑠 Set of general roadway arcs 

𝐴𝑛 Set of arcs inside intersections 

𝐴0 Set of arcs connecting real sink nodes and the dummy sink node 

𝐴 = 𝐴𝑠 ∪ 𝐴𝑛 ∪ 𝐴0 Set of network arcs 

(𝑖, 𝑚) Index of network node, where 𝑖 > 0, when node (i,m) belongs to 

intersection i. i=0, otherwise. 
[(𝑖, 𝑚), (𝑗, 𝑛)] Directed arc from node (i,m) to node (j,n) 

𝜇−[(𝑖, 𝑚)] Set of successor nodes of node (i,m). 

𝜇+[(𝑖, 𝑚)] Set of predecessor nodes of node (i,m). 

𝜃𝑖 Degree of intersection i 

𝐿[(𝑖,𝑚),(𝑖,𝑛)] Set of intersection leg indices which are at the left-hand side of 

arc [(i,m),(i,n)]. In terms of the above node labelling rules, 

𝐿[(𝑖,𝑚),(𝑖,𝑛)] = {𝑚 𝑚𝑜𝑑𝜃𝑖 + 1, ⋯ , 𝜃𝑖 − ((𝜃𝑖 − 𝑛 + 1)𝑚𝑜𝑑𝜃𝑖)}. 

𝑅[(𝑖,𝑚),(𝑖,𝑛)] Set of intersection leg indices which are at the right-hand side of 

arc [(i,m),(i,n)].𝑅[(𝑖,𝑚),(𝑖,𝑛)] = 𝐿[(𝑖,𝑛),(𝑖,𝑚)]. 

  

Traffic parameters:  

𝑐[(𝑖,𝑚),(𝑗,𝑛)] Capacity of arc [(i,m),(j,n)], measured in veh/min. 

𝑡[(𝑖,𝑚),(𝑗,𝑛)] Expected travel time from node (i,m) to node (j,n). 

𝐷(0,𝑘) Evacuee demand in origin (0,k), where (0, 𝑘) ∈ 𝑁𝑠. 

SC(𝑗,𝑛) Capacity of sink node (j,n), measured in number of evacuees. 

𝑀 
A preset large number, which should be greater than total 

number of source nodes. 

  

Decision variables:  

𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

 
Equal to 1 if arc [(i,m),(j,n)] is chosen by source (0,k), and 0 

otherwise.  

𝛾[(𝑖,𝑚),(𝑖,𝑛)] 
Equal to 1 if arc [(i,m),(i,n)] is chosen in the routing plan, and 0 

otherwise. 

λ(0,𝑘) Bottleneck flow/capacity ratio of the route of source (0,k). 

f[(i,m),(j,n)] Traffic demand assigned to arc [(i,m),(i,n)]during the evacuation. 

 

Since we are going to explicitly consider the traffic flow conflicts within an 

intersection in the following routing optimization model, two key notations 𝐿[(𝑖,𝑚),(𝑖,𝑛)] 

and 𝑅[(𝑖,𝑚),(𝑖,𝑛)]  are introduced here. Specifically, 𝐿[(𝑖,𝑚),(𝑖,𝑛)]   represents the set of 

intersection nodes located at the left hand side of the intersection arc [(𝑖, 𝑚), (𝑖, 𝑛)] and 

𝑅[(𝑖,𝑚),(𝑖,𝑛)] represents the set of intersection nodes located at the right hand side of the 

intersection arc [(𝑖, 𝑚), (𝑖, 𝑛)]. For example, in the 6-leg intersection shown in Figure 6, 

𝐿[(𝑖,6),(𝑖,3)] = {(𝑖, 1), (𝑖, 2)}  and 𝑅[(𝑖,6),(𝑖,3)] = {(𝑖, 4), (𝑖, 5)} . In general, (𝑖, 𝑛) ∪

(𝑖, 𝑚) ∪ 𝐿[(𝑖,𝑚),(𝑖,𝑛)] ∪ 𝑅[(𝑖,𝑚),(𝑖,𝑛)] = {(𝑖, 1), (𝑖, 2), … , (𝑖, 𝜃𝑖)}. 
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3.3. Mathematical Model Formulations 

In this evacuation routing model, two objectives are defined from a macroscopic 

perspective. They are, total in-network time T𝑖𝑛−𝑛𝑒𝑡 and network clearance time T𝑐𝑙𝑒𝑎𝑟. 

To begin with, we define the in-network time of a specific evacuee as the total duration it 

spends to reach to its safety destination since the evacuation process starts. Then, the total 

in-network time is the summation of every evacuee’s in-network time. We define the 

network clearance time as the time duration to evacuate the overall evacuees out of the 

emergency region. This measurement indicator is of great significance in evacuation 

planning, since the evolution of a disaster is always exponential and we need to evacuate 

the people to some safety areas as fast as we can. A graphical illustration of these two 

evacuation performance indicators is shown in Figure 3. As is demonstrated, the integral 

of the remaining evacuee demand curve is the total in-network time, and the end time 

point of the remaining demand curve is viewed as the network clearance time. 

 

 

Figure 3. Representation of Total in-Network Time and Network Clearance 
time with Respect to a General Evacuation Curve 

In our mathematical model, we assume the preparation time of each evacuee can be 

ignored in comparison with the average loading waiting delay and the evacuation 

traveling time. Therefore, the total in-network time can be analytically derived as two 

parts (as is shown in equation 1), one is the total evacuation traveling time and the other 

one is the average loading waiting delay. The total evacuation travelling time is calculated 

as the evacuees’ total traveling time once they are loaded into the network. It is noted that 

in this routing planning model the average travel time of a route is a constant once it is 

specified. Due to the large evacuation demand and limited egress, the evacuation 

operation is quite different with the case in general traffic assignment problems. 

Specifically, the traffic managers or operation authorities always take a high level of 

traffic control during the evacuation process in order to avoid the “traffic explosion”. In 

other words, to provide the maximal network throughput per time unit, the emergency 

authorities always expect the evacuation flow travels exactly at the capacity of the 

roadway segments in the planning stage. Hence, it is realistic to fix the link travel time as 

its capacity travel time when we are planning an evacuation, and this is always the case in 

the evacuation research literature. As is showed in the second part of equation (1), the 

average loading waiting delay of an evacuee is determined (or constrained) by the 

bottleneck capacity on its egress route. We further assume the serving time of an arc can 

be approximately equal to the ratio of its accumulative demand and its capacity. This is 

also referred as the reserve capacity of a network link, which is always used in uncertain 
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traffic demand assignment problem [18].Specifically, given a link l traversed by a 

particular amount of vehicles 𝑓𝑙  at its capacity 𝑐𝑙 , where 𝑓𝑙 ≫ 𝑐𝑙 , the ideal minimal 

serving time of this link is equal to the ratio of the total demand and its capacity, i.e. 

𝜆𝑙 =
𝑓𝑙

𝑐𝑙
. Based on the first-in-first-out rule, the minimal waiting delay for a vehicle is zero 

while the worst case (i.e., last arrival vehicle) is 𝜆𝑙 . Therefore, given the linear flow 

process (i.e., the traffic flow is constantly equal to the link’s capacity in order to 

maximize the link throughput), the average waiting delay for a vehicle is equal to 
𝜆𝑙

2
. In 

this model, the bottleneck’s serving time of a particular route is specified in constraint (4). 

Objective function 1: Total in-network timeT𝑖𝑛−𝑛𝑒𝑡  

Minimize: 

{ ∑ 𝐷(0,𝑘) ∑ [𝛼[(𝑖,𝑚),(j,n)]
(0,𝑘) ∙ 𝑡[(𝑖,𝑚),(j,n)]]

[(𝑖,𝑚),(𝑗,𝑛)]∈𝐴(0,𝑘)∈𝑁𝑠

+ ∑ 𝐷(0,𝑘) ∙
1

2
∙ λ(0,𝑘)

(0,𝑘)∈𝑁𝑠

} 

(1) 

 

To provide an approximation of network clearance time, we further define the 

network’s bottleneck as the link which has the largest ratio of total serving demand and 

capacity given a set of equilibrium evacuation flow upon an evacuation network. Then, 

under condition of uninterrupted traffic flow, the network’s clearance time is 

approximated as the demand-capacity ratio of the network bottleneck (equation 2). This 

numerical value was also named as the link overload degree, and was argued to be of high 

correlation with the value of the network clearance time[19]. When the traffic demand is 

constantly high, it is approximately equal to the network clearance time. 

 

Objective function 2: Network clearance timeT𝑐𝑙𝑒𝑎𝑟  

Minimize: max {
f[(i,m),(j,n)]

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
|∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛} (2) 

Subject to:  

f[(i,m),(j,n)] = ∑ 𝐷(0,𝑘) ∙ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

(0,𝑘)∈𝑁𝑠

, ∀[(i, m), (j, n)] ∈ 𝐴 (3) 

λ(0,𝑘) = max {𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

∙
f[(i,m),(j,n)]

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
|∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛} , ∀(0, 𝑘)

∈ 𝑁𝑠 
(4) 

∑ α[(0,k)(j,n)]
(0,k)

(j,n)∈μ−[(0,k)]

= 1, ∀ (0, k) ∈ Ns (5) 

∑ α[(j,n),(i,m)]
(0,k)

−

(j,n)∈μ+[(i,m)]

∑ α[(i,m),(j,n)]
(0,k)

(j,n)∈μ−[(i,m)]

= 0, ∀ (0, k) ∈ Ns, ∀ (i, m)

∈ Nt 
(6) 
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∑ α[(i,m)(j,n)]
(0,k)

(i,m)∈μ+[(j,n)]

= 1, ∀ (0, k) ∈ Ns, and (j, n) = N0 (7) 

∑ ∑ 𝐷(0,𝑘)α[(i,m)(j,n)]
(0,k)

(i,m)∈μ+[(j,n)]∀(0,𝑘)

≤ 𝐶(𝑗,𝑛), ∀(j, n) ∈ Nd (8) 

γ[(i,m),(i,n)] + γ[(i,h),(i,k)] ≤ 1, ∀h ∈ L[(i,m),(i,n)], ∀k ∈ R[(i,m),(i,n)], 

∀(i, m) ∈ Ni, and ∀n ∉ {(m mod θi) + 1, (θi + m − 2)modθi + 1} 
(9) 

γ[(i,m),(i,n)] + γ[(i,h),(i,k)] ≤ 1, ∀h ∈ R[(i,m),(i,n)], ∀k ∈ L[(i,m),(i,n)], 

∀(i, m) ∈ Ni, and ∀n ∉ {(m mod θi) + 1, (θi + m − 2)modθi + 1} 
(10) 

γ[(i,m),(i,n)] + γ[(i,h),(i,k)] ≤ 1, ∀ k ∈ L[(i,n),(i,m)] and h = n, 

∀(i, m) ∈ 𝑁𝑖 , and ∀n ≠ (θi + m − 2)modθi + 1 
(11) 

γ[(i,m),(i,n)] + γ[(i,h),(i,k)] ≤ 1, ∀ h ∈ L[(i,n),(i,m)] and k = m, 

∀(i, m), and ∀n ≠ (θi + m − 2)modθi + 1 
(12) 

∑ 𝛼[(𝑖,𝑚),(𝑖,𝑛)]
(0,𝑘)

(0,𝑘)∈𝑁𝑠

≤ 𝑀 ∙ 𝛾[(𝑖,𝑚),(𝑖,𝑛)], ∀[(𝑖, 𝑚), (𝑖, 𝑛)] (13) 

𝛼[(𝑖,𝑚),(j,n)]
(0,𝑘)

 and 𝛾[(𝑖,𝑚),(𝑖,𝑛)]  ∈ {0,1} (14) 

λ(0,𝑘)𝑎𝑛𝑑f[(i,m),(j,n)] ≥ 0 (15) 

It is noted that the source node (0,k) mentioned in the above formulations can either be 

an original source node or a duplicated dummy source node. This is up to the abstracted 

network structure and the number of routes we expect. The traditional method to represent 

a source within a network is just abstract it as a single network node with a provided 

demand. Here we can choose to duplicate a specific source as multiple dummy nodes. For 

example, if we divide a single source node into four geographically identical dummy 

source nodes and use our routing optimization model to calculate based on this revised 

network, we can come up with at most four different evacuation routes for the original 

source. Therefore, by adding dummy nodes, the above formulations is able to calculate 

multiple evacuation routes for each physical source.  

Constraint (3) assigns traffic demand to each arc based on the routing plan. Constraint 

(4) figures out the bottleneck demand/capacity ratio of each particular route based on the 

assigned traffic demand obtained in constraint (3). Constraint (5) guarantees that for each 

(dummy) source node, there is exactly one route outgoing from it. Constraint (6) indicates 

that, for each transshipment node, if a route goes into it, then the route must go out. 

Constraint (7) guarantees that for each source node there must be a sink node allocated to 

it. Constraints together (5-7) say that for each source node there is exactly one egress 

route linking it to a sink node. Constraint (8) limits the allocated evacuee demand at a 

specific exit point by considering the capacity of this destination node (e.g., shelter 

capacity or exiting freeway capacity). Constraints (9-12) guarantee that there are no 

movement conflicts within any intersection or freeway interchange. This type of 

intersection conflicts elimination constraints were firstly proposed in[17], and explicitly 
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formulated the intersection-related constraint described [5].The model here takes 

advantage of the work in [17] and presents a more general form of the conflicts 

elimination constraints (as is shown in constraints 9-12). Constraints (9) and (10) 

guarantee that there are no movement conflicts depicted in Figure 4 (a), i.e. conflict 

between two arcs with no common nodes Constraints (11) and (12) eliminate the 

movement conflicts of the type depicted in Figure 4 (b), i.e., conflict between two arcs 

with exactly one common node (i.e., straight versus left turn or left turn versus left 

turn).In addition, to maintain the routing consistency within a controlled intersection, 

constraints (13) with the introduction of a big number M are added to the model (i.e., if an 

intersection arc is prohibited then it cannot be used by any route). Finally, constraint (14) 

and (15) specify the feasible domain of the decision variables. 

 

 

Figure 4. Two General Types of Intersection Movement Conflict 

By observing the above formulations, the objective function related to constraint (4) is 

to be minimized, constraint (4) can be replaced by the following set of relaxed constraints 

(16). Thus, the routing model turns to be a quadratic programming model without any 

piecewise quadratic constraints. 

λ(0,𝑘) ≥ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

∙
f[(i,m),(j,n)]

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
, ∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛, ∀(0, 𝑘) ∈ 𝑁𝑠 (16) 

3.4. Solution Approach 

In this section, a specific solution approach is proposed to transform the above 

quadratic model to a linear model, which can be generally solved. As is aforementioned, 

the routing optimization model is a multi-objective quadratic programming model with 

binary variables. Although there are some cutting-edge solvers which are capable to solve 

quadratic programming model, like Gurobi solver with barrier method, solving quadratic 

programming model with integer variables is still time-consuming. Here, we transform 

the above mixed integer quadratic programming (MIQP) model to an equivalent linear 

mixed integer programming (MIP) model by introducing the following auxiliary variables 

and constraints. 

 

ω[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘),(0,𝑘′)

 
Auxiliary variable with respect to binary variable 𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘)
 and 

𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘′)
, and 0 ≤ ω[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘),(0,𝑘′)
≤ 1. 

(a) 
(b) 
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By recalling the original formulations, we can find the only quadratic part is constraint 

(16), which can equivalently replace constraint (4). By plugging equation (3) in constraint 

(16), we can further express constraint (16) as, 

λ(0,𝑘) ≥ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

∙
∑ 𝐷(0,𝑘′) ∙ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘′)
(0,𝑘′)∈𝑁𝑠

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
,  

∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛, ∀(0, 𝑘) ∈ 𝑁𝑠 

(16*) 

Next, we introduce a new set of linear constraints that equivalently replace constraint 

(16*) by using the auxiliary variable ω[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘),(0,𝑘′)

. The linear equivalent constraints (17-19) 

are given as below. 

0 ≤ 𝜔[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘),(0,𝑘′)
≤ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘)
, ∀[(𝑖, 𝑚), (𝑗, 𝑛)], ∀(0, 𝑘), 𝑎𝑛𝑑 (0, 𝑘′) (17) 

λ(0,𝑘) ≥
∑ 𝐷(0,𝑘′) ∙ 𝜔[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘),(0,𝑘′)
(0,𝑘′)∈𝑁𝑠

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
,  

∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛, ∀(0, 𝑘) ∈ 𝑁𝑠 

(18) 

However, we also need to add another component to the original objective function 1, 

which desires a set of minimum values of λ(0,𝑘). Let Q be a big positive number. Then the 

revised objective function is expressed as, 

Minimize: 𝑇𝑖𝑛−𝑛𝑒𝑡 − 𝑄 ∙ ∑ ∑ ∑ ω[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘),(0,𝑘′)

∀(0,𝑘′)∀(0,𝑘)∀[(𝑖,𝑚),(𝑗,𝑛)]

 (19) 

By replacing constraint (16) with (17-18) and replacing objective function (1) with (19), 

we equivalently transform the routing optimization model from MIQP to MIP.  

Proof: 

In constraint (16*), the nonlinear component is 𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

∙ 𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘′)
. This 

component is equal to 1 if and only if 𝛼[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘)

= 1, 𝑎𝑛𝑑 𝛼[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘′)
= 1. If any of 

these two decision variables takes value 0, constraint (17) forces 𝜔[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘),(0,𝑘′)
= 0, and 

the same solution space will obtained by using constraint (18). If both of these two 

decision variables take value 1, constraint (17) as well as the additive big Q component in 

objective function will force 𝜔[(𝑖,𝑚),(𝑗,𝑛)]

(0,𝑘),(0,𝑘′)
= 1 due to the minimization characteristic of the 

objective function, and the same solution space will obtained by using constraint (18). As 

is required. 

 

Hence, the equivalent MIP model can be expressed as below. 

Minimize: 𝑇𝑖𝑛−𝑛𝑒𝑡 − 𝑄 ∙ ∑ ∑ ∑ ω[(𝑖,𝑚),(𝑗,𝑛)]
(0,𝑘),(0,𝑘′)

∀(0,𝑘′)∀(0,𝑘)∀[(𝑖,𝑚),(𝑗,𝑛)]

 

Minimize: Tclear = max {
f[(i,m),(j,n)]

𝑐[(𝑖,𝑚),(𝑗,𝑛)]
|∀[(𝑖, 𝑚), (𝑗, 𝑛)] ∈ 𝐴𝑠 ∪ 𝐴𝑛} 

Subject to: Constraint (3), (5-15), (17), and (18) 

This two-objective MIP model can be solved iteratively by setting upper bounds for the 

second objective. Specifically, we can transform the two-objective MIP to a set of single-

objective MIPs by incrementally setting an upper bound for the network clearance time. 
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Final optimal solution are obtained by further evaluating the optimal solution of each sub 

problem. 

 

4. Scheduling Optimization Model 

The optimization model in the above section generates a set of evacuation route(s) for 

each source from a macroscopic perspective. Since the evacuation demand is high, the 

overall demand cannot realistically be loaded into the network simultaneously. Thus, a 

scheduling strategy based on which the demand is efficiently discharged is necessary. In 

this section, a simulation based scheduling model is proposed to further determine the 

departure rate of each source from a mesoscopic level. With the output of routing 

optimization model, the scheduling model takes advantage of a greedy loading concept 

[20]to dynamically determine the discharge rate for each source with traffic dynamics 

being considered. In addition, to guarantee a high calculation efficiency, a traffic 

simulator from a mesoscopic level [16] is used. Pseudo codes of the algorithm are listed 

in Table 1. Moreover, a flow chart describing the general logic of the proposed Heuristic is 

given in Figure 5. 

Table 1. Pseudo Code of the Proposed Simulation based Scheduling 
Heuristic 

Algorithm: Simulation-Based Capacity Constrained Scheduling Algorithm 

Phase I (Initialization): 

Input and Preprocessing: 

1) Directed Network 𝐆(𝐍, 𝐀) with a set of nodes N and a set of arcs A; 

2) Set of 𝐫 evacuation routes 𝑹 = {𝑹(𝒏)|𝒏 ∈ {𝟏, 𝟐, … , 𝒓}} , where 𝐑(𝐧) =
{𝐚𝐧𝟏

, 𝐚𝐧𝟐
, ⋯ , 𝐚𝐧𝐤

} and 𝒂𝒏𝒌
∈ 𝑨; 

3) Allocated demand 𝑫(𝒏) of each route; 

4) Evacuation priority 𝑷(𝒏)  of each source (route); 

5) Capacity 𝒄(𝐚𝒌)(with unit vehicle/hour) of each arc 𝒂𝒌 ∈ 𝑨; 

6) For each arc ak, findits future serving source sets 𝑺(𝒂𝒌) = {𝒏|∀𝒏 𝒂𝒏𝒅𝒂𝒌 ∈
𝑹(𝒏)} ; 

7) Loading attraction factor for each source 𝜶 (usually greater than 1), and 

discharging reduction factor 𝜷 (usually smaller than 1, but should be strictly 

smaller than 𝛂) 

8) Simulation time interval ∆𝒕,during which a batch of vehicles will be discharged 

9) Set the initial time point of the simulation with t = 0; 

Notations in the calculation iteration: 

(1) 𝑳(𝒏, 𝒕): Time-dependent maximal discharging rate of routen at time interval t 

(2) 𝜽𝒂𝒌
(𝒕): Time-dependent flow attraction factor of arc 𝒂𝒌 

(3) 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆(𝒏, 𝒕) : Number of vehicles discharged from routen during time 

interval (𝒕, 𝒕 + ∆𝐭) 

(4) 𝜞: Total number of vehicles getting out of the network by time point t 

(5) 𝑨𝒓𝒓𝒊𝒗𝒆𝒅(𝒕 − ∆𝐭, 𝒕): Number of vehicles exiting the network within time interval 

(𝒕 − ∆𝐭, 𝒕) 
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Phase II (DischargingIteration): 

Do 

Determine the flow attraction factors for each arc 𝒂𝒌by using the following 

logics: 

For each arc 𝒂𝒌 ∈ 𝑨: 

If𝒂𝒌is congested (i.e. traffic density is over than its critical 

density): 

Set 𝜽𝒂𝒌
(𝒕) = 𝜷 

Else 

Set 𝜽𝒂𝒌
(𝒕) = 𝜶 

End 

For each route R(n)with demand 𝑫(𝒏) > 𝟎: 

Determine its maximal discharging rate according to the capacity and 

the flow attraction factor of each arc 𝒂𝒌 ∈ 𝑹(𝒏) by the following logic 

function: 

 

𝑳(𝒏, 𝒕) = 𝒎𝒊𝒏 {𝜽𝒂𝒌
(𝒕) ∙ 𝒄(𝒂𝒌)

𝑷(𝒏)

∑ 𝑷(𝒎) ∙ 𝟏{𝑫(𝒎)>𝟎}𝒎∈𝑺(𝒂𝒌)
 |∀ 𝒂𝒌

∈ 𝑹(𝒏)} 

where 𝟏{𝒙} is indicator function with respect to statement x. 

 

Determine the amount of vehicles to be discharged on route n by using 

the following logic: 

𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆(𝒏, 𝒕) = 𝐦𝐢𝐧 {𝑫(𝒏), 𝑳(𝒏, 𝒕) ∙ ∆𝐭} 

Update the remaining demand of source n: 

𝑫(𝒏) = 𝑫(𝒏) − 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆(𝒏, 𝒕) 

End 

 

Load the determined discharged vehicles into the simulation network and 

run Traffic Simulator for duration ∆𝐭; 
 

Update the simulation clock by: 𝐭 = 𝐭 + ∆𝐭; 

 

Update and record the number of exiting vehicles by: 

𝚪 = 𝚪 + 𝑨𝒓𝒓𝒊𝒗𝒆𝒅(𝒕 − ∆𝐭) 

While: 𝚪 < ∑ 𝑫(𝒏) 

Phase III (Report Generation): 

1) Output the time-dependent discharging rate with respect to each source; 

2) Output the time-dependent traffic statistics for each link; 

3) Output the network clearance time and total in-network time. 
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Figure 5. Flow Chart of the Proposed Simulation-based Heuristic 

In this scheduling algorithm, two heuristic factors are introduced. They are, loading 

attraction factor α and discharging reduction factor β. This is because even though the 

traffic congestion of a specific route is due to the total arrived demand from multiple 

sources, these separate demands might not be arriving at this bottleneck simultaneously, 

Route Set {𝑹𝟏, 𝑹𝟐, … , 𝑹𝒓} 

Demand Set {𝑫𝟏, 𝑫𝟐, … , 𝑫𝒓} 
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especially at the beginning of the evacuation process. If we determine the discharge rate 

for these sources strictly according to the capacity of their prescriptive routes, there might 

be capacity waste within some time period due to the different arrival time of the flow 

from these sources. Thus, during the evacuation process, we expect to fully make use of 

the roadway capacity by introducing this loading attraction factor α. However, this might 

also cause traffic congestion if these flows nearly arrive at the same network link 

simultaneously. Therefore, we additionally introduce the reduction factor β. It aims to 

reduce the traffic congestion. In other words, if a link (not necessary the current 

bottleneck) suffers a traffic congestion, the reduction factor will decrease the discharging 

rate of its sources below the normal condition in the next iteration. In addition, the 

evacuation priority of each source is also taken advantaged of to determine its discharging 

rate. The incorporation of the source specific priority in the loading heuristic is simple. 

That is, the roadways’ capacities are divided and reserved for each of the sources based on 

their weighted evacuation priorities. As is indicated in the above algorithm, a source with 

a relatively high evacuation priority is usually assigned with a larger discharging rate by 

reserving more roadway capacity for it. 

 

5. Case Study 

In this section, an application of the proposed optimization framework is conducted on 

a real-world scenario, the Eastern Shore of Maryland, which is located east of Chesapeake 

Bay and consists of nine of the state’s counties. This area has a population of around 

420,000 (2004 census). However, the population of Ocean City in the summer peak 

season can reach 150,000 to 300,000 compared with 7,000 to 25,000 during the off-peak 

season. The large population as well as the unique geographic location make both the 

Ocean City and other recreation areas located in the shore vulnerable to the threat of 

hurricanes. The map of the studied area as well as the geographic structure of the entire 

evacuation network is shown in Figure 6.The routing optimization model is implemented 

with C++ and CPLEX_12.51 Concert, and the scheduling simulation model is 

implemented with C++ in Visual Studio 2012. 

Table 2. Evacuation Demand Distribution in Eastern Shore Maryland 

Source 

Node 

Total Demand 

(Vehicles) 

2 45,850 

1 43,830 

3 20,700 

9 20,000 

20 17,400 

26 16,800 

16 11,400 

40 6,400 

36 6,200 

46 3,500 
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Figure 6. Map (a) and Major Evacuation Network (b) of Eastern Shore of 
Maryland 

The amount and location of the major demand generation points (evacuation sources) 

are obtained by aggregating the sparsely distributed demand generation points. For 

example, if there are minor roads linking several different demand generation points to 

the same freeway entrance ramp or arterial entrance point and these demand generation 

points are geographically close to each other, then these demand points can be further 

aggregated to be a major demand point with access to the network. By referring to the 

Maryland SHA technical report [21], the distributed evacuation demand is summarized in 

Table 2. 

It is necessary to mention that there are four special network nodes, which neither 

belong to the type of intersection nor the interchange section between freeways. They are, 

node 16, 22, 23 and 29, which denote Salisbury, Federalsburg, Bridgeville and Denton, 

respectively (Figure 7). Actually, these four nodes are dummy nodes representing a 

central area of a small town (center of a major demand source). In addition, among all of 

the 50 network nodes demonstrated in Figure 6, totally 20 of them are arterial 

intersections with at most four legs. They are, node 11, 12, 2, 3, 6, 8, 10, 49, 19, 20, 21, 

24, 25, 50, 28, 30, 33, 34, 36, 39 and 40. 

(a) (b) 

Ocea

n City 
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Figure 7. Four Special Network Nodes (Dummy Node) in Case Study 

Before we further seek for multiple routes optimization results, we introduce a lower 

bound (LB) calculation technique for the network clearance time. Suppose a directed 

network G(N,A), where N denotes the set of network nodes and A denotes the set of 

network arcs. Let S be the set of all source nodes within G and T be the set of all exit arcs 

(link connected to sink nodes) of G. Then the network clearance time must have a lower 

bound calculated by equation (20). 

𝐿𝑁𝐶 =
∑ 𝑑(𝑛)𝑛∈𝑆

∑ 𝑐(𝑖, 𝑗)(𝑖,𝑗)∈𝑇
 (20) 

where, d(n) denotes the demand at source n, and c(i,j) denotes the capacity of arc (i,j). 

This lower bound of network clearance time is very obvious, since all of the arcs in set T 

(i.e., exit arcs) constitute the minimal cut between this evacuation network and the outside 

regions.In this network, if we cut all the demand in Ocean city (i.e., node 1, 2, 3 and 9) 

from the egresses, we can obtained one lower bound of the network clearance time as 

20.05 hours. On the other hand, if we cut the demand in the whole area (i.e., all sources) 

from the five egresses, we can obtain one LB of clearance time as 14.5 hours. Obviously, 

we conclude 20.05 hours as a better LB in terms of the network clearance time. 

By applying the routing optimization model, optimal routing solutions under three 

strategies are obtained. Figure 8 demonstrates the evacuation performance indicators of 

each optimal routing solution. For example, if we consider exactly one route for each of 

the sources, we find the optimal solution with minimal network clearance time 30 hours, 

total evacuation time 653611 hours and total in-network time 3.34082e+006 hours from 

the macroscopic level. As we can see, if we relax the maximal route numbers of each 

source to three, we can obtain relatively a good routing plan with decreased total in-

network time, as well as a LB gap of network clearance time less than 3.24%. The routing 

details of this solution are listed in Table 3. However, one should note that lager number 

of evacuation routes is more likely to increase the management cost and complexity from 

the operation perspective.  

 

Dummy Node 

16 
Dummy Node 23 Dummy Node 

22 
Dummy Node 

29 
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Figure 8. Total Travel Time, Total In-Network Time and Network Clearance 
Time Gap of Three Optimal Routing Strategies 

Table 3. Optimized Evacuation Routes (at most Three Routes per Source) 

Source Optimized evacuation route 
Bottleneck 

(network link) 

Average 

Network-

Loading Waiting 

Time (hour) 

1 

1->4->45->7->15->17->19->23->24->28->35->39->43 

1->4->45->16->17->19->23->24->28->35->39->43 

1->4->45->7->15->16->17->19->23->24->28->35->39->43 

17,3-19,4 

17,3-19,4 

17,3-19,4 

10.2408 

10.2408 

10.2408 

16 
16->18->20->26->30->31->32 

16->18->20->26->30->47->31->32 

26,2-30,1 

26,2-30,1 

10.3415 

10.3415 

2 

2->1->4->45->7->15->16->18->20->26->30->31->32 

2->5->7->15->17->19->23->24->28->35->39->43 

2->5->8->10->49->21->50->27->48->44 

26,2-30,1 

17,3-19,4 

2,2-5,4 

10.3415 

10.2408 

10.1887 

26 
26->30->47->31->32 

26->30->31->32 

26,2-30,1 

26,2-30,1 

10.3415 

10.3415 

3 
3->6->10->49->21->50->27->48->44 

3->6->10->49->21->23->25->29->30->47->31->32 

3,2-6,1 

3,2-6,1 

10.35 

10.35 

36 36->47->31->32 31,2-32,0 8.60911 

40 40->42 40,3-42,0 2.133 

46 
46->11->13->16->17->19->23->25->29->30->47->31->32 

46->11->13->16->18->20->26->30->31->32 

17,3-19,4 

26,2-30,1 

10.2408 

10.3415 

9 9->10->49->21->50->27->48->44 31,2-32,0 9.999 

20 
20->26->30->31->32 

20->26->30->47->31->32 

26,2-30,1 

26,2-30,1 

10.3415 

10.3415 

653611 662688 655617 
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We accept the three-route routing plan as the optimal routing strategy due to its 

superiority over the other two and calculate the scheduling information based on it by 

using the proposed scheduling algorithm. By trial-and-error, Heuristic factors α and β are 

chosen as 1.6 and 0.9, respectively. At first, all sources are assigned with the same 

evacuation priority, and we call this as the homogeneous priority scenario. Figure 9 gives 

the time-dependent discharging rate of each source in this case. As is shown, finishing 

loading all of the demand into the network requires 1160 minutes (i.e., 19.3 hours), and 

clearing all of the in-network demand requires 1320 minutes (i.e., 22 hours). The dashed 

curve in Figure 10 is the corresponding evacuated demand curve. As is shown, the 

network throughput is relatively low at the very beginning of the evacuation process. This 

is because it usually takes evacuees sometime (i.e., lead time) to reach the destination 

after they are loaded into the network. In this case, the lead time is around 2 hours. 

In addition, we also investigate the impact of the evacuation priority on the evacuation 

process. As mentioned in Section 4, the heuristic discharging rate of a particular source 

will be affected by its prescriptive evacuation priority. Because we expect to allocate 

more network capacity to the source with a high priority. In this case study, sources 

located in Ocean City (i.e., nodes 1, 2, 3 and 9) are assigned with a higher evacuation 

priority (i.e., Pi = 2) to see what happens if the scheduling Heuristic is operating in such a 

hybrid priority scenario. As is shown in Figure 11, the network clearance time does not 

change too much for the scenario in which Ocean City has a larger priority. However, the 

time-dependent remaining demand in Ocean City area of the ‘Hybrid’ scheduling strategy 

is lower than that of the ‘Homogeneous’ strategy. In other words, if we assign a higher 

evacuation priority to the Ocean City area, the time-dependent throughput of its demand 

will increase. But the increased throughput will not be significant for this case (i.e., 

increasing the priority of the whole Ocean City Area). The intrinsic reason for this is that 

Ocean City has a huge percentage of the total evacuation demand in the whole Eastern 

Shore Area (i.e., 67.9%). In other words, the main competition of reserving the network 

capacity during the evacuation is coming from itself. Therefore, if we increase the 

evacuation priority of the Ocean City area simultaneously, the throughput of this area will 

be increased, but will not be that significant.  
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Figure 9. Time-dependent Discharging Rate of the Optimal Scheduling 
Strategy with Homogeneous Source Evacuation Priority 

 

Figure 10. Time-dependent Evolution Curve of the Total Evacuated Demand 
under the Optimal Routing and Scheduling Strategy with Two Evacuation-

Priority Scenarios 
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Figure 11. Time-dependent Remaining Demand Curves in Ocean City Area 
with Two Evacuation-Priority Scenarios 

6. Conclusions 

In this paper, a framework for large-scale vehicular evacuation routing and scheduling 

optimization was developed for the case of uninterrupted traffic flows. Instead of 

considering the routing and scheduling in a single problem (using a time-space network), 

we built the routing and scheduling models separately (i.e., in two phases) so as to 

enhance the planning efficiency in an urgent real world evacuation scenario. In the first 

phase, a two-objective mixed integer programming model was formulated. Network 

clearance time and total in-network time were defined and adopted as the evacuation 

performance measurements in the routing model. In addition, to better guarantee the a 

smooth and more effective evacuation process, intersection movement conflicts were 

eliminated during the optimization process, since conducting the evacuation process based 

on uninterrupted traffic flow is proved to be more efficient and effective in recent studies. 

A general mathematical formulation of the intersection conflicts elimination constraints 

were provided as well. In the second phase, a simulation-based scheduling heuristic was 

developed with the concept from greedy algorithms. This heuristic is able to dynamically 

determine the discharging rate of each evacuation source with the assistance of an 

embedded mesoscopic traffic simulator. Meanwhile, the traffic condition of each time 

interval during the whole evacuation process can also be given from the embedded traffic 

simulator. 

Moreover, the two-phase optimization of the routing and scheduling decision models 

also provides a high flexibility when using these models. In other words, either the 

routing optimization model or the scheduling heuristic can be separately adopted for a 

particular scenario, and they need not be used together. For example, if the evacuation 

routes have been pre-selected already by some other techniques, then one only needs to 

use the scheduling heuristic to further determine the demand discharging rate and view 

the simulation results. 

A real-world evacuation scenario in Eastern Shore of Maryland was studied by using 

the proposed optimization model. Given extremely dense evacuation demand (around 

190,000 vehicles), evacuation routes were firstly optimized by the routing model under 
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three different route allocation strategies. They are, one route per source, at most two 

route per source and at most three route per source. As is indicated by the routing model, 

the last two routing strategies yield relatively better network clearance time and total in-

network time. The network clearance time is approximate 20 hours and the total in-

network time is around 660,000 hours. In other words, the average in-network time of 

each vehicle is approximate 3.3 hours. With the optimized routing strategy as input, we 

applied the proposed scheduling Heuristic to iteratively figure out the time-dependent 

discharging rate for each route. As is shown in the last section, the discharging rate of 

each particular route is given as a time series, which can be referred for practical usage. 

The calculation results indicate a good optimization capability and flexibility of the 

proposed model. 

The proposed evacuation optimization framework is still limited by two assumptions. 

They are, all evacuees will obey the routing and scheduling guidance, and there is no 

secondary incident happening during the evacuation process. However, this would not 

always be the case in a real-world evacuation scenario. For example, some of the 

evacuees might not strictly follow the disseminated evacuation guidance, or the 

prescribed plan might not be valid due to some secondary incidents. Therefore, the 

evacuation time calculated by the proposed optimization framework should be respected 

as a lower bound for the planning purpose. In other words, extra buffer time should be 

considered during the real-world application. Future research should be done in two 

aspects: (1) incorporating the impact of evacuee behavior in estimating the evacuation 

time; (2) extending the model to a dynamic optimization framework in order to deal with 

the occurrence of secondary incidents (e.g., re-routing under traffic accident or secondary 

hazard). 
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