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Abstract 

Aerosol optical depth (AOD) is an important quantity parameter to study the Earth’s 

radiation balance, climate change and environment protection. For estimating AOD by a 

data mining method, the synchronized records by combing satellite observed information 

from MOderate Resolution Imaging Spectroradiometer (MODIS) equipment with the 

ground-based accurate measurements of AOD from Aerosol Robotic NETwork 

(AERONET) work as driving attributes and prediction targets, respectively. However, 

compared with the number of high-dimensional remote sensing attributes, the total 

number of spatial-temporal collocated MODIS-AERONET observations during a couple 

of years is relatively not large enough for estimation modeling. It leads to unstable 

feature selection subsets and drops the AOD estimation accuracy. In this paper, we 

propose a novel ensemble approach by aggregating multiple AOD estimators. Each 

estimator is modeled based on features selected from remote sensing attributes by using a 

subsampling strategy with instance perturbation. The ensemble approach provides 

aggregated retrievals of AOD with higher accuracy, while also providing an estimation of 

retrieval uncertainty. We conducted experiments to evaluate the empirical performance of 

the proposed approach on two years (2009-2011) of MODIS data over 197 global 

AERONET sites. The encouraging results clearly showed that aggregation of estimators 

modeled by multiple feature selection subsets leads to accuracy improvements and 

uncertainty reduction in AOD retrievals. 

 

Keywords: Feature Selection, Ensemble Regression, Aerosol Optical Depth, Instance 

Perturbation 

 

1. Introduction 

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard 

NASA's Earth Observing System (EOS) satellites Tera and Aqua. It is viewing the entire 

Earth's surface every 1 to 2 days, acquiring remote sensing data in 36 spectral bands 

ranging in wavelength from 0.4 µm to 14.4 µm. These massive streams of data will 

improve our understanding of global dynamics and processes occurring in the lower 

atmosphere over lands and oceans. 

One of the most important tasks for MODIS is inferring the characteristics of aerosols. 

Aerosols are fine solid particles or liquid droplets in the air, including dust, fume, mist, 

smoke, fog, et. al,. Their concentration and chemical properties are important to study the 

Earth's radiation balance, climate change and environment protection. By using remote 

sensing observations and auxiliary parameters from MODIS, it is possible to estimate the 

degree to which aerosols prevent sun light passes through a column of atmosphere, a 

quantity parameter known as aerosol optical depth (AOD). 

Traditionally in atmosphere study, AOD is retrieved according to NASA’s 

deterministic forward-inversion approaches [1-4] by modeling atmosphere dynamics. 

However, many physical and chemical processes are involved in atmosphere dynamics 

and the complex nature of the Earth surface is very hard for construction of an accurate 
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retrieval model. By validation of MODIS AOD retrievals with Aerosol Robotic NETwork 

(AERONET) sites, previous studies concluded that MODIS retrievals have systematic 

bias in a global level [5-8]. For solving the problem, in recent years, several machine 

learning and data mining estimation methods have been actively developed and they 

explored data-driven regression models to achieve higher AOD retrieval accuracy.  For 

example, D. J. Lary et. al., applied neural networks and support vector machines to 

correct a persistent MODIS bias because of the dependency on surface types [9]. Arif 

Albayrak et al. utilized a neural network estimator to compensate against unknown 

sources of errors, nonlinearity in the datasets and the presence of non-normal distributions 

for improving AOD retrieval accuracy [10]. E. J. Hyer et. al., developed empirical 

correction approaches based on surface boundary condition and regional microphysical 

bias to increase AOD estimation accuracy [11]. Zhuang Wang, et al., treated the AOD 

retrievals as a multiple instance regression (MIS) problem due to different spatial 

resolution among collocated datasets. They approved that the instance pruning model in 

MIS is highly successful and can result in accurate estimations of AOD [12]. Vladan 

Radosavljevic, et. al., proposed a continuous conditional random field model for 

regression of AOD. They provided strong evidence that the model can successfully 

exploit the inherent spatial-temporal properties of AOD data [13]. Slobodan Vucetic, et. 

al., combined a neural network with a decision tree to analyze the conditions for 

improving AOD retrievals [14]. 

All these data-driven approaches constructed estimation models based on MODIS-

AERONET collocated datasets, where the AOD measurements from AERONET sites 

work as prediction targets and the spatially and temporally collocated remote sensing 

observation attributes collected from MODIS act as driving attributes. In general, many 

potential informative observation attributes are constructed according to atmospheric 

domain knowledge or data analysis results. However, some of these constructed attributes 

might not be informative and make no contribution to prediction modeling. Meanwhile, 

the multiband satellite radiance observations contain high correlations among attributes. 

Building an estimation model from such redundant high-dimensional data breaks the 

assumption of independent and identically distributed random features in many data 

mining techniques and will result in the loss of estimation accuracy. In addition, 

compared with the number of these constructed high-dimensional satellite attributes, the 

total number of spatially and temporally collocated MODIS-AERONET records during a 

couple of years is relatively not large enough for estimation modeling.  For example, there 

are no more than 3200 MODIS-AERONET synchronization records in one year over 200 

global AERONET sites. Each record contains over 50 attributes, such as radiance in 

different wavelengths and auxiliary geometry parameters. Considering multiple 

atmospheric and surface conditions, the size of a general collocated dataset is not large 

enough for modeling the complex nature of AOD with so many attributes. Thereby, for 

dimension reduction and improving the estimation accuracy of AOD, a typical strategy is 

to perform feature selection before learning an estimation model. 

In addition to dimension reduction for modeling and reducing redundancy from 

multiband radiance observations, there are several other benefits for feature selection in 

AOD estimation. Firstly, the selected features might be of interest to domain scientists 

focusing on identifying the most informative features for regression, so as to improve 

their certainty of measurement. Secondly, building an estimator from a small number of 

features could improve the estimator’s generalization ability and reduce the risk of over-

fitting. Thirdly, a small number of selected features could result in an easily interpretable 

estimation model.  

Consequently, an important issue in AOD estimation is feature selection and picking 

out the informative driving features from all constructed attributes. With the constraint of 

limited collocation records, the feature subsets acquired from general feature selection 
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techniques are not stable with a few of instance perturbation. The unstable feature 

selection results decrease the AOD estimation accuracy. 

Besides the point-estimation of AOD, another important issue in remote sensing of 

aerosols is the measurement of AOD retrieval uncertainty. We aim to identify a range 

where AOD retrievals will fall in with a high confidence level. 

For tackling the above two issues, in this paper, we propose an ensemble estimation 

approach by aggregating multiple estimators of AOD. Each estimator is modeled based on 

feature selection attributes resulted from a subsampling strategy with instance 

perturbation effects. The key idea is explained as follows. Due to relative small ratio 

between the number of records and the number of features in the collocated dataset, a 

general feature selection method obtains an unstable feature subset, which leads to an 

unstable regression model achieving a local optimum with accuracy loss. We apply a 

subsampling strategy with instance perturbation to run a feature selection method for 

several rounds. Multiple feature subsets can be obtained and they are used to build 

multiple regression models. In this way, though several different regression models are 

constructed in different local optima, the ensemble estimator provides a better 

approximation of a true function by aggregating retrievals of AOD with higher accuracy. 

Meanwhile, the ensemble also can provide an estimation of retrieval uncertainty. We 

evaluated the proposed approach on MODIS collocated data over 197 global AERONET 

sites during April 2, 2009 and April 1, 2011. The experimental results clearly showed that 

aggregation of estimators based on multiple feature subsets leads to accuracy 

improvements and uncertainty reduction in AOD retrievals.  

The rest of the paper is organized as follows. Section 2 illustrates the method of 

constructing an ensemble estimator. Section 3 validates the effectiveness of the proposed 

ensemble approach by experiments. Finally, Section 4 summarizes the paper and indicates 

future research directions. 

 

2. Construction of an Ensemble Estimator 

The MODIS-AERONET collocated points for a couple of years are a high-dimensional 

dataset with limited records. The mismatch of a large feature number and a relative small 

record number poses challenges for feature selection techniques and generally derives 

unstable selection attributes by instance perturbation. With a different resulted feature 

subset, an estimation algorithm may train a prediction model in a different local optimum. 

In this paper, we propose an ensemble learning approach. With it, a collection of single 

regression models are trained with different feature subsets. The ensemble estimations are 

obtained by averaging the outputs of these single models. 

 

2.1. Feature Selection Techniques 

There are multiple types of feature selection methods which are independent with an 

estimation model. The most common type of methods are ranking a feature according to 

its relevance to an estimation target, such as correlation criteria [15], mutual information 

[16], information gain [17], fisher score [18], et. al. These feature ranking methods have 

light computational costs, but ignore the redundant information among the top ranked 

features. Hence, it relies on practical experiments to decide the number of selected 

features at the top of a feature list. Meanwhile, some informative features may be filtered 

out since they are not at the top of ranks according to a specific criterion. The improved 

second type of methods aims to minimize global redundancy among selected features 

while maximizing their relevance to an estimation target [19-23]. They can discover a 

subset of more informative features and improve the overall prediction performance.  

To test the generalization ability of our proposed ensemble approach, we select 

information gain and fisher score techniques from the first type of feature selection 
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methods, and pick the sparse multinomial logistic regression (SBMLR) from the second 

type of methods. All the three methods are widely used feature selection techniques. 

 

2.1.1. Information Gain: This feature selection method is based on information theory. 

The information gain of a feature A reflects the randomness of categories after 

partitioning a dataset D by A. Specifically, the information gain of A is computed as, 
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Here, Info(D) represents the expected information needed to classify a record in D, 

where c is the number of distinct category labels, pi shows the probability of category Ci 

in D. InfoA(D) computes how much more information is required for an exact 

classification after splitting D by a feature A, where v denotes the number of distinct 

values of A, 
||
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D j
 acts as the ratio for the portion of records with feature A of value j in 

D. 

 

2.1.2. Fisher Score: The fisher score method aims to find a subset of features, such that 

in the data space split by a selected feature, the distances between data points in different 

classes are as large as possible, while the distances between data points in the same class 

are as small as possible. In practice, we compute the fisher score for a feature A 

independently as below, 
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Here, c is the number of classes. nk denotes the number of k-th class in a dataset D. A
k  

and A
k  represent the mean and standard deviation of k-th class, corresponding to the 

feature A.  
A denotes the mean of the whole data set corresponding to the feature A. 

 

2.1.3. Sparse Multinomial Longistic Regression (SBMLR): Given a dataset D with l 

records 
l
n

nn tx 1)},{( , nx  is the n-th example vector with d attributes, nt  is the 

corresponding category label using 1 of c coding scheme. This feature selection method 

aims to minimize a penalized maximum-likelihood training expression as below, 
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  is a regularization parameter balancing the bias-variance. ijw  is a weight of a linear 

model for the j-th attribute in the i-th example. 

At a minimum of M, the partial derivatives of M with respect to the model parameters 

will be uniformly zero, deriving 
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It means some weight parameters will be equal to zeros and thereby the corresponding 

features will be filtered out. 

 

2.2. Measure Feature Selection Stability with Instance Perturbation 

The MODIS-CALIPSO collocated dataset is relatively not large by comparing with its 

high-dimensional feature numbers. Therefore, by adopting different samples as a training 

set, we obtain different feature selection subsets. Suppose the total number of records in a 

training set is N, with a subsampling strategy, we randomly take Q=p• N samples 

(o<p<1, it is the percentage of N samples) as a training set. Consequently, feature 

selection is performed on each round of Q subsamples. Since a different feature selection 

round will compute a different feature weight, we measure the similarity between two 

rounds of feature selection results fi, fj according to their feature ranks. The feature with 

the least weight is assigned rank 1 and the best feature ranks d. By Spearman rank 

correlation coefficient, we compute the similarity between fi, fj as below,  
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Here, 
k

if   is the rank for feature k in the i-th round. 

The total stability of a feature selection method by instance perturbation for t rounds is 

measured as below, 
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2.3. Construction of an Ensemble Estimator 

Construction of an ensemble estimator consists of two steps. The first step involves 

training a set of different estimators by multiple running of a feature selector. Variation in 
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the feature selector can be achieved by instance level perturbation during training. The 

second step weighted averages the AOD retrieval results from these single estimators. 

Assuming that by t rounds of instance perturbation, we have t different feature 

selection resulted subsets {f1,f2,…,ft}. With each of this subset, we can use a regression 

model M to obtain a single estimator )( ifM . The ensemble estimator E is defined as 

below, 
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Here, iw  is the weight to a regression model outputs )( ifM . This can be used to 

accommodate for putting different significance on different models according to some 

domain criterion. 

 

2.4. Regression Accuracy Measures 

The accuracy of AOD regression is computed by three widely accepted measures: 

correlation coefficient (Corr), mean square error (MSE) , R2. Their equations are listed as 

below. E_AOD denotes the AOT estimation of a regression model. A_AOD denotes 

AERONET AOD. N is the number of AOD retrievals. AODE _ , AODA _  present the 

average of AOD estimations and AERONET AODs respectively. The std(A_AOD) 

denotes the standard derivation of AERONET AOD retrievals. 
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3. Experimental Results 

In this section, we present the results of an ensemble AOD estimator on the spatial-

temporal collocated MODIS-AERONET dataset. Firstly, the synchronization data set is 

briefly described. Next, we analyze the different feature selection subsets by information 

gain, fisher score and SBMLR, and further show the similarity between feature selection 

subset pairs and analysis their stability correspondingly. Finally, we compare the 

ensemble estimator results with the results from single estimators. 

 

3.1. MODIS-AERONET Collocated Data Sets 

AERONET is a global observation network over multiple hundreds of sites providing 

ground-based aerosol retrievals. These retrievals are accurate for many research modeling 

and are widely accepted as the ground-truth for validation of satellite AOD retrievals [1-
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7]. In our experiments, Level 2.0 cloud-screened and quality-assured AERONET data 

over 197 global observation sites from April 2, 2009 to April 1, 2011 are collected. These 

sites cover different surface types, such as land, coast, desert and marine. 

MODIS is an important aerosol retrieval instrument aboard the satellite Tera and Aqua 

and views the Earth's surface in 36 spectral bands. In the experiments, we used 

MODIS/Aqua Collection 005 product suites between April 2, 2009 and April 1, 2011. It 

contains three MODIS products: level 2 aerosol product MYD04_L2 at a 10-km 

resolution, calibrated radiance data MYD02SSH at a 5-km resolution and cloud mask 

product MYD35 in a resolution of 1-km. These datasets are spatial-temporally 

synchronized in the spatial coincidence square region of size 40km×40km surrounding an 

AERONET site.  

MODIS and AERONET datasets are collocated by the following spatial-temporal 

coincidence criteria proposed by Ichoku et al., (2002): spatially, MODIS remote sensing 

attributes are averaged in a 40km× 40km rectangle with an AERONET site at the center; 

temporally, AERONET observations are averaged within ± 30 minutes of MODIS 

overpass.  

During the two years of study period from April, 2009, we collected 6351 collocated 

records covering 197 AERONET sites globally in the MODIS-AERONET sync data. Half 

of the records act for feature selection and model training, and the other half works as a 

test dataset. Both the training and test dataset contain 53 driving attributes. The attribute 

details are listed in Table 1. We can observe that some of these attributes might provide 

redundant information for regression modeling, such as the seven wavelength radiance 

observations for a record. Meanwhile, considering 53 attributes, no more than three 

thousand and two hundred records in a training dataset might not be large enough for a 

stable feature selection and regression modeling. Thereby, feature selection is necessary 

for improving the regression accuracy of AOD retrievals.   

Table 1. Driving Attributes Constructed at 40km×40km Resolution 

Index Attribute Explanations 

1-14 Means and standard derivations of 7 radiance measurements 
related to aerosol retrievals  

15-20 Means and standard derivations of surface reflectance at 3 
wavelengths 

21-24 Solar zenith, Solar azimuth, Sensor zenith, Sensor azimuth 
25 Scattering angle 

26-27 Mean and standard derivation of angstrom exponent  
28-30 NDVI_swir, NDVI_swir2 and standard derivation of NDVI_swir 
31-32 Mean and standard derivation of cloud fractions 
33-37 Percentage over water, costal, desert, land and land_only_flag  

38 The number of pixels without clouds 
39 Aerosol types provided by MODIS 

40-42 AERONET site altitude, MODIS surface altitude, standard 
derivation of MODIS surface altitudes 

43-45 The distances from three control clustering centers 
46-47 Mean and standard derivation of MODIS AOD retrievals 
48-49 Latitude and Longitude  
50-53 Year, month, day, hour 

 

3.2. Feature Selection Stability 

In the training set, we have 3175 records in total. Each record contains 53 attributes. 

For feature selection, the parameter p is set to 90% and t is set to 10. Thereby, we 
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randomly select 90%*3175=2858 records for feature selection in each round and we 

repeat the same feature selection method for 10 rounds. For the method of Information 

Gain, the Table 2 reports the spearman rank correlation coefficients between any two 

rounds of feature selection results. The first row and the first column list the index of a 

feature selection round. The similarity values range from 0.173 to 0.752. It shows that the 

information gain unstably selects features by instance perturbation. The overall stability 

computed by Equation (11) is 0.490. 

Table 2. Similarity between Features Selected by Information Gain 

# 2 3 4 5 6 7 8 9 10 

1 0.495 0.560 0.173 0.748 0.237 0.333 0.612 0.464 0.386 

2 
 

0.578 0.365 0.691 0.620 0.618 0.662 0.739 0.198 

3 
  

0.264 0.443 0.525 0.553 0.425 0.679 0.572 

4 
   

0.257 0.588 0.631 0.486 0.365 0.231 

5 
    

0.390 0.470 0.596 0.716 0.226 

6 
     

0.752 0.601 0.595 0.231 

7 
      

0.597 0.710 0.430 

8 
       

0.537 0.321 

9 
        

0.368 

 

For fisher score, the similarities between selected features are presented in Table 3. 

Their values range from 0.044 to 0.788. The overall stability is 0.443. Compared with 

information gain, fisher score obtains a little less stable feature selection results. Table 4 

reports the similarities between features selected by SBMLR. The minimum value is 

0.033 and the maximum is 0.538. The overall stability is 0.3234. Both the maximum and 

the overall stability values are far less than those of information gain and fisher score. It 

can be understood that SBMLR minimize the global redundancy among all features and 

the complex nature and the size of a training set with high-dimensional features make 

SBMLR lead to less stable feature selection results. 

Table 3. Similarity between Features Selected by Fisher Score 

# 2 3 4 5 6 7 8 9 10 

1 0.396 0.476 0.430 0.304 0.161 0.408 0.551 0.573 0.336 

2 
 

0.542 0.636 0.521 0.500 0.606 0.386 0.590 0.483 

3 
  

0.367 0.579 0.555 0.507 0.270 0.170 0.494 

4      
  

0.322 0.446 0.460 0.500 0.427 0.413 

5 
    

0.788 0.597 0.246 0.375 0.523 

6 
     

0.482 0.044 0.208 0.399 

7 
      

0.396 0.523 0.543 

8 
       

0.576 0.438 

9 
        

0.396 

 

3.3. Construction of an Ensemble Estimator 

We apply a neural network (ANN) with one hidden layer as the regression model. The 

inputs to an ANN are the selected features by Information Gain, Fisher Score or SBMLR. 

The output is AOD. By practical experiments, the number of neurons in the hidden layer 

is set to 6. For each of the three feature selection techniques, we run it for 10 times on the 

90% of a training dataset by instance perturbation. Thereby, we have 10 different feature 

selection subsets. Based on each of the feature subset, we training an ANN model for 20 

times. The averages and standard derivations of the 10 models for 20 times are reported in 
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Table 5. In the corresponding ensemble estimator, 10 models are averaged with weight iw   

setting to 0.1.  The means and standard derivations of an ensemble estimator for 20 times 

are also listed in Table 5. By comparison of three accuracy measurements, we see clearly 

that an ensemble estimator performs significantly more accurate than a single estimator. 

Specifically, the standard derivation for estimations on each point by 10 models 

provides an indicator of retrieval uncertainty. Though we apply three different feature 

selection methods, their estimation standard derivation falls in the similar range. It 

suggests the uncertainty level by an ANN model based on the selected features. 

Compared with the standard derivation of accuracy measurements for single estimators, 

the uncertainty of an ensemble estimator has significant decrease. 

Table 4. Similarity between Features Selected by SBMLR 

# 2 3 4 5 6 7 8 9 10 

1 0.270 0.209 0.431 0.172 0.088 0.305 0.172 0.271 0.087 

2 
 

0.291 0.033 0.349 0.316 0.483 0.446 0.290 0.292 

3 
  

0.326 0.465 0.341 0.055 0.447 0.457 0.370 

4 
   

0.251 0.524 0.249 0.126 0.452 0.368 

5 
    

0.405 0.234 0.538 0.321 0.507 

6 
     

0.294 0.353 0.353 0.455 

7 
      

0.385 0.398 0.250 

8 
       

0.324 0.478 

9 
        

0.325 

Table 5. AOD Regression Accuracy Comparison between a Single Estimator 
and an Ensemble Estimator 

Method Measure Single Ensemble 

Information 
Gain 

Corr 0.8967±0.0025 0.9003±0.0020 

MSE 0.0042±0.0001 0.0040±0.0000 

R2 0.8036±0.0047 0.8104±0.0039 

Fisher Score Corr 0.8955±0.0020 0.8990±0.0018 

MSE 0.0044±0.0001 0.0042±0.0000 

R2 0.8016±0.0036 0.8080±0.0030 

SBMLR Corr 0.8959±0.0020 0.8993±0.0020 

MSE 0.0042±0.0001 0.0041±0.0000 

R2 0.8022±0.0038 0.8087±0.0037 
 

4. Conclusions and Future Work 

The spatial-temporally collocated records between a satellite facility and AERONET 

provide an excellent dataset for construction of a data mining regression model for AOD. 

However, the remote sensing data collects many attribute observations. With such size of 

collocated records and feature numbers, a feature selection method produces unstable 

results and it leads to the loss of AOD regression accuracy. In this paper, we apply 

instance perturbation on the same feature selection method for several rounds and obtain 

multiple feature selection subsets. Next, we aggregate the regression estimators based on 

the different subsets together and make an ensemble estimator. We test the proposed 

approach on the MODIS-AERONET collocated dataset over 197 global sites for 2 years. 

Experimental results show that an ensemble estimator achieves significantly more 

accurate AOD retrievals than a single estimator. Meanwhile, the standard derivation of 

the ensemble estimator suggests that it is more robust than these single estimators as well. 
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The ensemble estimator technique might open many new avenues for further research. 

For example, we have applied instance perturbation to obtain several feature selectors in 

this paper. Further we will explore multiple other approaches to make variations in the 

feature selectors, such as different feature selection techniques, feature level sensitivity 

perturbation, etc. The measuring of robustness for each feature selection technique and 

regression approach is also an important task in our next research. 
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