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Abstract 

We propose a new algorithm of privacy-preserving one-class support vector machine 

(SVM) with horizontally partitioned data. Every participant holds a part of data with all 

the data attributes. They apply the same random matrix to establish their own kernel 

matrix. By sharing these partial kernel matrices, we generate a global kernel matrix and 

establish two privacy-preserving one-class SVM models, which include the linear model 

and the nonlinear model. Partial kernel matrix can protect the privacy of the participants, 

and the global kernel matrix can ensure the classification accuracy. Experimental results 

on benchmark data sets indicate the effectiveness of the proposed algorithms. 

 

Keywords: One-class SVM, random kernels, privacy-preserving, horizontally 

partitioned data 

 

1. Introduction 

With the rising number of Internet users and the advent of Big Data, data mining has 

attracted wide attention. Data mining is a powerful technique which can extract the 

hidden and useful knowledge from the vast amounts of data. In practice, the data contains 

a lot of sensitive information, and for various reasons, owners do not want to make it 

public. So the data mining should be carried out under the condition of the privacy 

preservation. 

Support vector machine (SVM) [1] is an effective data mining method to solve the 

classification problem and it has a significant impact on the statistical learning theory.  

Experts have gradually explored and improved the SVM theory, and they have studied 

different branches of the SVM algorithms. Among these algorithms, an important branch 

is the one-class SVM [2-3]. Schölkopf et. al., [2] proposed a method to adapt the SVM 

algorithm for one-class SVM, which only uses examples from one class for training, 

instead of multiple classes. One-class SVM training algorithm works by finding the 

maximum margin separation between the training points and the origin. The approach 

introduces a favorable parameter (0,1]  , which can control the fraction of outliers and the 

fraction of support vectors. Support vector domain description (SVDD) [3] is another one 

class classification method which seeks for a hypersphere with minimum volume 

containing most of the target class data. In recent years, there have been more and more 

theory research and applications on one-class SVM [4-5]. One-class SVM has been used 

in various fields, such as ecological modeling [6], and text clustering [7]. 

Recently, privacy-preserving SVM (PPSVM) has been getting more and more attention 

in the academic research [8-12]. Hwanjo Yu et. al., studied the Boolean data privacy 

preservation [8]. They obtained two Boolean vector inner product by a hash function so 

that they can find out gram matrix and get the SVM model. Based on reduced SVM 

(RSVM) [10-11] and random matrix, Mangasarian et. al, [9] have established PPSVM 
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model. In addition, SVDD model has been successfully applied to the field of privacy-

preserving [12]. 

In this paper, we propose a privacy-preserving one-class SVM based on horizontally 

partitioned data. We introduce the completely random matrix [13] to establish the new 

model. Each participant makes public only the matrix product of its privately held matrix 

multiplied by the transpose of the random matrix for linear kernels, and a similar kernel 

function for nonlinear kernels. At last, experiments verify the effectiveness of the 

proposed algorithm. 

The paper is organized as follows. In Section 2, we introduce one-class SVM. In 

Section 3, we establish the linear and nonlinear privacy-preserving one-class SVM 

models. The experiments of the two proposed models on public datasets are described in 

Section 4. At last, we conclude the paper. 

 

2. One-Class SVM 

Before presenting our work, we first briefly review the standard one-class SVM 

algorithm. Consider training data 1 2, ,..., lx x x X , where X  is the input space. Denote 

: X F   a feature map, which is a map into a dot product space F  such that the dot 

product in the image of   can be computed by evaluating some simple 

kernel ( , ) ( ( ), ( ))K x y x y  , such as the Gaussian kernel
2 2( , ) exp( || || / 2 )K x y x y    . 

One-class  -SVM needs to solve the following optimization problem: 
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where w  represents the model complexity, and the parameter (0,1]    can control the 

fraction of outliers and the fraction of support vectors. In practice, the above optimization 

program is solved by its dual: 
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The optimal normal vector is given by
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  , and then the optimal boundary 

can be determined by the support vector expansion: 
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

                                                                                         (3) 

where 
i  is the solution of the dual problem and training samples 

ix with non-zero 
i are 
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support vectors. Select *

j from the components of   in the interval (0,1/ ]l , then 

*

1

( , )
l

j j i

i

K x x 


 . 

 

3.  Horizontally Privacy-Preserving One-Class SVM 

In this section, we propose the horizontally privacy-preserving one-class SVM models, 

including horizontally linear privacy-preserving one-class SVM (HLPPOCSVM) and 

horizontally nonlinear privacy-preserving one-class SVM (HNPPOCSVM). First, we 

describe the notation. Denote A a real l n  matrix. In Figure 1, there are N data sets 

1 2, ,..., NA A A , where il n

iA R


  signifies a real l n matrix, which denotes the i -th row 

or i -th block of rows of A .    Then 
1 2

( , ,..., )
N

T T T TA A A A .  
iA  is the data that is held by 

the i -th participant, and the information of the data should be protected. 

1 2( , ,..., )kB z z z  is an n k  random real matrix with k n , and the rank of B  is k . 

According to [13], we know that such B  exists. When , nx y R , ( , )K x y  is a real number. 

( , )K x B  is a row vector in 
kR , and ( , )K A B  is an l k  matrix. 

 

 

Figure 1. Horizontally Partitioned Data 

3.1. Privacy-Preserving Linear One-Class SVM 

In order to protect the private data, we propose a privacy-preserving linear one-class 

SVM. 

Suppose w Bu , we formulate the privacy-preserving model for one-class SVM as 

follows. 

, ,

1
min T T T

w
u B Bu e

l 
 


   

s.t. ABu e                                                                                                          (4) 

0                                                                                  

where (1,1,...,1)T le R  . In the above model, 
1 2(( ) ,( ) ,...,( ) )T T T T

NAB A B A B A B , and we 

can see that each participant makes public  
iA B  instead of the real data

iA .  

In order to solve the optimization problem (4), we introduce the Lagrangian function: 
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1
( , , , , ) ( )T T T T TL u u B Bu e ABu e

l
          


                                          (5) 

Minimize it with respect to  , ,u    and maximize with respect to Lagrange multipliers 

1 2 1 2( , ,..., ) 0, ( , ,..., ) 0T T

l l           . The Lagrangian function meets Karush-

Kuhn-Tucker (KKT) conditions: 

( ) 0T TL
B Bu AB
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                                                                                                  (6) 
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1 0TL
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(( ) ) 0, 1,2,...,j j jAB u j l                                                                                     (9) 

0, 1,2,...,j j j l                                                                                                          (10) 

where ( ) jAB denotes the j -th row of AB . The dual of (4) is 
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                                                                                                        (11) 

The optimal normal vector is given by 

1( ) ( )T Tu B B AB                                                                                                       (12) 

Select (0,1 / )i l  from the components of  . By (7), the corresponding 0i  . 

Thus by (9) and (10), we have ( ) 0.iAB u   . Hence, we get 

( )iAB u                                                                                                                        (13) 

The optimal boundary is the determined by the support vector expansion: 

( ) sgn( )Tf x x Bu                                                                                                    (14) 

Linear Algorithm 

(1)  All N participants agree on the same random matrix n kB R  with k n  for security 

reasons. 

(2)  Each participant makes public its linear kernel
iA B  and the full linear kernel can be 

calculated by 
1 2(( ) ,( ) ,...,( ) )T T T T

NAB A B A B A B . 

(3)  Solve the quadratic programming (11) and get the optimal solution * . 

(4)  Calculate (12) and (13), and get *u and * . 

(5)  For each new nx R , compute 
* *( ) sgn( )Tf x x Bu   . 
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Note that no participant reveals its real data set
iA . This is because each participant 

reveals only the 
il k  numbers constituting the matrix

i iP A B . For a given B  with k n , 

there are an infinite numbers of matrices 
iA  that satisfy

iP . 

Proposition: Given the matrix product
i iP A B  where il n

iA R


  is unknown and B  is a 

known matrix in 
n kR 

 with k n , there are an infinite numbers of solutions. 

Proof: Consider the problem of solving for r -th row of
iA , that is , {1,..., }n

ir iA R r l  . 

The r -th equation of 
i iP A B  is 

T T T

ir irB A P                                                                                                                       (15) 

Note that the rank of TB is k . Hence the rank of ( , )T T

irB P  is k . Since k n , the 

Equation (15) has an infinite numbers of solutions. Therefore, for a given B, there exist an 

infinite numbers of matrices 
iA  that satisfy

iP . 

 

3.2. Privacy-Preserving Nonlinear One-Class SVM 

In order to extend the linear model to the nonlinear case, we express w  in terms of the 

mapped 
1 2,...,( , )kB z z z  as follows. 

1

( )
k

i i

i

w u z


                                                                                                                 (16) 

The privacy-preserving nonlinear one-class SVM is formulated as follows. 
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The Lagrangian function of (17) is 

1 1
( , , , , ) ( , ) ( ( , ) )
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where
1 2( , ,..., )T

l    and 
1 2( , ,..., )T

l    are Lagrange multipliers. 

Differentiating L with respect to , ,u   and setting the results to zero, we obtain 
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where ( ( , ))iK A B denotes the i -th row of ( , )K A B . The dual of (17) is 
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                                                                                                         (24) 

The optimal normal vector is given by 

1( , ) ( , )T Tu K B B K A B                                                                                            (25) 

Select (0,1/ )j l  from the components of  . By (20), the corresponding 0j  . Thus 

by (22) and (23), we have ( ( , )) 0jK A B u   . Hence, we get 

( ( , )) jK A B u                                                                                                                (26) 

The optimal boundary is the determined by the support vector expansion: 

( ) sgn( ( , ) )Tf x K x B u                                                                                            (27) 

Nonlinear Algorithm 

(1)  All N participants agree on the same random matrix n kB R  with k n  for security 

reasons. 
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(2)  Each participant makes public its nonlinear kernel ( , )iK A B  and does not reveal 
iA . 

The full nonlinear kernel matrix can be calculated by  

1 2( , ) [ ( , ), ( , ), , ( , )]T T T T

NK A B K A B K A B K A B  

(3)  Solve the optimization problem (24) and get the optimal solution * . 

(4)  Calculate (25) and (26), and get *u and * . 

(5)  For each new nx R , compute
* *( ) sgn( ( , ) )Tf x K x B u   . 

 

4. Experiments 

In the experiment, we compare Privacy-Preserving One-class SVM with One-class 

SVM. All the experimental data sets are from UCI Machine Learning Repository which 

includes Ionosphere, Heart, Bupa, WDBC, Pima and German. Table 1, reports the 

information of these data sets. 

Table 1. Benchmark Data Sets 

Data set Instances Features Positive instances Negative instances 

Ionosphere 351 34 225 126 

Heart 270 13 150 120 

Bupa 345 6 200 145 

WDBC 569 30 357 212 

Pima 768 8 500 268 

German 1000 24 700 300 

 

We select positive instances of each data set as the training set and apply the ten-fold 

cross validation method for parameter optimization. We randomly divide all the positive 

instances into 10 disjoint subsets 
1 2 10, ,...,s s s , each subset of roughly equal size, and then 

we operate 10 iterations. The i -th iteration process is that 
1 2 1 1 10, ,..., , ,...,i is s s s s 

 form the 

training sets, 
is  and all negative instances are contained to be the test sets. On i -th 

iteration, we get the misclassification number of points 
im  and calculate the error ratio 

im
miR  , where m  is the  number of the test instances. After 10 iterations, we get 

1 2 10, ,...,R R R  and their average ratio, 

10

1 10

i

i

R
r



 ,                                                                                                                        (28) 

where r  is an evaluation index of model. In addition, we also use G-means as the 

evaluation index. 

G-means= acc acc                                                                                                    (29) 

TP
acc

TP FN

 


 

TN
acc

TN FP

 


                                                                                                              (30) 

TP  is the number of positive instances which are predicted positive instances; FN  is 

the number of positive instances which are predicted negative instances; TN  is the 
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numbers of negative instances which are predicted negative instances; FP is the numbers 

of negative instances which are predicted positive instances. The higher G-means is, the 

higher acc and acc . The parameter   is selected from {0.1,0.2,...,1} in the models.  In 

nonlinear model, the Gauss kernel function 2( , ) exp( 2 )K x x x x      is employed. 

The optimal parameters * *( , )  are from 6 5 6{0.1,0.2,...,1} {2 ,2 ,..., 2 }   

Table 2, shows the results of r and G-means of HLPPOCSVM and linear OCSVM. 

The error ratios of the two linear models are almost consistent, and the same to G-means. 

That suggests the HLPPOCSVM model has high accuracy. Table 3, shows the 

experimental results of r  and G-means of HNPPOCSVM and nonlinear OCSVM. 

Comparing the HNPPOCSVM with the nonlinear OCSVM, we conclude that the 

HNPPOCSVM model not only preserves the privacy but also has high accuracy. 

Table 2. Experimental Results of HLPPOCSVM and Linear OCSVM 

Data  sets Model *  r  G-means 

Ionosphere OCSVM 0.9 0.1480 0.7348 

HLPPOCSVM 1.0 0.1486 0.7290 

Heart OCSVM 1.0 0.1113 0.7235 

HLPPOCSVM 1.0 0.1101 0.7275 

Bupa OCSVM 1.0 0.0760 0.7271 

HLPPOCSVM 1.0 0.0870 0.7166 

WDBC OCSVM 1.0 0.5601 0.4506 

HLPPOCSVM 1.0 0.5656 0.4659 

Pima OCSVM 1.0 0.1601 0.7360 

HLPPOCSVM 1.0 0.1712 0.7290 

German OCSVM 1.0 0.2021 0.7325 

HLPPOCSVM 1.0 0.1949 0.7421 

Table 3. Experimental Results of HNPPOCSVM and Nonlinear OCSVM 

Data  sets Model *  *  r  G-means 

Ionosphere OCSVM 0.5 32  0.1480 0.6970 

HNPPOCSVM 1.0 22  0.1905 0.7349 

Heart OCSVM 0.2 42  0.1111 0.7320 

HNPPOCSVM 1.0 42  0.1244 0.7210 

Bupa OCSVM 0.2 32  0.0650 0.7190 

HNPPOCSVM 1.0 42  0.1930 0.6992 

WDBC OCSVM 0.5 32  0.1417 0.7336 

HNPPOCSVM 1.0 52  0.1413 0.7235 

Pima OCSVM 0.1 22  0.1572 0.7367 

HNPPOCSVM 0.8 52  0.1513 0.7306 

German OCSVM 0.9 32  0.1892 0.7431 

HNPPOCSVM 0.1 22  0.2132 0.7239 

 

In order to make comparisons more clearly, we give the comparison figures of error 

ratios and G-means of these models. In Figure 2, the point under the line L which is 45 

degree line indicates that the error ratio of the linear OCSVM is higher, and the point 

above the line L suggests that the error ratio of the HLPPOCSVM is higher. From Figure 

2, we can see that all points are near the line L, which indicates that the two linear models 

have almost the same accuracies. In Figure 3, the points under the line R, which is 45 

degree line, show that the G-means values of the linear OCSVM is higher. From Figure 3, 
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we can see that almost all points are near the line R. Through Figure 2 and Figure 3, we 

can conclude that the accuracies of HLPPOCSVM and linear OCSVM are consistent. We 

note that unlike OCSVM model, in HLPPOCSVM model, the data multiplied by random 

matrix instead of real data was used to do experiments. The HLPPOCSVM model has the 

effect of privacy protection. 

Figure 4 and Figure 5 show similar results for nonlinear models HNPPOCSVM and 

OCSVM. From Figure 4, we can see that the error ratios of nonlinear OCSVM are lower 

than those of HNPPOCSVM on four data sets, and almost the same on two data sets. 

From Figure 5, we notice that most of the points are under the line D  and we conclude 

that the G-means values of nonlinear OCSVM are higher than those of HNPPOCSVM. 

From the above two figures, we can conclude that the accuracy of the nonlinear OCSVM 

is higher than that of HNPPOCSVM. But we notice that the original data is not directly 

used in HNPPOCSVM model to solve the one class classification problem. In 

HNPPOCSVM, we use kernel matrix protected by the random matrix to solve problems, 

which impacts the classification accuracy of HNPPOCSVM. However, the gap is small. 

 

5. Conclusion 

In this paper, we have proposed two privacy-preserving models HLPPOCSVM and 

HNPPOCSVM to solve one class classification problems. The same random matrix is 

applied to calculate each participant's kernel matrix. Each participant makes public only 

the data multiplied by the random matrix instead of the real data. By sharing these partial 

kernel matrices, a global kernel matrix can be generated. Partial kernel matrix can protect 

the privacy of the participants, and the global kernel matrix can ensure the classification 

accuracy. Experimental results show that the two proposed models not only ensure the 

classification accuracy, but also realize the data privacy preservation. 

 

             

Figure 2. Error Ratios of HLPPOCSVM                Figure 3. G means of 
ddddddddddddddddddddddddddddddddddHLPPOCSVM and Linear 

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffOCSVM and Linear OCSVM 
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Figure 4. Error Ratios of HNPPOCSVM                  Figure 5. G-Means of 
ddddddddddddddddddddddddddddddddddddHNPPOCSVM and Nonlinear 
dddddddddddddddddddddddddddddddddddOCSVM and Nonlinear OCSVM 
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