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Abstract 

The excitations and locations of sensors in the non-uniformly spaced array affect the 

array performance such as sidelobe level and spatial resolution. Consequently, finding 

the optimal excitation coefficients and sensor positions of the array to produce a desired 

beam pattern with the smallest number of sensors is of great importance in practice. With 

the aim of reducing the number of the sensors in a linear antenna array, a novel method 

based on ℓp (0<p<1) norm minimization for optimizing both excitation coefficients and 

sensor locations of the array is proposed. Compared with the reweighted ℓ1 norm 

minimization (IRWL1) method, the proposed method can reduce more array sensors by 

optimizing the objective functions that include the measurements of peak sidelobe level 

(PSL) and array sparsity denoted by the ℓp norm of excitations. Numerical experiments 

have proved the effectiveness and advantages of the proposed method in the reduction of 

the number of the sensors of the linear antenna array. 

 

Keywords: sparse array, array synthesize, ℓp norm minimization, iteratively 

reweighting 

 

1. Introduction 

The antenna arrays have the characteristics of strong directionality, low sidelobe and 

easy scanning, which have been widely applied in fields of array radars, satellite 

communications and ultrasound imaging, etc., [1-2]. When the inter-element spacing is 

larger than half of the signal wavelength, uniformly spaced arrays produce grating lobes 

in their beam pattern. In some applications, it may be desirable to require larger apertures 

and higher spatial resolutions of the antenna arrays. Then, the uniformly spaced arrays 

have to need large number of sensors. In order to reduce the number of array sensors 

while maintaining the higher quality of synthesized array beam pattern, non-uniformly 

sparse arrays are usually adopted [3]. 

The problem of designing a non-uniformly sparse array to produce a desired beam 

pattern is related to the calculation of the excitation coefficients and positions of the array 

sensors. In the last fifty years, many techniques have been proposed to address this 

problem. Among them the simulated annealing (SA) algorithm [4-5] and the genetic 

algorithm (GA) [6-7] have already been successfully used to synthesize the sparse linear 

array by removing some sensors from a fully populated half-wavelength array. However, 

these global optimization techniques find the solution with fewest array sensors from the 
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finite set of possible sensor locations, which are computationally expensive ways when 

synthesizing the arrays with many sensors. A non-iterative synthesis algorithm based on 

the matrix pencil method (MPM) is proposed in [8] to synthesize non-uniformly sparse 

arrays for achieving the prescribed pattern features and a reduced number of sensors. 

Nevertheless, this method performs poorly in terms of computational cost and array 

performances when dealing with shaped-beam patterns [9]. 

Recently, the compressive sensing (CS)-based optimization methods are exploited to 

solve the array synthesis problem. In [10-12], the reweighted ℓ1 norm minimization 

(IRWL1) [13] have lately been used to synthesize sparse arrays with the desired radiation 

pattern and the reduction in the number of the array sensors. The IRWL1 that consists in 

solving a sequence of weighted convex optimization problems can produce fewer 

elements than the commonly used ℓ1 norm. However, the maximally sparse solution is not 

always able to be achieved by this strategy. It has been shown in [14] that ℓp (0<p<1) 

norm minimization for sparse signal recovery outperforms IRWL1 in many situations. 

That is, ℓp (0<p<1) norm minimization usually needs a smaller number of measurements 

to exactly reconstruct the sparse solution vector than IRWL1. In this paper, we propose a 

synthesis method for sparse array design using the ℓp norm minimization to further reduce 

the number of sensors in a linear antenna array. By minimizing the peak sidelobe level 

(PSL) and the sparsity of an linear array denoted by the ℓp norm of excitations, the array 

excitation coefficients are optimized. Then, the sparse array are achieved by 

systematically removing the sensors whose excitations are approximately equal to zero. 

The ℓp norm minimization method performs better than IRWL1 in the reduction of the 

number of the array sensors, despite requiring a little more iterations. Simulation results 

demonstrate the effectiveness of the proposed method. 

This paper is organized as follows. In Section 2, the sparse array synthesis problem is 

formulated. In Section 3, the array synthesis methods based on IRWL1 and ℓp norm 

minimization are presented, respectively. In Section 4 numerical simulation results are 

presented and discussed. Conclusions are drawn in Section 5.  

 

2. Sparse Array Synthesis Problem 

Consider a uniform spacing linear array with N-isotropic radiating elements located 

at 1 2, , , Nx x x ( with N large). For linear antenna arrays, the array factor F(θ) is given by 

[10] 
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where ( 1)nx n d   is the distance between the first and the nth sensors measured in 

wavelength, d is the inter-element spacing that is assumed to be very small with respect 

to the wavelength, 2k   is the propagation constant, θ is the steering angle measured 

with respect to the x axis, and nw is the complex coefficients of the nth sensor. 

Let the steering vector 
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and the excitation vector T
1 2[ , , , ]Nw w ww respectively, where  

T
  denotes the 

transpose operator. Substituting ( )a and w into (1) yields 

T( ) ( )F   a w                                                                                                                    (3) 
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The purpose of sparse array synthesis is to find optimal parameters of the sensors array 

to achieve the desired beam pattern subjected to the given far-field constraints. The 

constraints can be expressed as follows, 

T
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where 0  
is the main beam radiation direction,

SL is the sidelobe region, ℓ 
denotes the 

infinity norm, and   is a given upper bound of sidelobe levels. The constraint 
T

0( ) 1 a w is used to guarantee the unit array response at the target direction. The 

addressed sparse array synthesis problem amounts to find a excitation vector w  with as 

many zero or approaching zero components as possible for satisfying the given beam 

pattern constraints. Then the sparse array synthesis problem becomes 

0
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where 
0

w  denotes the number of non-zero components of w . Unfortunately, the 

objective function of the problem (5) is non-convex, and thus NP-hard to solve [10-12], 

since solving the problem (5) requires an intractable combinatorial search. By the use of 

the ℓ1 norm, the optimization object function becomes convex and can be efficiently 

solved. The following problem is considered [12], 
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where
1

1

N

i

i

w


w is the  ℓ1  norm of w . This object function is convex, then it can 

typically be solved by the well-established interior point method, such as software toolbox 

CVX [15] . 

 

3. Sparse Array Synthesis via IRWL1 and ℓp Norm Minimization 
 

3.1. Sparse Array Synthesis Method Based on IRWL1 

According to the theory in [13], IRWL1 can provide more sparser solutions than the 

commonly used ℓ1 norm because of the tighter approximation to ℓ0 norm. Therefore, the 

IRWL1 algorithm is applied to solving the array synthesis problem in [10-12]. At the ith 

iteration, the weighted  ℓ1  minimization of  array synthesis problem to be solved is  
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where the diagonal weight matrix ( )

1

i
Z  used for the current iteration are computed from 

the value of the previous solution and started with (0) Z I . The nth diagonal element of 
( )

1

i
Z  is updated as follows  

 
1

( ) ( 1)i i
n nz w 


 

                                                                                                           
(8) 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 9, (2016) 

 

 

28                                                                                                             Copyright ⓒ 2016 SERSC 

It can be seen from (8) that the active elements with large magnitude excitations ( 1)i
nw   

are assigned smaller weights at the current iteration for encouraging active elements to 

remain nonzero. Conversely, the small excitations lead to large weights so that the 

inactive elements are penalized to approach zero at the current iteration. The 

parameter 0  provides numerical stability and ensures that a nonzero estimate can be 

continue to work at the next step when a zero excitation occurs in the estimated ( 1)i
w  at 

the ( 1)i  th iteration. The parameter   should be set slightly smaller than the expected 

minimum nonzero magnitude of w [10-12]. Then the sensors that contribute the least to 

the array performance are removed systematically until the number of active elements no 

longer change. 

 

3.2. Sparse Array Synthesis Method Based on ℓp Norm Minimization 

It has shown [14] that by replacing the IRWL1 with ℓp (0<p<1) norm, exact 

reconstruction is possible with substantially fewer measurements in many situations. In 

order to reduce more elements in a linear antenna array, an interesting alternative problem 

formulation for array synthesis can be expressed as 
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where  
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
 w is the ℓp (0<p<1) quasi-norm. Although the ℓp norm 

minimization is a nonconvex, nonsmooth, and non-Lipschitz optimization problem, 

transforming the ℓp norm minimization into a series of weighted ℓ1 norm minimization is a 

good way to solve this problem [16,17]. Then, the non-convex optimization problem (9) 

is transformed into iteratively reweighted ℓ1 norm minimization problem, which attempts 

to find a convex penalty function more closely resembling the ℓp norm [16]. The ℓp norm 

minimization problem solved at the i th iteration is 
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where ( ) ( )diag( )i iZ q is a weighting diagonal matrix, and 
( )diag( )i

q represents a diagonal 

matrix constituted by the vector ( ) ( ) ( )( )
1 2[ ]

i i ii
Nq q qq . In the first iteration (0) Z I , we 

update the weighting coefficients of the diagonal matrix ( )i
Z  as follows: 
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where the positive weights ( )i
nq

 
are computed from the values of the previous solution, 

and the function of the parameter 0   is same as that in (8), which provides numerical 

stability of algorithm even if a zero-valued component ( 1)i
nw 

 
at the step i-1 appears. With 

the definitions of (10) and (11), the iteratively reweighted ℓ1 norm minimizations are used 

to approach the ℓp
 

norm asymptotically [16]. The sparse array is then obtained by 

removing those sensors whose excitations are approximately equal to zero when the 

number of magnitude coefficients in the solution w  no longer change.  

Compared with the sparse array synthesis methods based on IRWL1 and ℓp norm 

minimization, the weights in the IRWL1 algorithm used for sparse array synthesis are 

inversely proportional to the magnitude excitations at each iteration [10-12], while those 
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in the ℓp norm minimization method are the exponential functions with respect to the 

magnitude excitations. Because of 0<p<1, the IRWL1 indeed penalizes nonzero 

coefficients more heavily than the ℓp norm minimization. Although the more heavy 

penalization induces a fast convergence, the IRWL1 algorithm does perform worse in 

many situations than the ℓp norm minimization method which is more democratically 

penalize nonzero array excitations at each iteration [14]. The proposed sparse array 

synthesis method via ℓp norm minimization can construct the appropriate weights at each 

iteration and then achieve the maximally sparse array at cost of a little more iterations. 

 

4. Simulation Result 

Some numerical examples are presented to demonstrate the performance of the 

proposed method for synthesizing non-uniformly sparse linear arrays. It has been shown 

in [18] that ℓ1/2 regularization plays a representative role among all ℓp regularizations with 

p in (0,1). From this study, thus, the index p=1/2 is adopted in the following simulation 

experiments.  

A linear array with the maximum length 21  is synthesized, whose symmetric pattern 

is characterized by a side-lobe level SLL= -14.49 dB, while the main beam is confined in 

0sin sin  0.0436   . Prior to the array synthesis using the proposed method and the 

IRWL1 method [10-12], a finer discretization of the array aperture with 0.1d  is 

required to resemble the continuous array. The distributions of the normalized magnitude 

excitations obtained by the proposed method and the IRWL1 method are shown in Figure 

1. We can clearly observe that the sparse nature of the solutions of the two synthesis 

methods, in which the magnitude excitations of only few sensors are not approach zero, 

are presented. The nonzero elements are the active sensors of the maximally sparse array, 

which contribute the most to the array performance, while the other sensors with the 

amplitude values approaching zero are then removed systematically. Thus, the optimized 

excitations and locations of sensors of the sparse array with the array aperture 21  can be 

seen from Figure 1. The synthesized patterns of the optimized sparse array of the two 

synthesis methods are shown in Figure 2. The desired performance in terms of SLL and 

beamwidth have been realized by the IRWL1 method using N=19 antennas and 5 

iterations, while the same performances concerning final SLL and beamwidth of the 

proposed method have been achieved with N= 18 antennas and 7 iterations. Thus the 

synthesis method herein proposed can reduce more antennas, despite requiring a little 

more iterations. 

 

 

Figure 1. Synthesized Positions and Excitations of the Linear Arrays with 

the Maximum Length 21 
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Figure 2. Synthesized Pattern by the Proposed Method Compared with the 

Synthesized Pattern by the IRWL1 Method. The Array Aperture is 21,  

SLL= -14.49 dB, |sin-sin0|0.0436 

In order to verify the robustness of the proposed method in the reduction of the number 

of the elements in a linear antenna array, let us now consider the other problem of 

synthesizing a linear array with the maximum length 30 , whose radiation pattern 

exhibits a side-lobe level  SLL= -24 dB, with the main beam confined 

in 0sin sin  0.0436   . By applying the IRWL1 method, it has been possible to achieve 

the desired pattern by using N= 33 antennas and 5 iterations, while the same array 

performances concerning the SLL and beamwidth have been achieved with N= 29 

antennas and 7 iterations by the synthesis method herein proposed, as shown in Figure 3 

and Figure 4. Thus the proposed method achieves maximally sparse array at cost of a little 

more time-consuming. 

 

 

Figure 3. Synthesized Positions and Excitations of the Linear Arrays with 

the Maximum Length 30 
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Figure 4. Synthesized Pattern by the Proposed Method Compared with the 

Synthesized Pattern by the IRWL1Method. The Array Aperture is 30,  

SLL= -24dB, |sin-sin0|0.0436 

5. Conclusion 

In this paper, a ℓp (0<p<1) norm minimization scheme is proposed for synthesizing a 

non-uniformly sparse array with the minimum number of sensors. Due to the non-convex 

optimization problem of the ℓp (0<p<1) norm minimization, a series of constrained 

weighted ℓ1 minimization is used to approach the ℓp
 
norm asymptotically, while the 

penalized weights at each iteration is different from the standard IRWL1 method. The 

synthesis method based on ℓp(0<p<1) norm minimization, which more democratically 

penalizes nonzero array excitations at each iteration than the IRWL1 method, has the 

ability to achieve minimally redundant sparse arrays under the given constraints on the 

array performances concerning the SLL and beamwidth, despite it converges after a little 

more iterations. 
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