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Abstract  

One-class support vector machine is an important and efficient classifier which is used 

in the situation that only one class of data is available, and the other is too expensive or 

difficult to collect. It uses vector as input data, and trains a linear or nonlinear decision 

function in vector space. However, there is reason to consider data as tensor. Tensor 

representation can make use of the structural information present in the data, which 

cannot be handled by the traditional vector based classifier. The significant benefit of 

using tensor as input is the reduction of the number of decision parameters, which can 

avoid the overfitting problems and especially suitable for small sample and large 

dimension cases. In this paper we have proposed a tensor based one-class classification 

algorithm named linear one-class support tensor machine. It aims to find a hyperplane in 

tensor space with maximal margin from the origin that contains almost all the data of the 

target class. We demonstrate the performance of the new tensor based classifier on 

several publicly available datasets in comparison with the standard linear one-class 

support vector machine. The experimental results indicate the validity and advantage of 

our tensor based classifier. 

 

Keywords: Support Vector Machine; One-Class Support Vector Machine; Support 

Tensor Machine; Linear One-Class Support Tensor Machine 

 

1. Introduction 

The theory of Support Tensor Machine (STM) was proposed by Cai [1] and Tao [2-3]. 

Differ from popular existing learning algorithms taking vectors as input data, STM uses 

tensors. Similar to the framework of Support Vector Machine (SVM), STM aims at 

finding a maximum margin classifier in the tensor space. The advantage of tensor 

representation can be shortly summarized in the following two aspects. Firstly, tensor 

representation can greatly reduce the number of parameters estimated by SVM and 

especially be suitable for small sample and high dimension cases. Secondly, there is 

reason to consider data as tensors in real world. For example, grayscale image can be 

considered as second order tensor and color image can be represented as third order 

tensor. Tensor representation can make use of the structural information present in the 

data, while traditional vector algorithm cannot keep it efficiently. All these reasons lead 

us to concentrate on tensor based learning algorithms. 

Recently, there have been a lot of interests in tensor based approaches. Cai et. al., [4] 

applied STM for text classification; Tao et. al., extended the classical linear C-SVM, v-

SVM and least squares support vector machine to the general tensor form [3]; Zhang et. 

al., generalized the vector-based learning algorithm twin support vector machine to the 

tensor-based method [5]; Hao et. al., provided a novel linear support higher-order tensor 

machine for classification [6]; Reshma et. al., developed a least squares variant of STM, 
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termed as proximal support tensor machine [7], where the classifier is obtained by solving 

a system of linear equations rather than a quadratic programming problem, and applied to 

face recognition and handwriting recognition with good performance. 

One-class support vector machine [8-9] is an important and widely used classifier. It 

can be used in which the negative samples are hardly collected or labeled, such as 

intrusion detection, fault detection and diagnosis, and the classification of remote sensing 

data [10-11]. In recent years, there have been more and more theory research and 

applications on one-class SVM [12-13]. However, using tensor as input data on the one-

class classification has not been performed yet. In this paper, we focus on tensor based 

one-class classification problem, and propose a new one-class classifier termed as One-

Class Support Tensor Machine.  

The structure of the paper is as follows. A brief summary of some relevant concepts in 

STM and the standard one-class SVM is presented in Section 2. In Section 3, we 

formulate the tensor representation classification algorithm for one-class problems, which 

we call linear one-class STM, since we focus on linear classification problems. The 

experiments of the linear one-class STM on public datasets are described and compared 

with standard one-class SVM in Section 4. Finally, we draw conclusions of our work in 

Section 5. 

 

2. Reviews of Relevant Research 

Before presenting our work, we first briefly review the STM algorithm and the 

standard one-class SVM algorithm. 

 

2.1. Support Tensor Machine 

STM is similar with support vector machine, which was developed by Cai [1] and Tao 

[2-3] as a tensor generalization of SVM in the tensor space. 

Suppose the training sample set  ,, 1i iy i l X , where 1 2n

i

n X  is the data 

point in order-2 tensor space, { 1,1}iy   is the class associated with
iX , 1n  and 2n  are 

two vector spaces. STM tries to find the following linear classifier in the tensor space 

    1 2, ? , ?X u Xv     u v
n nTf sgn b                                         (1) 

so that the two classes can be separated with maximum margin. 

The objective function of linear STM can be stated as: 
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In order to solve the optimization problem (2), Cai [1] described a simple yet effective 

computational method. To fix u at first, for instance, let u be (1, ,1)T , the optimization 

problem (2) is identical to the standard SVM optimization problem with variable v . And 

v can be solved by the same computational methods of SVM. Then u  and v can be 

obtained by iteratively solving the standard SVM optimization problems. The 

convergence proof of the iterative computational method in linear STM was also provided 

by Cai [1].  
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2.2. One-Class Support Vector Machine 

One-class support vector machine is a useful technique for data classification. It aims 

to learn a single class by determining a decision function with maximal margin from the 

origin that contains almost all the data of this class. We only review the linear standard 

one-class SVM in this section. Consider training data , 1,...,x
n

i i l  the decision 

hyperplane relative to the membership of the observation x to the considered class is 

given by: 

     x w xf sgn                                                       (3) 

where parameters w and   result from the optimization problem: 
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In practice, the quadratic program (4) is solved via its dual: 
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The optimal normal vector is given by 
1

,w x
l

i ii



  where 

i  is the solution of the 

dual problem (5) and training samples xi
 with non-zero 

i  are support vectors.  

 

3. One-Class Support Tensor Machine 

Our one-class Support Tensor Machine is fundamentally based on the same idea of the 

standard one-class SVM. In this section, we propose a linear one-class classifier based on 

tensor representation, which aims to find a hyperplane in tensor space with maximal 

margin from the origin that contains almost all the data of the target class. 

Suppose we are given a set of training samples  , 1Xi i l  , each of the training 

sample 1 2n

i

n X  is the data point in order-2 tensor space, where 1n  and 2n  are 

two vector spaces. 

As we discussed before, a linear one-class classifier in the tensor space can be naturally 

represented through matrix inner product as follows:  

      1 2, , ?X uv X     u v
n nTf sgn                                           (6) 

Thus, the linear one-class STM can be given by solving the following optimal 

quadratic programming problem:  
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The Lagrangian corresponding to the optimization problem (7) is given by 

    
2
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where , 0, 1,...,i i i l     are Lagrange multipliers, for each of the inequality constrains. 

Note that 
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The Lagrangian (8) can be rewritten as 
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According to the KKT necessary and sufficient optimality conditions, we differentiate 

the primal variables , ,u v, i  , and equate them to zero, then we have 
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From Equations (11) and (12), we see that u  and v  are dependent on each other, and 

they cannot be solved independently. Hence, we resort to the alternating projection 

method for solving this optimization problem. The method can be described as follows. 

First we fix u . Let 
2

1 u  and x u=Xi i

T , according to (7), we can construct the 

optimal quadratic programming problem to solve v and 
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It can be seen that the optimization problem (14) is similar in structure to standard one-

class SVM. For solving (14), we consider its Lagrangian as:  
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Thus we can get the dual problem: 
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Solving (17) determines the Lagrangian multipliers *

i , then we can get v and
2

v . 

On the similar lines, we can let 
2

2 v   and 'x X vj j . Then we can construct 

another optimal quadratic programming problem to solve u and
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Thus, u and v can be obtained by iteratively solving the optimization problems (14) 

and (18). In our experiments, u is initially set to the vector of all ones. The steps involved 

in solving the linear one-class STM using the alternating projection method is 

summarized in Table 1. 

Table1. Alternating Projection Algorithm for the Linear One-Class STM 

Input: The training samples 1 2X
n n

i   . 

Output: The parameters in classification tensor plan 1*
u

n , 2*
v

n  and  . 

Step 1Initialization: Let (1,...,1)u
T . 

Step 2 Obtain v  by solving the optimization problems (14), where
2

1 u   and 

x u=Xi i

T . 

Step 3 Obtain u  by solving the optimization problems (18), where 
2

2 v   and 

'x X vj j . 

Step 4 Do step 2 and step 3 iteratively until convergence: If the iteration number 

exceeds the maximum number of iteration or all of the below convergence conditions 

are satisfied: 

1u ui i tolerance   

Step 5 End. 

 

4. Experimental Evaluation 

In this section, we evaluate the performance of linear one-class STM with experiments 

on 8 publicly available datasets from one-class classification datasets on David Tax’s 

homepage [14]. These datasets are shown in Table 2, and the table also includes some 

considered target class in each dataset. In Table 2, n is the number of features (all scaled 

to [-1, 1]) in each dataset and m is the total number of data points. Since our algorithm 
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considers tensor as input data, all these vector datasets are converted to corresponding 

tensor form, and the tensor size are shown in Table 2, as well. 

Table 2. Information of the Various Dataset 

Dataset m n 
Tensor 

size 

Target class 

name 

Target 

sample

s 

Iris 150 4 2*2 Virginica 50 

Breast-Cancer 683 9 3*3 Benign 458 

Heart 297 13 4*4 Absent 164 

Imports 159 25 5*5 Large 88 

Cancer-Wpbc 198 33 6*6 Non 151 

Ionospheres 351 34 6*6 Good 225 

Sonar 203 61 8*8 Rocks 97 

Arrhythmia 420 278 17*17 Normal 237 

 

The experiments results are compared with the standard linear one-class SVM. In all 

simulations, cross-validation is used on the training set to find the best parameter, and the 

possible choices for parameter is {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}  . All the 

simulations have been implemented in MATLAB R2011b on Windows 7 running on a PC 

with system configuration Intel Core i3 (2.4 GHz) and 6 GB of RAM.  

 

4.1. Classification Performance 

In this experiment, we compared the performance of the proposed linear one-class 

STM with the standard linear one-class SVM on all the publicly available datasets shown 

in Table 2. All the datasets are randomly split into training and testing sets. Since we 

particularly focus on the performance of small training size, we evaluate the results over 

50 random splits and report the average performance of each algorithm.  

Table 3, summarizes the average percentages of test accuracy of the two algorithms 

and the standard deviation of 50 times simulations as well. To evaluate the performance 

with respect to the training set size, we solve the two algorithms on various training sizes 

(2, 4, 6 and 8, training samples). The best results are bolded in each comparison. We can 

see that the linear one-class STM is better than the linear one-class SVM in 7 out of 8 

datasets. In the remaining Sonar dataset, both algorithms are comparable. Especially when 

training set is small (2 training samples), linear one-class STM is more outstanding than 

linear one-class SVM in all 8 datasets. As the number of training samples increases, the 

average test accuracy of both algorithms tends to grow correspondingly. 
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Table 3. Average Percentages of Accuracy on Various Training Sample 
Sizes in All Datasets. I: The Linear One-Class STM; II: The Standard Linear 

Cne-Class SVM 

Dataset Alg. 
Training sample  size 

2 4 6 8 

Iris 
I 84.00±8.31 89.47±6.78 92.97±5.28 94.42±3.92 

II 83.64±8.14 89.22±6.24 91.75±4.20 93.14±3.34 

Breast-Cancer 
I 71.95±16.85 82.79±11.67 88.01±7.89 90.27±5.61 

II 65.70±15.72 77.54±12.71 84.33±8.51 87.41±6.24 

Heart 
I 54.96±7.75 62.59±7.27 67.37±5.82 69.27±5.04 

II 50.72±3.82 57.65±5.58 62.85±5.93 66.84±5.75 

Imports 
I 50.42±10.18 60.67±8.65 66.00±7.74 66.69±6.31 

II 47.36±4.06 53.70±6.45 58.94±6.94 62.62±5.56 

Cancer-Wpbc 
I 45.82±10.47 56.12±8.41 59.36±6.51 61.64±6.30 

II 37.23±8.87 49.20±8.27 53.79±7.45 55.74±6.81 

Ionospheres 
I 54.24±12.98 64.83±10.50 69.25±8.21 71.64±7.01 

II 51.01±11.62 59.28±10.10 64.29±9.50 67.94±7.34 

Sonar 
I 59.91±4.13 61.32±3.91 60.51±4.41 60.13±4.27 

II 58.81±3.58 62.14±3.15 61.82±3.65 61.57±4.23 

Arrhythmia 
I 58.61±7.76 64.39±5.19 65.52±4.03 66.05±2.96 

II 47.70±3.93 56.89±6.37 60.98±5.78 63.13±4.50 

 

The AUC, the area under the ROC curve, is always used to measure the performance of 

a one-class classifier [15]. Table 4, summarizes the average percentages of AUC of 50 

times simulations on each dataset, and focuses on various small training sample sizes as 

well. The bolded numbers are the best average AUC of every pair comparison. We can 

see that in 6 out of 8 datasets, the linear one-class STM is better than the linear one-class 

SVM with the AUC. Furthermore, in the remaining 2, datasets, the AUCs of the two 

algorithms are much similar to each other. 

Table 4. Average Percentages of AUC on Various Training Sample Sizes in 
All Datasets. I: The Linear One-Class STM; II: The Standard Linear One-

Class SVM 

Dataset Alg. 
Training sample size 

2 4 6 8 

Iris 
I 99.00±1.60 99.43±0.89 99.64±0.67 99.80±0.15 

II 98.97±0.87 99.22±0.74 99.32±0.68 99.42±0.50 

Breast-Cancer 
I 98.90±2.45 99.07±1.08 99.16±0.91 99.15±0.91 

II 98.67±1.27 99.05±0.84 99.12±0.52 99.18±0.26 

Heart 
I 75.03±12.47 77.41±10.89 80.56±7.06 80.92±5.96 

II 75.80±12.06 79.02±8.98 80.87±8.23 81.94±6.16 

Imports 
I 64.39±22.48 72.96±12.63 75.44±8.39 74.41±7.45 

II 65.70±18.34 68.99±11.81 71.78±8.84 72.04±7.89 

Cancer-Wpbc 
I 58.41±2.94 58.85±2.69 58.63±2.70 58.80±2.80 

II 58.25±5.15 57.71±4.97 57.04±5.54 56.24±6.03 

Ionospheres 
I 74.89±7.36 77.89±7.24 80.89±6.61 81.12±5.96 

II 72.86±6.78 77.09±6.57 80.09±6.21 80.69±5.70 

Sonar 
I 67.36±5.81 68.51±4.55 68.47±4.81 68.22±4.77 

II 66.65±5.36 67.86±4.78 68.44±4.05 68.38±4.51 

Arrhythmia 
I 72.25±1.21 72.40±1.25 72.34±1.15 72.31±1.02 

II 72.67±1.76 73.49±1.33 73.72±1.18 73.80±1.13 
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As we analysis above, both of these two evaluation indexes indicate that classifiers 

based on tensor representation are particularly suitable for small sample problems. This 

might be due to the fact that the number of parameters needs to be estimated in tensor 

classifiers is much smaller than in vector classifiers. As a summary, the linear one-class 

STM is outperforming the linear one-class SVM especially when training set is small. 

 

4.2. Parameter Sensitivity 

In this section, we discuss the classification performance of the two algorithms with 

special reference to parameter . In the standard one-class SVM algorithm, parameter  

bounds the fractions of outliers and support vectors from above and below [8]. Notice that 

now the training sets are pretty small since we are interested in small training size 

problems. Obviously, it is more meaningful to find the regularity corresponding with  in 

tensor space rather than to validate how   can be used to control the above fractions.  

Now we consider the choices for parameter is {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}  . 

We train the linear one-class STM and linear one-class SVM with different parameter   

on random 8 samples training set. Without loss of generality, we evaluate the results over 

50 times simulations and report the average performance of each algorithm. The 

experiment results indicate that the True Positive Rate (TPR) has significant relevance 

with parameter . To better understand, we illustrate the TPR with the two algorithms for 

each dataset, as shown in Figure 1. 

As shown in Figure 1, we can draw the conclusions from the above experimental 

results. 

 

   

(a) Iris Dataset    (b) Breast-Cancer Dataset 

   

(c) Heart Dataset     (d) Imports Dataset 
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(e) Cancer-Wpbc Dataset          (f) Ionospheres Dataset 

   

(g) Sonar Dataset     (h) Arrhythmia Dataset 

Figure 1. Average TPR on Different Values of . The Comparisons of the 
Linear One-Class STM and The Linear One-Class SVM on Eight Datasets 

(1) The TPRs of both the two algorithms tend to decrease with parameter  .Especially 

for the linear one-class STM, the trend of decreasing is more obviously. In 5 out of 8 

datasets, the best TPRs of tenser based algorithm appear when 0.1  . In the remaining 3 

datasets, the best TPRs appear when 0.2   or 0.5 . However, when 0.1   the TPRs 

are closed to the best one, which are 0.7867 and 0.7882 in Arrhythmia dataset, 0.8369 and 

0.8396 in Breast-Cancer dataset, and in Cancer-Wpbc dataset they are 0.6594 and 0.6759. 

In brief, we can conclude that parameter   can control the maximal margin to the 

decision hyperplane in tensor space, which separates most target class samples from the 

origin. 

(2) Tensor based algorithm has significant performance with TPR evaluation index. 

We can see that in all the 8 datasets, the TPRs of the linear one-class STM are much 

better than those of linear one-class SVM. 

In short, the TPRs of the two algorithms have significant relevance with parameter  . 

In some specific application fields, such as intrusion detection and outlier detection, only 

the normal labeled data can be collected. In such cases, the TPR is an available evaluation 

index. This experiment indicates that tensor based one-class classification algorithm is 

outstanding and the best parameter is also shown clearly in the analysis above. 

 

5. Conclusions and Future Work 

In this paper we have investigated a tensor-based one-class classification algorithm 

named linear one-class support tensor machine, which takes tensor as input data and 

learns a linear classifier in tensor space. The significant benefit of tensor representation is 

the reduction of the number of decision parameters, so that the new algorithm is 
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especially suitable for small sample cases in high dimensional space. Our experimental 

results on publicly and available datasets demonstrate that tensor based classifiers are 

outperforming on small training size cases. We also discuss the parameter sensitivity in 

our tenser based one-class classifier. The experimental results show that the parameter  

is concerned with the true positive rate of the classifiers. 

In future work, we will investigate the kernel techniques of tensor data and generalize 

our algorithm to nonlinear cases. In this paper, we empirically study on the parameter 

sensitivity, and the theoretical guarantee is a promising direction on the work. Further 

study on this work will also include investigating more efficient computational methods 

for solving the optimization problems of linear one-class STM. 
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