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Abstract 

Compressive tracking is considerably popular in the visual tracking community in 

recent years. The very strong theoretic support from compressive sensing motivates many 

researchers to follow and there are a wide range of compressive trackers with attractive 

performances. The goal of this paper is to overview some of the most recent state-of-the-

art compressive trackers in the literature. First, a variety of compressive trackers are 

thoroughly introduced and summarized. Second, extensive analyses from different 

perspectives, including random measurement matrix, compressive features, feature 

selection strategy and so forth, aim to provide readers a good understanding of the 

strengths and weaknesses of different trackers. Finally, several possible future trends for 

compressive trackers are outlined to hopefully bring some insights to interesting 

researchers. 
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1. Introduction 

Compressive tracking becomes an important branch among the extremely active visual 

tracking community and there are a wide range of compressive trackers demonstrating 

superior performances in diverse real-word applications. Zhang et. al., [1] propose the 

compressive tracking (CT) framework with an appearance model based on features 

extracted in the compressive domain. This milestone work first employs a sparse non-

adaptive measurement matrix to extract the low-dimensional features from a multi-scale 

image feature space with data-independent basis. Then the compressive features are 

classified via a naive Bayes classifier with online update. [2] extends CT with a coarse-to-

fine search strategy to speed up the time-consuming detection procedure. 

In order to improve the CT’s performance when the target object suffers illumination 

variation and cluttered background, extracting more discriminative compressive features 

is crucial. [3] presents a compressive tracker with its appearance model based on fern 

features in the compressive domain in order to track in scenes with light and texture 

changing. Sun et. al., [4] develop a compressive tracker by taking the histogram of 

gradient (HOG) features instead of the generalized Haar features to achieve favorable 

performance when the target object undergoes illumination. Teng et. al., [5] propose a 

compressive tracer that employs two kinds of random measurement matrices to extract 

two complementary good features to track the target object. Lu et. al., [6] makes the 

visual representation more abundant through compressing both intensity and speed up 

robust features (Surf) which have strong power to describe the detailed information like 

gradient and edge. [7] integrates the sample importance into CT within an online multiple 
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instance learning (MIL) strategy and employs the co-training criterion into CT tracker to 

improve the tracking performance. Zeng et. al., [8] propose a compressive tracker whose 

classifier is trained by positive and negative samples that are weighted according to their 

similarity with the constant holistic appearance model. Huang et. al., [9] perform frequent 

affine transformations of training samples to obtain more reliable compressive features. 

In order to improve the CT’s performance when the target object undergoes extreme 

scale change, Zhang et. al., [10] construct a set of measurement matrices of different 

scales offline to perform scale-adaptive compressive tracking. In [11-12], the motion 

information has been integrated into appearance model by introducing motion estimator, 

i.e., optical flow to improve the performance of trackers especially when the target is with 

motion variety. Wu et. al., [13] develop a compressive tracker that integrates an improved 

appearance model based on normalized rectangle features extracted in the adaptive 

compressed domain into the bootstrap filter. There are also some other work that naturally 

integrates their compressive trackers into Kalman filter framework [14] and particle filter 

framework [15-17]. 

In order to improve the CT’s performance when the target object suffers partial or even 

full occlusion, part-based appearance models are usually constructed. Zhu et. al., [18] 

propose a compressive tracking method based on oversaturated sub-region classifiers. 

[19] takes advantage of the existing online learning appearance model to learning the 

appearance of each and every part and an affine invariant structural constrains between 

these parts are online learnt. In [20], the integrated sparse representation combining 

texture, intensity and local special information from sub-regions is proposed to model the 

target object. 

Furthermore, Luo et. al., [21] utilize sparse Toeplitz projection matrix with random 

pitches to extract the compressive features. Then, Mean Shift algorithm is used to 

compute the object candidates’ weights and the weighted Bayes classifier is used to 

determine the reliable object location. In [22], a compressive tracker based on phase 

congruency is proposed. First, the phase congruency transformation of the image in the 

search area is calculated. And then the extracted features from the transformed image are 

used in the classifier to determine the location of the target object. It is well worth noting 

that there are also some compressive trackers [23-27] that are designed for some specific 

application. 

 

2. Compressive Tracking Framework 

In this section, we will give a brief introduction of CT framework. In [1], a very sparse 

measurement matrix is constructed to extract the compressive features for the appearance 

model based on compressive sensing theory: 

v xR                                                                                                                                 (1) 

Where
mx R corresponds to a high-dimensional image space by convolving image 

patch
w*hz R with a set of rectangle filters defined as: 
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Where  ,i ix y is the upper left coordinate of the rectangle filter,  1,p w and  1,q h are 

the width and height of the rectangle filter respectively.   nv R corresponds to a low-

dimensional space and n mRR represents the random measurement matrix with entries 

defined as: 
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Practically, the compressive features are a linear combination of generalized Haar-like 

features: 

, ,
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i i k i k

k

v r Rect


                                                                                                                   (4) 

Where Rect is the randomly generated rectangles and NR is the number of 

rectangles, ,i kr is randomly produced from 1 to -1. Then by assuming all elements in v are 

independently distributed, the confidence ( )H v can be achieved via naive Bayes classifier: 
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 0,1Y  represents the binary sample label. The conditional distributions for both the 

molecular and denominator in Equation 5 are assumed to be Gaussian distribution where: 
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The classifier parameters are updated by: 
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0  is the learning parameter,   
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the maximal response classified by H represents the tracking location in the current frame. 

 

3. Compressive Trackers 

In this section, we will focus on introducing and summarizing some most recent state-

of-the-art compressive trackers from different perspectives, including random 

measurement matrix, compressive features, feature selection strategy and so forth, they 

are sequentially discussed in Section 2.1 to Section 2.3 respectively. 

 

3.1. Random Measurement Matrix and Compressive Features 

Random projection and random measurement matrix are two most important 

elements involved with compressive trackers. Ideally, we expect measurement 

matrix R satisfies the Johnson-linden Strauss (JL) lemma [28] so that x can be 

reconstructed with minimum error from v with high probability if x is sparse signal 

such as audio or image. A variant condition of JL lemma in compressive tracking is 

restricted isometry property (RIP) [29] that approximately preserves the distances 

between any pairs of sparse signals when projecting those high-dimensional signals 

onto low-dimensional space. 
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A typical measurement matrix that satisfies RIP is the Gaussian matrix *G n mRR  

where  ~ 0,1ijr N , as used in some compressive sensing-based work [30-32]. However, 

Gaussian measure matrix is very dense, the memory and computational loads are very 

expensive when m  is large. To ease this problem, [1-3] and [13] employ the very sparse 

random measurement matrix S
R  defined in Equation 3. When 3s  , S

R  satisfies the JL 

lemma, and two thirds of the computation can be avoided. In [33], it is proved that for 

 s o m , the random projections are almost as accurate as the random Gaussian 

measurement matrix. 

Due to the fact that compressive trackers only need to extract almost all the 

information of the original image patch and not need to reconstruct the original image 

with minimum error from the low-dimensional features, there are some random 

measurement matrices that obtain favorable results but do not satisfy JL lemma. [21] 

constructs a sparse Toeplitz measurement matrix T
R  with random pitches: 
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i j i j  R R  and ir ( i k , k is the selected 
1N M 


 indexes from 1 to 1N M   

and  is the random pitch ) is independent and identically distributed Gaussian. [21] also 

proves that Toeplitz measurement matrix can obtain lower construction error than 

Gaussian measurement matrix, and the overall computational complexity is about1/of 

the Gaussian measurement matrix. [20] utilizes a sparse measurement matrix P
R defined 

as: 
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Compared to S
R which satisfies JL lemma, only the signs of some elements are changed 

(from +1 to -1, or from -1 to +1). The cost for construction does not increase, but yields 

superior performance. 

Different measurement matrices extract different compressive features, and further 

construct different appearance models. More specifically, by Equation 4, the compressive 

features are a linear combination of generalized Haar-like features. For measurement 

matrices G
R and T

R , the compressive features are directly weighted sum of some trivial 

templates. For each row ir in S
R , the possibility ip that elements in ir are or 1 or all -1 can 

be calculated as: 
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Since   iv is the weighed sum of N rectangle filters, so if all elements in ir are 1 or -

1,   iv reflects the homogeneity between the N rectangle filters, with possibility of 0.3. On 

the contrary, if elements in ir have both 1 and -1, then   iv reflects the heterogeneity between 
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the N rectangle filters, with possibility of 0.7. Therefore   iv highlights the difference among 

the randomly generated patches, which is in a way similar to texture features [5]. 

However, for each row ir in p
R , it can easily be computed by Equation 10 that 

0.5ip  now, meaning that both the texture and intensity features are given equal 

probability when performing random projections. 

Moreover, there are some further efforts to extract the more discriminative 

compressive features. [27] and [5] first employ S
R (defined as Equation 3) to extract the 

compressive features which emphasize more on texture, and then employ another 

measurement matrix S 
R (defined as Equation 11) to extract the compressive features 

which emphasize more on intensity. 
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Finally, these two compressive features are concatenated. Furthermore, [6] presents a 

two-stage measurement matrices (defined as Equation 12 ) to extract the compressive Surf 

features which emphasize more on gradient and edge features of the target object. 
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3.2. Feature Selection Strategy 

Having obtained the low-dimensional compressive features for the target object via 

efficient feature extraction, several feature selection techniques are commonly used in 

recent compressive trackers in the literature. Overall, feature selection strategy is 

employed to favor the more discriminative features in the feature pool, thus constructing a 

more effective and stable appearance model. [20] uses online MIL feature selection 

strategy to sequentially chosen K most discriminative features kh from the feature pool by 

keeping minimizing the loss function, which is defined by: 
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ip is expressed by Noisy-OR model: 
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And   n

ij ij n ijp H h x  denotes the sigmoid function. [23] presents a weighted MIL 

feature selection scheme by defining the positive and negative bag probability as follows: 
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Where X   and X   indicate positive and negative bag, N and L are the number of 

positive instances in positive bag and negative instances in negative bag,
1 jw is a monotone 
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decreasing function     *

1 1 11/ c expj t j tw l x l    , where c is a normalization 

constant, tl and *

1tl 
denote object location respectively. Then greedily select K features from 

the feature poolΩ by maximizing the log likelihood function of the bags: 

 
1 2
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}, 1Mk f f f f kf H h   L                                                                                                 (16) 
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H y p y p L  is the log likelihood function of the 

bags. In the next step, [23] utilize the first-order Taylor expansion to approximately 

maximize the log likelihood function of the bags as follows: 
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is the functional 

derivative in an inner product space. [5] assign different weights to different features 

according to their discriminability. Specifically, similar to Equation 5, they model the 

naive Bayes classifier as: 
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1iw and 2iw can be calculated as i i
i

i i i i

TP FN
w

TP FP TN FN



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, where iTP means the number 

of positive examples that flagged as positive, iFP means the number of negative examples 

that flagged as positive, iTN means the number of negative examples that flagged as 

negative, iFN means the number of positive examples that flagged as negative 

respectively. It can be clearly seen that this strategy treats the features discriminatively 

according to their cumulative performances. That is, the weights of the more 

discriminative features are increased and the less discriminative counterparts are 

decreased. This strategy is easy to implement and strikes a good trade-off between 

accuracy and efficiency. 

Another feature selection technique is to measure the Hellinger distances between a 

feature’s distributions of positive and negative samples, and then analyze the feature’s 

ability of discriminating the object from the background [6]. Suppose  1 xf and  0 xf are 

the probability density function (PDF) for samples being positive 1P and negative 0P , the 

Hellinger distance is defined as: 

      
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2 1 0
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1
, x x

2
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It can be easily observed that  0,1h . Generally speaking, the higher value of  

indicates higher distance of two distributions, yielding better separation of the feature 

discriminability. 

 

3.3. Particle Filter Framework 

Recently, there are some compressive trackers [11-17] developed within particle filter 

framework. Then the main goal for these compressive trackers is to design a dynamic and 

observation model for the tracking system. In the prediction stage, [13] use 2-order auto-

regressive model to propagate the samples in the previous frame: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 9, (2016) 

 

 

Copyright ⓒ 2016 SERSC   119 

     1 22k k k kx i x i x i w                                                                                                 (20) 

Where  kx i  represents the state vector of the i th particles at time step k and kw is a 

three-dimension, zero-mean, white-noise sequence independent of past and current states 

with three different standard deviations for each dimension. Thus this dynamic model 

considers the previous two stages of each sample to fuse the velocity information of the 

target. In the update stage, observation model defined as Equation 21 is used to estimate 

the weights for each sample: 
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Where  H iv  represents the classifier response as computed through Equation 5 of 

the i th particles. To further avoid particle degeneracy, the prior particle set is re-sampled 

according to the weights of the particles obtained by the observation model, where for any 

particle index j ,     
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
. The re-sampled particle set retains 

particles whose classifier responses are relatively high and reallocate the distribution of 

the particles. Motivated by [13-15] employs an extended observation model which further 

takes marginal color feature into account: 

     *p | i exp H E( )i i

k kz x v v                                                                                          (22) 

Where E is a function to compute the color similarity between the templates and the 

candidate image patch. 

 

4. Future Trends 

Overall, compressive trackers have obtained many attractive performances in many 

practical applications. However, there are margins that still push interesting researchers to 

explore. Some existing compressive trackers track the scale by integrating their trackers 

into particle filter framework, most of the results tend to be not stable enough mainly 

because it is not easy to design an observation model which could consider both the 

location and scale. Another interesting topic is how to exploit the spatial-temporal 

relationships between the object of interest and its local context. These relationships are 

extremely useful especially when we intend to model the statistical correlation between 

the low-level features, such as image intensity and position, from the target and its 

surrounding regions. The last but not the least, the objective of tracking is to locate the 

object of interest from frame to frame and the objective of classification is to predict the 

possibility of the instance label as positive or negative. Therefore, these two objectives are 

not consistent during tracking, which may lead to inaccurate estimation by maximizing 

the classifier response, which further makes the tracking task more challenging. 
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