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Abstract 

In this paper, we investigate the state estimation problem of nonlinear systems under 

the condition that the prior statistical characteristic of noise is unknown. An adaptive 

unscented Kalman filter (UKF) is proposed. In this algorithm, the maximum likelihood 

principle is applied to establish the log likelihood function with the unknown noise 

statistical characteristics. Then, the noise property estimation problem is transformed 

into the maximization of the mean of the log likelihood function, which can be achieved by 

using the expectation maximization algorithm. Finally, a suboptimal adaptive UKF can 

be obtained. Simulations show that the proposed adaptive UKF algorithm can deal with 

the problem of filtering accuracy declination of the traditional UKF when the prior noise 

statistical characteristic is unknown. The proposed algorithm can estimate the statistical 

parameters online. 

 

Keywords: Nonlinear filtering; adaptive UKF algorithm; noise statistics estimator, 

maximum likelihood principle 

 

1. Introduction 

The problem of nonlinear filtering widely exists in the practical applications. The 

key point of nonlinear filtering is the calculation of the posteriori distribution of the 

random vector along the nonlinear functions. To deal with this problem, numerous 

methods have been proposed. The extended Kalman filter (EKF) has been widely 

used in recent years [1]. By using the first order linearization, the nonlinear system 

is approximate as a linear one, and thus, the standard Kalman filter can be applied to 

estimate the states of the nonlinear system. The accuracy of the linearization and the 

requirement of the Jacobin matrix lead the limitation of the usage of EKF in some 

practical applications. Particle filter (PF) is a sequential importance sampling (SIS) 

algorithm based on Bayesian estimation [2]. It has been widely used to deal with the 

state estimation problem for strong nonlinear system. 

Unscented Kalman filter (UKF) based on unscented transformation, which is 

originally proposed by Julier [3], is a widely used nonlinear filtering algorithm. The 

unscented transformation can approximate the nonlinear posteriori distribution with 

the accuracy of at least more than second order. Meanwhile, it no longer needs to 

calculate the Jacobin matrix and the volume of calculation is less than PF algorithm.  

However, when the prior noise statistics of the noise is unknown, the accuracy of 

UKF will decrease or the system will even diverge [4]. This is because the 

theoretical basis of UKF algorithm is the variance minimization principle. The 

premise is that the prior noise statistics should be known accurately. In order to 

solve this problem, several adaptive algorithms have been proposed to estimate the  
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noise information online, such as Bayesian algorithm [5-6], maximum likelihood 

algorithm [7-8], correlation algorithm [9-10] and covariance matching algorithm 

[11-12], etc. 

The Bayesian algorithm usually involves multiple operations. Meanwhile, the 

calculation amount of this algorithm is large, and the closed solution usually cannot 

be obtained. Hence the application of this algorithm is limited. The steady-state 

estimation error of covariance matching algorithm cannot be eliminated, which 

decrease the accuracy of this algorithm. Correlation algorithm can only be used in 

linear system. The maximum likelihood algorithm has been widely investigated 

since it can establish the probability density function with statistics parameters 

directly. Meanwhile, the calculation amount of this algorithm is moderate for 

practical application. 

From the analysis above, the maximum likelihood based adaptive UKF algorithm 

is proposed in this paper. The maximum likelihood principle is applied to establish 

the Logarithmic likelihood function, based on which the noise statistics can be 

introduced. Then, the Expectation Maximization (EM) algorithm is employed to 

simplify the second-order moment calculation of the noise. The proposed strategy 

can estimate the system states without the prior information of noise statistics. 

The following of this paper is organized as follows. In Section II, the state 

estimation problem is formulated and traditional UKF algorithm is introduced. In 

Section III, the noise statistics estimator is proposed based on maximum likelihood 

principle and EM algorithm. Simulations results in Section IV show the 

effectiveness of the proposed algorithm, followed by Conclusions in Section V.  

 

2. Problem Formulation and Traditional UKF 

Consider the discrete-time nonlinear system with additive Gaussian noise: 
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where 0k   is discrete-time variable, nRx  is state vector, mRz  is output vector. The 

nonlinear function n n R Rf ,  n m R Rh . The process noise 1k w  and measurement 

noise kv  are n ’th and m ’th order Gaussian noise, which satisfy: 
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The steps of traditional UKF algorithm are given as follows: 

STEP1. System states initiation. 

STEP2. Time update. 

From the given sampling strategy, the Sigma point  , 1 , 0, ,2i k i n   that with the 

mean of 1
ˆ

k x  and covariance of 1k P  can be obtained as: 
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The weights of corresponding Sigma points are given as: 

   
     
     

0

2

0

,

1 ,

0.5 , 1,2, 2 ;

m

c

m c

i i

n

n

n i n

  

    

  

  


    


   

                                                                                 (4) 

where operator   represents Cholesky decomposition of a matrix.  is the extendible 

extent of Sigma near the mean,   is the adjusting parameter,  2 n k n    . Here we 

choose: 1  , 0  , 2k  . 

The transmitting effect of the Sigma point along the nonlinear function is given as: 

 , | 1 , 1 0, ,2i k k i k i n    f q                                                                                         (5) 

Then we get the posterior mean and covariance as: 
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STEP3. Measurement Update. 

From the given sampling strategy, the Sigma point  , | 1 , 0, ,2i k k i n   that with the 

mean of 
| 1

ˆ
k kx  and covariance of 

| 1k kP  can be obtained as: 
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where the weights are same as Equation (4). 

The transmitting effect of the Sigma point along the nonlinear function is given as: 

 , | 1 , | 1 0, ,2i k k i k k i n    h r                                                                                        (9) 

Then we get the posterior mean and covariance as: 
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STEP4. Filtering Update 
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After STEP4 is finished, the algorithm returns to STEP2. 

 

3. Noise Statistics Estimator Based on Maximum Likelihood Principle 

The traditional UKF algorithm can estimate the system states successfully when the 

noise prior statistics is known. However, in most applications, the statistics of the noise is 

usually unknown. At this time, the estimation accuracy will decrease, or the filter will 

even diverge. Aiming at this problem, the maximum likelihood principle is employed to 

establish the log likelihood function with the noise statistics. Then, the EM algorithm is 

applied to estimate parameters online such that the log likelihood function is maximized. 

With the estimated noise statistics, the robustness and estimation accuracy of the UKF 

algorithm can be improved. 

For the complex nonlinear system, the maximum likelihood principle usually cannot be 

used directly to acquire the parameters estimation. EM algorithm is an effective method to 

estimate the maximum likelihood solution in the probability model. There are two steps in 

EM algorithm, expectation step (E Step), and maximum step (M Step). 

Assume that  , , ,  r R q Q  is the noise statistics to be estimated. The estimation of the 

parameters can be represented as: 

  EM 1: 1:
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    z x                                                                                   (16) 

where   1: 1:ln ,k kL  z x  is the log likelihood function of the parameter  . 

According to the definition of likelihood function, we get: 

   1: 1: 1: 1:, ,k k k kL p  z x z x                                                                                             (17) 

Since the system is a Markov process, we get the joint probability density function of 

system states and measurements as follows: 
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Assume that all the distributions are Gaussian, and then we get the following 

probability density function of system states initiation: 
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Probability density function of the state predicting is: 
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Probability density function of the measurements is: 
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where operator   represents the determinant of a matrix. 

From the analysis above, we can establish the log likelihood function as: 
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Then, the EM algorithm can be applied for the estimation of  . 

E Step. 

By calculation the mathematical expectation of the log likelihood function of 

  1: 1:ln ,k kL  z x , we get: 
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Since    
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By defining the mathematical expectation of the log likelihood function as objective J , 

since Q  and R  are both positively diagonal matrix, we get: 
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M Step. 

The gradient descent algorithm is applied in this step to obtain the parameter estimation 

that maximizing objective J : 
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According the above Equation, we get the estimations of ˆ
kq  and k̂r  as follows: 
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Consider that: 
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Then ˆ
kQ  and ˆ

kR  can be obtained as follows: 
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The Sigma point of system state  ,i j  and  , 1i j  are used to instead the random 

vector, and we can get the recursive expression as: 
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where the Sigma point  ,i k  and  , 1i k  satisfy: 
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



x P

x P
                                                                                                     (34) 

Comparing with the traditional UKF algorithm, the proposed noise statistics estimator 

can provide the nonlinear filter with the noise statistics information more accurate. The 

procedure of the adaptive UKF at k ’th moment are described as follows. 

According to the noise statistics estimation of 1k  ’th moment 

 1 1 1 1 1
ˆˆ ˆˆ ˆ, , ,k k k k k      r R q Q , Equations. (3)~(15) are introduce to estimate the mean and 

covariance of the system states. Then, according to the estimations of the filter, Equations 

(30)~(33) are employed to estimate the noise statistics parameters of k ’th moment. 

 

4. Simulations and Analysis 

The following first order nonlinear system is applied for simulations: 
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                                                                                            (48) 

Assume that w and v  are both Gaussian noise: 

 

 

~ 1.2,0.6

~ 1.0,0.8

N

N





w

v
                                                                                                               (49) 

The initial state is 0 1x . Assume that the noise statistics of the process noise is 

unknown. The initial statistics of the process noise is: 0
ˆ 0.2q , 0

ˆ 0.5Q . The estimation 

effect of the proposed noise statistics estimator is shown in Figure 1 and Figure 2. It can 

be seen that the proposed estimator can quickly converge to the real noise statistics. 
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Figure 1. Mean of Process Noise Statistics 
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Figure 2. Covariance of Process Noise Statistics 
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Figure 3. Root Mean Square Error 

Table 1. Estimation Accuracy Contrast of Adaptive UKF and Traditional UKF 
Algorithm 

 Mean Covariance 

UKF Algorithm(known noise statistics) 0.0001 0.0822 

UKF Algorithm(unknown noise statistics) 0.1137 0.1006 

Adaptive UKF 0.0006 0.0825 

 

Both adaptive UKF proposed in this paper and traditional UKF are carried out in the 

simulations to show the effectiveness of the proposed algorithm. It is illustrated in Figure 

3 that the proposed algorithm has higher state estimation accuracy. The state estimation 

accuracy of adaptive UKF is much higher than that of the traditional UKF algorithm with 

unknown noise statistics. Notice that the proposed estimator can converge at about 100 

filter periods. Consequently, the accuracy of the proposed adaptive UKF with unknown 

noise statistics is similar to the traditional UKF with known information after the noise 

statistics estimator converges. The accuracy comparison is shown in Table 1. 
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5. Conclusions 

In this paper, the nonlinear filtering problem is investigated with unknown noise 

statistics. An adaptive UKF algorithm with noise statistics estimator is proposed. The 

proposed strategy can estimate the noise statistics as well as the system states. 

Simulations show that comparing with the traditional UKF algorithm, the proposed 

strategy can estimate the system states more accurately. 
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