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Abstract 

1l norm is a popular regularizer in various linear inverse problems including image 

processing, compressed sensing and machine learning. But the non-zero entries of the 

sparsity solution obtained by 
1l are independent with each other, which always leads to 

biased result to real solution. Actually, there always exist some different correlations 

among those non-zero entries in an image signal domain or various analysis domains. In 

this paper, based on a simple observation that the non-zero entries of the sparsity vector 

in various image analysis domains should be also approximate when the relevant signal 

values are proximate, we proposed a nonlocal-approximate sparsity regularizer in 

analysis domains by minimizing the sum of the 
2l  norms of those vectors with the same 

nonzero pattern like signal vectors. This regularizer is applied to image denoising, edge 

detecting, inpainting and decomposition models successively. The numerical experiments 

demonstrate the effectiveness of our method in terms of PSNR, visual effect and edge 

preserving. 

 

Keywords: sparsity representation; analysis-based sparsity model; inverse problem; 

image processing 

 

1. Introduction 

Image restoration is a very important task in image processing and it is usually 

formulated as a linear inverse problem. We denote a whole image as a vector by 

concatenating its columns. The objective of image restoration is to find an unknown true 

image nRu  from the observed one mRf  : 

eAuf                                                                                                              (1.1) 

where e  is white Guassian noise, and nmRA    is a linear operator which is typically the 

identity operator in image denoising, a projection in image inpainting or a convolution in 

image deconvolution. Images usually have the feature of sparsity representation(or 

approximation) in different domains, such as image signal domain [8], Fourier transform 

[22], Cosine transform [23], Wavelet transform [32], and discrete gradient transform [15]. 

Sparsity representation has become an important method for solving (1.1) in different 

domains, in which images can be sparsity represented. In these domains, 
1l  norms always 

act as the regularizers of the corresponding  minimization problems for (1.1). According 

to the different types of domain, those minimization problems can be divided into two 

sub-categories, namely the synthesis-based sparsity representation problems and the 
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analysis-based sparsity representation problems [1-2]. The former consider that the image 

signal u  is sparse and is always applied for solving the minimization problem in image 

domain itself: 

fARdtsd ..min                                                                                                 (1.2) 

where   might be the 
1l  norm or its variants, d is the coefficient of the unknown image u , 

R  is the synthesis operator such that Rdu  . The formulation (1.2) can be transformed 

to one unconstrained minimization problem: 

)(min RdHd                                                                                                              (1.3) 

where )(H  is a smooth convex function acting as the data fidelity, e.g., )(H  can 

be chosen as 
2

22

1
fARd  . The two formulations (1.2) and (1.3) cover many 

problems by selecting different A , R  and H , e.g., compressing sensing [3] and 

various inverse problems [4-5]. Synthesis-based sparsity problems with (1.2) and 

(1.3) are relatively easy to solve due to the non-smooth term d  being separable. 

The analysis-based sparsity problems are quite different and they always assume 

that the analysis coefficient Du is sparse. These models can be formulated to find a 

solution with sparsity representation in the corresponding image analysis domain:   

fAutsDu ..min                                                                                              (1.4) 

where D  is the analysis operator,   might be 
1l  norm or one variant. The Formulation 

(1.4) can be transformed to one unconstrained minimization problem: 

)(min uHDu                                                                                                            (1.5) 

where )(H  is a smooth convex function acting as the data fidelity, e.g., )(H  can be 

chosen as 
2

22

1
fAu  . Many efficient methods were proposed for solving (1.3) and (1.5), 

such as dual methods [24], Bregman iteration [26], Linearized Bregman iterations [27] 

and Split Bregman iteration [1-25]. In literatures mentioned above and other papers, such 

as compressed sensing [26-27], sparse prediction [6] and frame-based inverse problems 

[5-7], 
1l norm is used as regularizer without exception due to its role of sparsity induction 

to its solution. Nevertheless, the sparse solution obtained by 
1l norm regularizer is always 

lack of correlation between its nonzero entries. Actually, relationships among nonzero 

entries of sparse solution need to be seriously considered in some image applications. For 

example, various structured sparse regularizer [9-12] extended from 
1l norm have been 

proven useful in different applications. In other related works [13-14], other group 

sparsity models are proposed for different goals. Recently, Jun Liu et. al., [10] proposed 

an overlapping group sparsity total variation functional(OGS-TV) and an image 

restoration model. Liu et. al., [11] proposed a new explicit thresholding/shrinkage formula 

for one class regularization problem with OGS-TV. The models by these regularizers can 

be uniformly formulated as the following two minimization 

problems:
G

uuH )(min and 
G

DuuH )(min , where 
G

u or 
G

Du are group sparse 
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regularizers designed for embodying special kind of relationship among non-zero entries 

in signal domain or analysis domains respectively, D  is the analysis operator, non-

negative scalar   is a regularization parameter controlling the sparsity of the solution, 

)(xH  is a smooth convex loss function. In this paper, we mainly concentrate on the 

analysis-based correlated sparsity problems 
G

DuuH )(min  in various image analysis 

domians. It is difficult to solve due to the non-differentiability of the term 
G

Du . Here, we 

introduce an auxiliary variable z  for Du  to separate the calculation of the non-

differentiable term and the fidelity term. The model is thus equivalent to the following 

formulation: 

DuztszuH
G

 ..)(min                                                                            (1.6) 

What kind of correlation among those nonzero entries of the obtained sparse solution is 

always decided by the nonzero structure of those atomic vectors in image analysis domain. 

According to those correlations, let all atomic vectors have similar features such as 

nonlocal approximate, local continuous or having the same support structure. Then, we 

take the formulation of minimizing the sum of their 
2l  norms as the regularizer in the 

models for image inverse problems. In this way, some correlated sparsity solutions can be 

finally obtained due to the designed method. Most analysis coefficients should be 

approximate in similar points with approximate values in an analysis domain. In this 

paper, we pay more attention to this kind of nonlocal-approximate correlated sparsity in 

some analysis domains and propose a corresponding sparse regularizer, which was used in 

image restoration, decomposition, inpainting. More details are given in Section 2. In 

Section 3, we give a denoising and edge-detecting model by the nonlocal-approximate 

correlated sparsity term in image gradient domain and show restoration results for some 

real images. As an example, we apply the nonlocal-approximate correlated sparsity term 

to the analysis domain of a piecewise linear framework for cartoon part and to local 

discrete cosine transform domain for texture part respectively. In section 4 we combine 

them for image inpainting and decomposition. In the last section, conclusions and further 

ideas for correlated sparsity representation are shown. 

 

2. Denoising and Edge-Detecting by Nonlocal-Approximate Correlated 

Sparsity Term 

Inverse problems can be formulated as convex optimization problems in various fields. 

A model x can be written as a nonnegative combination of a few elements of an atomic 

set [16], i.e., 
pRx be formed as follows: 





k

i

iiii cGaacx
1

;0,,                                                                       (2.1) 

where G  is a set of atoms which are used to combine unknown data or transform data x , 

k  is a relatively small number. G could be the finite set of unit-term one-sparse vectors 

or an infinite set of unit-norm rank-one matrices. This model arises in many applications 

and attracted more attention recently [17-19]. The problem of recovering sparse vectors 

from limited measurements has also received more and more attentions, such as image 

processing and computer vision [20], machine learning [6] and so on. When G  is a 

collection of one-sparse vectors, 
1l  norm is always used to induce sparse solutions in 

many applications. Similarly, the atomic set G of k-support sparse vectors could be 
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viewed as unit-norm k-support vectors [6], which is applied to obtain sparse solutions 

with a group of non-zero variables. For more details about convex atoms see paper [14]. 

As we know, 
1l  norm usually acts as the regularization term in a linear optimization 

inverse problems, those large or small non-zero entries in relevant analysis domains have 

the same effect when computing the number of non-zero entries in the sparsity 

representation. Namely, relationship among them is not considered at all. This is 

obviously unreasonable and might be extremely sensitive to the threshold when 

computing the proximal vector. Actually, if the values of two points in some analysis 

domain of an image are similar, then the two corresponding entries in the final sparse 

representation have a high possibility of being approximate. Based on this consideration, 

we classify all the points into different groups, according to value-similarity in every 

analysis domain and those points in every group might be scattered locally. In this paper, 

we show simulations in the analysis domains such as gradient domain, piecewise linear 

framework and local discrete cosine transform (LDCT). In these domains, we define a 

kind of nonlocal-approximate correlated term as a regularizer. Then, we apply it to 

different image tasks. We classify all points in every domain as follows: Firstly, the points 

in every analysis domain of one image are divided into different non-overlapping groups 

depending on the value-similarity of them. Then, all points of every obtained group are 

organized into some vectors dynamically with fix-length support set. Finally, those 

vectors are used to define the corresponding nonlocal-approximate correlated sparsity 

term. The generating algorithm for them can be described as follows(assume an NM   

image, NMd  ): 

 

1 Classification: according to the value-similarity classification method as 

formulation(2.2), classify all points in every analysis domain pjwj ,,1,   into 

jq  groups j

i

j qiw ,,2,1,  . 

2 Generating: reorganize all the points in every group 
i

jw  into fix-length set 

randomly or in sequence, which are the support sets of the atomic vectors 

d

kk

N

k

i

j Rzzz
i
j   ,1 , 

i

j
N  is the number of atomic vectors in group 

i

jw . 

Algorithm 1: The Generating Method for Atomic Vectors z  

j

j

qi

i

ji

v

j

g

j

i

j

q

ij wvwwvgww     2111 ,)(,,,                    (2.2) 

where jw  is an analysis domain, )( i

jwv  are the values of the group 
i

jw . According 

to the classification method, the support sets of those obtained atomic vectors in 

every domain do not overlap. Let the atom vector set ),,1( pjG j   in the j -th 

analysis domain be formed as follows: 

vgkzsupportzsupportwzsupportRzzG vgkkkij i

j

i

j

i

j

i

j

di

j

i

j

N

k

q

ij ,,,)()()(,,11     (2.3) 

where ki

jz  means the k -th vector with the support set i -th group in the j -th analysis 

domain. We write 
j

i

j

q

i

N

k

i

j

p

jj

p

j Gzzzz kj i k     ,
1 111  , Let j

p

j GG 1   , then the 

nonlocal-approximate correlated term in the analysis domains w is given by 

 
   


p

j

p

j

q

i

N

k

j

i

j

i

jGjG

j i

kk

j

Gzzzz
1 1 1 1

,2
minmin                                             (2.4) 

In this way, due to the non-overlap feature of all vectors in jG  and (2.4), the proximal 

vector of a given vector when minimizing a linear optimization problem by this term can 
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be easily obtained [28]. The important work for us to do is to partition every domain into 

different groups by some suitable methods [29-31] firstly. Here, we classify it by simple 

method (2.2). Let the data fidelity item be 
2

22

1
)( fuuH  , then the image denoising 

constrain model based on analysis domain is as follows: 

Duztszfu
Gu

 ..
2

1
min

2

2
                                                             (2.5) 

where f  the observed image, 0  a regularization parameter, D  the analysis operator, 

j

p

j DuDu 1  . The Augmented Lagrangian method for the constrained optimization 

problems (2.5) is formulated as 

2

2

2

2, 2
,

2

1
),,(maxmin Duz

r
DuzzfuzuL

Gc
zu

 


      (2.6) 

where j

p

j  1  are the Lagrange multipliers, j

p

j rr 1   are positive constants. The 

method is to seek a saddle point of the Augmented Lagrangian functional ),,( zuLc . To 

solve the problem (2.10), we separate it to the following series of sub-problems induced 

by optimized conditions: 
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   (2.7) 

The proximal algorithm [21] for every sub-problem of the second line in (2.7) is given 

by 












j

jk

j
rrw

rrwww
z

2

221

,0

,)11(                                                                         (2.8) 

Where .)( 1

j

k

j

k

j

T ruDw    

The second line of (2.7) has been divided into p  sub-problems and every one is 

designed for every domain j . The algorithm 2 illustrates the decomposition of the step 

two of (2.7). 

 

1  for every domain j  

2     for every group 
i

j in every domain j  

3       obtain the proximal vectors by (2.8) for j

k

j

k

j

T ruDw   )( 1
. 

4       recover all proximal vectors exactly to the right positions of the domain j  

5     end 

6     obtain the new
i

j

N

ij zz j

1  . 

7  end 

Algorithm 2: Decomposition of Step Two of (2.8) 

Because all ),,2,1( j

i

j Ni   are not overlapping, it is easy and fast for us to 

implement the Algorithm 2. 
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3. Inpainting and Decomposition Model by
G
  

The nonlocal-approximate correlated sparsity term described in (2.4) can be 

applied not only to image denosing but also to image decomposition and inpainting. 

It can even be applied to obtain the cartoon part and the texture part of one noisy 

image simultaneously. The cartoon part models the piecewise smooth part of one 

image, while the texture part represents the oscillating part of an image. In the 

following, we give the formulation for image decomposition by (2.4). The cartoon 

part is represented in piecewise linear frame, while the texture part is represented in 

local discrete cosine transform domain. 

ztutDzcucDtsztzcfutuc
GGutuc










 )()(..
2

1
min 2121

2

2,
       (3.1) 

where zc  induces the cartoon part uc  in the analysis domain based on 1D  ( piecewise 

linear frame), zt  induces the texture part ut  in analysis domain 2D  (local discrete cosine 

transform). By the Augmented Lagrangian method for (3.1) and relevant optimality 

conditions, the following sub-problems are obtained immediately: 
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      (3.2) 

The model for image inpainting and decomposition is as follows: 

  )()()()(..min 2121
,

fPutucPztutDzcucDtsztzc wwGGutuc
  (3.3) 

where zc  and zt  are the same as in (3.1), wP  is the project, which is a diagonal matrix 

with diagonals 1 if the corresponding pixel is known, or 0 otherwise. Then the following 

sub-problems are obtained: 
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     (3.4) 

 

4. Experiment and Analysis 

In this section, some experimental results are given to demonstrate the effectiveness of our 

model. To be fair, all experiments in this paper are carried out on Windows 7, 64-bit and Matlab 
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R2012a running on a desktop equipped with an Intel Core i5-4460 CPU 3.2 GHz and 4 GB of 

RAM. For convenience, parameters of all examples are illustrated as follows: Classnum represents 

the group number 
jq  in (2.2); according to the group number, only 

1  and 
Classnum  are given in all 

examples, the others 
132 , Classnum ，，  in (2.2) are computed by mean iterative method; the 

different fix-length of Algorithm 1 are given for different examples. Simulation results of 

(2.7)( D  is gradient operator) are given in Figure 1 and Figure 2, which show that (2.7) is a good 

method for obtaining the denoising and edge-detecting results simultaneously. If the classification 

result before image processing is good enough, the obtained denoising result is as good as the 

LPGPCA method [33] and the BM3D approach [34]. For example, Figure 1(e) and Figure 2(e) are 

the denoising results by (2.7) for two noisy images( Figure 1(b) and Figure 2(b)) based on the 

classification for the original images( Figure 1(a) and Figure 2(a)). Obviously, they are benefited 

from the satisfying classification.  
 

       
(a)                       (b)                          (c)                          (d)  

     
(e)                           (f)                           (g) 

Figure 1. Denoising and Edge-Detecting Results for Lena512 Image in 

Gradient Domain. (a)Original Image; (b)Noisy Image, 20 , PSNR=22.07dB; 

(c)Classifying Gradient Domain Based on (b) and Denoising  Result by (2.7), 

PSNR=31.3dB,  ClassNum=8; Fix-Length=15; 8 =0.1; 1 =0.01; (d)Edge 

Detecting Result; (e)Classifying Gradient Domain Based on Original Image 
and Denoising Result by (2.7), PSNR=33.43dB, ClassNum=6; Fix-Length=55; 

6 =0.12; 1 =0.02; (f)Denoising Result by LPGPCA[33], PSNR=32.64dB; 

(g)Denoising Result by BM3D[34], PSNR=33.2dB 

       
(a)                           (b)                             (c)                             (d) 
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(e)                              (f)                                 (g) 

Figure 2. Denoising and Edge-Detecting Results for Vegetable Image in 
Gradient Domain. (a)Original Image; (b)Noisy Image,  =20, 

PSNR=22.08dB; (c) Classifying (b) and Denoising Result by (2.7), 

PSNR=30.22dB, ClassNum=6; Fix-Length=12; 6 =0.12; 
1 =0.02; (d)Edge 

Detecting Result; (e)Classifying Gradient Domain Based on Original 
Image and Denoising  Result by (2.7), PSNR=32.3dB, ClassNum=6; fix-

Length=40; 6 =0.1; 
1 =0.016; (f)Denoising Result by LPGPCA [33], 

PSNR=30.8dB; (g)Denoising Result by BM3D[34], PSNR=31.56dB 

Simulation results for noisy image decomposition by (3.2) are shown in Figure 3. 

These results are satisfying and the texture parts of them are pretty good. Simulation 

results for image inpainting and decomposition simultaneously by (3.4) and the Split 

Bregman for the ROF model are shown in Figure 4 and Figure 5 respectively. Comparing 

with the ROF model, our approach has absolute advantages, especially the texture parts of 

the images. Actually our approach has more potential due to the flexible choices for 

classification method and the fix-length of vector. 

 

         
(a) Original 256*256 Image        (b)Original 256*256  Image 

          
(c) Cartoon part of (a)                  (d) Cartoon part of (b) 
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(e) Texture part of (a)                  (f) Texture part of (b) 

Figure 3. Cartoon and Texture Decomposition by (3.2). PSNR of (c)+(e): 

33.4dB, PSNR of (d)+(f):33.2dB. ClassNum=8; Fix-Length=80; 8 =0.2; 

1 =0.01 

 
(a) Painting 256*256 Image, PSNR=17.3dB 

                                   
(b) Cartoon part by (3.4)             (c) Texture part by (3.4)       (d) Cartoon+Texture by (3.4),                                           

                                                                                       PSNR=39.47dB 

                                   
(e) Cartoon part by Split               (f) Texture part by Split      (g) Cartoon+Texture by 

Bregman for ROF                         Bregman for ROF            Split Bregman for ROF, 
                                                                                         PSNR=38.7dB 

Figure 4. Inpainting and Decomposition Simultaneously by (3.4) and Split 
1l , 

The Number of Iteration by (3.4) is 65 and CPU Time is 58s, the Latter is 95 

and 36s. ClassNum=8; Fix-Length=80; 8 =0.2; 
1 =0.01 
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(a) Painting 256*256 Image, PSNR=14.6dB 

                                     
(b) Cartoon part by (3.4)             (c) Texture part by (3.4)            (d) Cartoon+Texture by 
                                                                                                        (3.4), PSNR=37.26dB 

                                    

(e) Cartoon part by split 
1l         (f) Texture part by split 

1l    (g) Cartoon+Texture by split
1l , 

PSNR=36.50dB 

Figure 5. Inpainting and Decomposition Simultaneously by (3.4) and Split 
1l , 

The Number of Iteration by (3.4) is 79 and CPU Time is 69s, the Latter is 99 

and 38s. ClassNum=8; Fix-Length=80; 8 =0.2; 
1 =0.01. 

5. Conclusions 

To consider the relationships between non-zero entries of the sparsity vectors in image 

processing, we propose a correlated sparsity term based on a simple value-similarity 

classification method in analysis domains, namely nonlocal-approximate correlated 

sparsity term. Then relevant models for image restoration are obtained by it. In fact, how 

to organize atoms in a dictionary for correlated sparsity term in image domain and various 

analysis domains still need to be studied further and is easily extensible according to 

different image processing tasks. 
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