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Abstract 

Projection matrix plays an important role in compressive sensing (CS). Small mutual 

coherence between a projection matrix and a sparsifying matrix is considered to 

enhance reconstruction performance in CS. The equiangular tight frame (ETF) was 

demonstrated with minimum mutual coherence in previous works. However, ETF does 

not exist for any dimensions. A practical solution is to make the production of a 

projection matrix and a sparsifying matrix become the nearest one to ETF. Here, the 

optimization objective is regarded as the minimization of error between them. First, a 

maximum-likelihood estimation model is presented to crack the minimization problem. 

Then an alternative multiplicative iteration method is employed to guarantee that the 

error will converge to the minimum efficiently. Experimental results show that the 

proposed method obtains smaller mutual coherence with better reconstruction 

performance compared to existing methods. 

 

Keywords: compressed sensing; projection matrix; alternative multiplicative; 

average mutual coherence 

 

1. Introduction 

Around 2006, compressed sensing (CS) was presented by David Donoho, Emmanuel 

Candès and Terence Tao [1-3]. It has been a new data acquisition approach for the sparse 

signal [4-7]. It argues that a small number of linear measurements of sparse signals 

contain enough information for reconstruction [8]. Generally, exact reconstruction is 

difficult, even impossible. However, projection matrix optimization is considered as a 

promising way to improve the possibility of reconstruction. The purpose of optimization 

is to decrease the mutual coherence between a projection matrix and a sparsifying matrix. 

The equiangular tight frame (ETF) [9] was demonstrated with minimum mutual 

coherence in previous works. However, ETF matrix does not exist for any dimensions. 

Hence, projection matrix optimization is transferred into the problem of making the 

production of a projection matrix and a sparsifying matrix, called sensing matrix, to be the 

nearest one to the ETF. 
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In order to decrease mutual coherence and find a matrix to be the nearest one to the 

ETF, an alternative multiplicative iterative (Alt Mul) method is proposed. This work is 

inspired by error estimation and gradient iteration. The contributions are as follows: 

(1) We transform the matrix approximation problem into an optimization problem. 

By way of maximum-likelihood estimation model and probability density 

function, the objective of approximation between Gram matrix and ETF matrix is 

transformed to find the extreme minimum of likelihood function. 

(2) We present an alternative multiplicative iteration method to simplify the process 

of finding the extreme minimum of likelihood function. It accelerates 

convergence and improves computational efficiency. 

The remainder of the paper is organized as follows. Section 2, summarizes related 

work about projection matrix optimization. Section 3, introduces the background and 

problem description. Section 4, briefly describes the proposed method. In section 5, we 

make extensive comparisons of the proposed method with existing ones through 

simulation. Section 6, concludes our work. 

 

2. Related Works 

Many approaches have shown that the optimized random projection matrixes will 

improve the performance in CS [10-15]. In [10], Elad proposed an algorithm to 

iteratively decrease the average mutual coherence. Its goal was to minimize t -average 

coherence with respect to projection matrix, assuming that the dictionary matrix and the 

parameter t  were known and fixed. They used a shrinkage operation followed by 

singular value decomposition (SVD) to gradually minimize it. The reconstruction 

performance has been significantly improved. However, this method has high 

computational complexity because it needs many iterative shrinkage steps [10]. Besides, 

this method may create some large mutual coherence values which ruin the guarantees 

of the reconstruction algorithms.  

In [11], Xu et. al., proposed a method to optimize the projection matrix from the 

perspective of ETF design. The objective was to find an equivalent dictionary whose 

Gram matrix was as close as possible to an ETF’s. It didn’t have exact solutions 

because of heavy complexity, so an alternative minimization method was used to find a 

feasible solution. This method overcame the time-consuming drawbacks of Elad’s 

method, and avoided creating a function to shrink the large values. However, it didn’t 

always guarantee the new Gram matrix to be the nearest one to the ETF with shrinkage 

operation.  

In [12], Duarte et. al. proposed a method based on eigenvalue decomposition and 

K-SVD to make any subset columns in a sensing matrix as orthogonal as possible. In 

other words, it made the Gram matrix as equivalent as possible to the identity matrix. 

This noniterative method obtained low computational complexity, while the 

reconstruction results were not very good. The reason is that the sensing matrix was 

overcomplete and could not be considered as an orthogonal basis. 

Based on Duarte’s work, an improved method in [13] was formulated in terms of 

finding those projection matrices such that the Frobenius norm of the difference 

between the Gram matrix of the equivalent dictionary and the identity matrix is 

minimized. It derived an analytical solution in closed form for designing an optimal 

projection matrix. The solution had degrees of freedom. Furthermore, it also proposed 

to minimize coherence between the atoms of the equivalent dictionary among the 

solution set. And its experimental results outperformed the existing work in recovering 

a signal. 

In [14], Schnass et. al., presented a sensing dictionary to identify the atoms 

combining the measurement signal in orthogonal matching pursuit (OMP) and 
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threshold algorithms. A sensing matrix was constructed by using alternative projection 

between the set of Gram type matrix and the set of ideal Gram matrix. However, this 

method was sensitive to the choice of a projection matrix. 

Recently, in [15], a low-rank model was proposed to make the Gram matrix near the 

ETF for the projection design. This method employed an optimization problem to 

guarantee both nearness and low-rank properties. It overcame the shortcoming of Elad’s 

and Xu’s methods by using SVD to force the rank to m , but it did not guarantee the 

new low-rank Gram matrix to be the nearest one to the ETF by shrinkage operation. 

Furthermore, the first-order algorithm proposed in [16] was deployed to obtain the 

nearest low-rank correlation matrix. It worked well in image denoising. However, it had 

high computational complexity. 

It seems to be a dilemma that iteration methods result in heavy complexity while 

non-iteration methods cannot guarantee reconstruction performance. This motivates us 

to design the projection matrix with better performance and to make the optimization 

process more efficient simultaneously, especially for the 2D image signals.  

 

3. Preliminaries and Problem Formulation 

In this section, we introduce the background of compressed sensing and model the 

problem. The objective is to obtain an optimized projection matrix which has the 

minimum mutual coherence with a sparsifying matrix by making the Gram matrix to be 

the nearest one to the ETF. 

 

3.1. Compressed Sensing Background 

The model of CS can be described as a linear sampling operator by a projection 

matrix Φ  yielding a measurement vector y : 

y =Φx ,                                                            (1) 

Where 
1

y
m ,Φ

m n  m n , and x  is a n -length original signal. Assume 

that the original signal x  is sparse in a domain of Ψ , that is 

x=Ψθ ,                                                             (2) 

where θ  is a K -sparse vector, 
n nΨ  is reversible sparsifying matrix. Taking 

equation (2) into equation (1), y  can be rewritten as: 

y ΦΨθ Dθ  ,                                                     (3) 

where 
m nD  is the product of Φ  and Ψ . It is called sensing matrix.  

Although sensing matrix is an underdetermined matrix, Donoho argued that it is 

possible to recover θ  exactly from the measurement y  provided that sensing matrix 

possesses mutual incoherence property [1]. It means that the mutual coherence of sensing 

matrix plays a decisive role in reconstruction.  

The mutual coherence of sensing matrix D , usually denoted by   D , is defined as 

the absolute value and normalized inner products between different columns in D  or the 

off-diagonal entries of Gram matrix 
H

G = D D% %, where D% is column-normalized of D , 
H

D%  is the hermitian transposition of D%.  

Some quantitative indexes such as maximal mutual coherence in paper [17], average 

mutual coherence in paper [18] and t -average mutual coherence in paper [19], and 

 - power average coherence in paper [19] are present to measure sensing matrix’s mutual 

coherence [20]. 
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3.2. Problem Description 

Generally, the sparsifying matrix is a fixed dictionary and known. Hence, a sensing 

matrix’s mutual coherence depends mainly on projection matrix. Although random 

matrix is an ideal candidate for projection matrix, we have no option but to substitute 

random matrix with pseudo random matrix. This makes the mutual incoherence of 

sensing matrix higher than the minimum. A feasible method is to design the projection 

matrix with minimum mutual coherence property. 

The equiangular tight frame (ETF) is demonstrated with minimum mutual coherence. 

Each pair of columns has the same coherence, that is 
( 1)

n m
m n




. Unfortunately, 

ETF matrix only exists for rare combinations of m  and n . 

Therefore, the problem is to obtain a Gram matrix to be the nearest one to the ETF. 

In other words, it is to optimize Gram matrix G  and make it as close as possible to an 

ETF H . The approximation process is to minimize the difference between  G  and 

H .  Here, we regard the difference as an error matrix E , that is: 

 E G H  

So, the objective of optimization process is to converge E  to 0 . 

 

4. Alternative Multiplicative Iterative Method for Projection Design 

In this section, we first present maximum likelihood estimation to describe the 

approximation error between Gram matrix G  and ETF H . Then, we show how to find 

the minimum value of likelihood function  ,L Φ H  with alternative multiplicative 

iterative method. Finally, we summarize the proposed method in pseudo-coding.  

 

4.1. Model Description and Maximum-Likelihood Estimation 

The optimization of projection matrix Φ  is to minimize the difference between Gram 

matrix G  and ETF H . We regard the difference as an error matrix E . Hence, the error 

matrix between G  and H  describes as followed: 

p

F
 E G H ,                                                       (4) 

where 
T TG Ψ Φ ΦΨ , Ψ  is a fixed sparsifying matrix and known, 

p

F
 indicates 

the frobenius-norm, p is a natural number. Hence, the objective of optimization is to 

make E  equal to 0 .  

To simplify the model, we take p  equals to 2 as an example to describe the 

proposed method. Then, Equation (4) becomes: 

2
T T

F
 E Ψ Φ ΦΨ H ,                                                (5) 

or 
2

, , ,( )i j i j i j E G H , 

where ,i j  denote the ( , )i j element of a matrix, and 
,i jE ,

,i jG  and 
,i jH  denote 

the elements of matrix , ,E G H . Because Ψ  is known, the error matrix is 

determined by Φ  and H .  

We present the maximum likelihood estimation model as follows to obtain Φ  and 

H : 
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    
,

, arg min log | , 
Φ H

Φ H E Φ H .                                   (6) 

where  | , E Φ H  is the probability density function. 

Generally, the noise is Gaussian distribution. We regard the element in error matrix 

as same independent Gaussian distribution 
2(0, ) . Therefore, the  ,E |Φ,Hi j  

can be described as below: 

 
2

,

, 2

1
exp

22

i j

i j


 
   

 

E
E |Φ,H ,                                   (7) 

   ,

,

| , i j

i j

 E Φ H E |Φ,H . 

Note that in Equation (6), (7), we gain the likelihood function  ,L Φ H ： 

  2

, ,2
, ,

1
, ( ) log 2

2
i j i j

i j i j

L 


   Φ H G H .                         (8) 

Eventually, the minimization of Equation (5) is transformed to find the extreme 

minimum value of Equation (8). 

 

4.2. Alternative Multiplicative Iterative Method 

In order to obtain the extreme value of  ,L Φ H , we have to compute the partial 

derivative of  ,L Φ H , 
,Φl k

L


 and 

,H l k

L


. Once the partial derivative of  ,L Φ H  

is obtained, the extreme minimum value of Equation (8) is obtained. To accelerate 

convergence and improve efficiency, negative gradient iteration is present. 

Before we compute 
,Φl k

L


, we must first obtain 

,

,

i j

l k





G

Φ
. The Equation (9) shows 

the details. 

   

, , , ,

, ,

, ,

, , , , , ,

, ,, ,

l k k i l k k j

l k ki j i j

l k l k

k i l k k j k j l k k i

k k

k i k jl j l i

    
     

     
 

 

   
    

   

 

  

 

Φ Ψ Φ Ψ
G

Φ Φ

Ψ Φ Ψ Ψ Φ Ψ

Ψ ΦΨ Ψ ΦΨ

.                         (9) 

Then we derive 
,Φl k

L


 and 

,H l k

L


 as below: 
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       

     

     

, , ,, , ,
,,

, , ,, ,,
, ,

, , ,, ,,
, ,

Ψ ΦΨ Ψ ΦΨ Ψ Φ ΦΨ H
Φ

Ψ ΦΨ Ψ Φ ΦΨ Ψ ΦΨ H

Ψ ΦΨ Ψ Φ ΦΨ Ψ ΦΨ H

T T

k i k j i jl j l i i j
i jl k

T T

k i k i i jl j l ji j
i j i j

T T

k j k j i jl i l ii j
i j i j

L
  



 

 



 

 

,           (10) 

  ,,
,

Ψ Φ ΦΨ H
H

T T

l kl k
l k

L
 


.                                       (11) 

To further simplify 
,Φl k

L


, we need to determine the four items in Equation (10). For 

the first item, 

 

       

       

 

, ,, ,, ,
, ,

,, ,, ,

,

Ψ ΦΨ Ψ Φ ΦΨ ΦΨ Ψ Ψ Φ ΦΨ

ΦΨ Ψ Ψ Φ ΦΨ ΦΨ ΨΨ Φ ΦΨ

ΦΨΨ Φ ΦΨΨ

T T T T

k i k il j l ji j i j
i j i j

T T T T

k il j l ji j k j
j i j

T T T

l k



 
  

 



 

   .      (12) 

Similarly, we obtain the other three items in Equation (10): 

   , ,, ,
,

T T

k i i jl j l k
i j

Ψ ΦΨ H ΦΨΗ Ψ ,                                  (13) 

       , , , ,
,

T T T T T

k j l i i j l k
i j

Ψ ΦΨ Ψ Φ ΦΨ ΦΨΨ Φ ΦΨΨ ,                 (14) 

   , ,, ,
,

T

k j i jl i l k
i j

Ψ ΦΨ H ΦΨHΨ .                                   (15) 

Taking Equations (12), (13), (14), and (15) into (10), (11), we get 

 
,

,

T T

l k
l k

L
 


Ψ Φ ΦΨ H

H
,                                           (16) 

,

,

(2 )T T T T T T

l k

l k

L
  


ΦΨΨ Φ ΦΨΨ ΦΨH Ψ ΦΨHΨ

Φ
,                  (17) 

To accelerate convergence, negative gradient direction iteration was employed to 

obtain H  and Φ  as follows: 

1

, , 1 ,( ) ( ) ( ( ) ( ) ( ))q q T q T q q

l k l k l k   H H Ψ Φ Φ Ψ H ,                       (18) 

1

, , 2

,

( ) ( ) (2( ) ( ) ( )

( ) ( ) ( ) ( ) )

q q q T q T q T

l k l k

q q T T q q T

l k

   

 

Φ Φ Φ ΨΨ Φ Φ ΨΨ

Φ Ψ H Ψ Φ Ψ H Ψ
,                    (19) 

Where 1  and 2  are constant, and q  is the iteration index. 
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To improve efficiency, let 
 

,

2

,

( )

( ) ( ) ( ) ( )

q

l k

q q T T q q T

l k

 
Φ

Φ Ψ H Ψ + Φ Ψ H Ψ
, and then 

equation (19) can be written as below: 

 
 

,1

, ,

,

(( ) ( ) ( ) )
( ) 2( )

( ) ( ) ( ) ( )

q T q T q T

l kq q

l k l k q q T T q q T

l k

 
Φ ΨΨ Φ Φ ΨΨ

Φ Φ
Φ Ψ H Ψ + Φ Ψ H Ψ

                (20) 

Therefore Φ  and H  in Equation (6) will be obtained by formulations (18) and 

(20). Once optimized projection matrix Φ  is obtained, we obtain the minimization of 

Equation (5).  

 

4.3. Summary of Proposed Method 

The algorithm for optimizing Φ  with alternative multiplicative iterative method is 

described in Table 1. 

Table 1. Alternative Multiplicative Iterative Algorithm for the Optimal 

Projection M.43 cmatrix Φ  

Algorithm 1：Alternative multiplicative iterative algorithm 

Input: Number of Measurements m , Length of signal k ,Row of 

Basic   

Matrix n , Base Matrix Ψ , Initial Projection Matrix Φ , 

Iteration 

In , Loop variable 0q   

Start Procedure: 

1.initialize H  according to the definition in Ref [7] 

2.update H  by formulation (18) 

3.update Φ  by formulation (20) 

4. q    

4.if q In  then  quit; else go to 1 

End Procedure 

Output: the optimized projection matrixΦ  

 

5. Simulation Results 

In this section, we demonstrate the performance of the proposed method about 

projection matrix and its effect on the reconstruction process through experiments. The 

results show that the proposed method increases the performance in CS framework.  

 

5.1. Mutual Coherence Histogram Comparison 

In the first simulation, we use k =400, n =200, m =30,  =0.95, t =20% to generate a 

random basis matrix 200 400Ψ and projection matrix 30 200Φ . Elad’s algorithm [5]，Xu’s 

algorithm [6], LZYCB’s algorithm [8] and LRK algorithm [10] are simulated with the 

same Ψ  and Φ . Figure 1, shows the distribution of absolute off-diagonal elements of 

Gram matrix G . As seen from Figure 1, after applying the proposed method, the 

distribution of the absolute values makes the equivalent dictionary as close to an ETF as 

possible. This improvement will further reduce the numbers of sample for recovery and 

enhance the recovery performance. 
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Figure 1. Distribution of the Off-Diagonal Entries of the Gram Matrix 
Obtained Using Random, Elad, Xu, LRK, LZYCB and Alternative 

Multiplicative Iterative Methods 

5.2. Average Mutual Coherence Comparison 

The second simulation illustrates the change of the average mutual coherence with 

variable measurement m . Figure 2, shows that the average mutual coherence decreases 

with the increase of measurements. The reduction of average mutual coherence implies 

that the performance of the optimal method does not depend heavily on the projection 

matrix. Figure 2, shows that the proposed method achieves the lowest average mutual 

coherence compared with other methods. 
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Figure 2. Average Mutual Coherence for m n  Matrices, with 
 20,50m

 

and  80, 120n k   

5.3. Image Reconstruction Performance Comparison 

Through 2D image experiments, we compared the performance of the proposed 

method with others. All these methods use OMP (known as a greedy iterative method) 

in the reconstruction process. We take three performance indexes into consideration: 1) 
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qualitative analysis is employed to compare the real original images with the recovered 

images; 2) PSNR (Peak Signal to Noise Ratio) as quantitative analysis is employed to 

compare the original and recovered images; 3) time-consumption is measured to 

compare the efficiency of different methods. The experiment steps are as follows: 

1. For the given images X , we generate sparse basis matrix Ψ  and obtain sparse 

images X̂ , here ˆX =ΨX . 

2. We use the alternative multiplicative iterative method, LRK method, LZYCB’s 

method, Xu’s method and Elad’s method to generate a projection matrix Φ  to 

measure the sparse images X̂  and obtain the measurement Y , ˆY =ΦX . 

3. For each measurement Y , we apply independently the OMP reconstruction method 

to reconstruct images. And we evaluate the time cost in step 2 and step 3. 

4. We compute the PSNR between original images and reconstructed images. 

5. Repeat steps 1 to 4 for a new measurement m . 

 

We use wavelet basis (using bior1.1) as the sparse basis, and compare the performance 

of Lena、Ship、Fingerprint、hill and pepper images. The left column in Figure 3 is original 

images. The second column to sixth column are reconstructed images with OMP and 

measured by alternative multiplicative matrix, LRK matrix, LZYCB’s matrix, Xu’s 

matrix and the Elad’s matrix, respectively. 

 Alt rec img  29.4332dB LRK rec img  28.8435dB LG rec img  28.5705dB Xu rec img  28.0926dB Elad rec img  26.6642dB

 Alt rec img  26.0719dB LRK rec img  25.4972dB LG rec img  25.4341dB Xu rec img  25.187dB Elad rec img  24.2716dB

 Alt rec img  17.1074dB LRK rec img  16.5728dB LG rec img  16.592dB Xu rec img  16.4221dB Elad rec img  15.7858dB

 Alt rec img  26.9352dB LRK rec img  26.2314dB LG rec img  25.9682dB Xu rec img  26.2037dB Elad rec img  24.9191dB

Alt rec img  27.7557dB LRK rec img  27.7115dB LG rec img  27.3827dB Xu rec img  26.7147dB Elad rec img  25.1495dB

 

(a) original   (b) Alt Mul rec  (c) LRK rec  (d) LZYCB rec  (e) Xu rec    (f) Elad rec 

Figure 3. The Original Images and Reconstructed Images with OMP 
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Figure 3, shows that each algorithm performs well. Furthermore, the proposed method 

outperforms other methods. For example, there are many thick lines in the third column 

and the forth column; however, these lines are greatly weakened in the second column.  

The proposed method works adaptively with different images. In Figure 4, we use the 

proposed projection matrix to measure different images and reconstruct them with OMP 

algorithm. As shown in Figure 4, for the same image the PSNR increases with the 

increase of measurements. The proposed algorithm works well in these images except the 

Fingerprint. We find that it has nothing to do with the algorithm because there are more 

high frequency signals in Fingerprint. Detailed sequences discarded in the process of 

transformation and quantization result in poor performance. The third row in Figure 3, 

also shows similar results as Figure 4. 
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Figure 4. The PSNR of Different Signals with Proposed Method 

Here, we choose Lena for further analysis. Now we show the results of Lena images 

with different sampling rates in Figure 5. Figure 5, shows that the PSNR increases with 

the sampling rate, and the proposed method achieves the highest PSNR compared with 

other methods. One can also see from Figure 5, that the proposed method is better than 

LRK, LZYCB’s, Xu’ and Elad’ algorithms in PSNR by 0.55db, 1.18db, 1.45db and 2.81, 

respectively. 
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Figure 5. The PSNR of the Lena Image with Different Projection Matrix 
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We measure time consumption of different methods with the Lena at different 

sampling rates. The running time means the average execution time. We record the 

MATLAB2010b running time of this experiment by using a desktop computer with an 

Intel-core i3 CPU of 3.30GHz and 4GB RAM. It is seen from Figure 6, that more 

measurements increase the running time, as expected. However, less computation time is 

observed in the proposed method compared to Elad’s and Xu’s, LZYCB’s, LRK’s. The 

proposed algorithm achieves the shortest time because it derives a matrix closer to the 

optimality. Meanwhile, Elad’s, Xu’s, LZYCB’s and LRK optimal algorithms spend more 

time on shrinking all elements for the projection matrix. 
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Figure 6. The Time Consumption of Different Sampling Rates 

6. Conclusions 

In this paper, we propose an alternative multiplicative iterative method for projection 

matrix design in compressed sensing. We employ maximum-likelihood estimation 

method to solve the problem of adjusting the Gram matrix to be the nearest one to the 

ETF. Results from experiments demonstrate that the proposed method makes significant 

improvements compared to Elad’s, Xu’s, LZYCB’s and LRK methods for 2D image 

signal reconstruction with OMP. However, the existing design methods of sensing 

matrix are based on the mutual coherence theory. More better discriminant and design 

theories are to be further studied. 
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