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Abstract 

It is of great importance to classify all kinds of hypersurface in different space forms. 

In this paper, we focus on the hypersurfaces foliated by time-like pseudo circles. In order 

to complete the classification, we study the moduli space 𝐐2
3 of time-like pseudo circles 

in 𝐑1
3. Firstly, We build the moduli space 𝐐2

3 of time-like pseudo circles in 𝐑1
3 which is 

definitely a Riemannian manifold. Secondly, we build Riemannian metric, Riemannian 

connections in 𝐐2
3 and prove that those are M�̈�bius invariant. Thirdly, up to M�̈�bius 

transformation, all the geodesics in 𝐐2
3 are determined to form a one-parameter family 

of time-like pseudo circles on a generalized helicoid in space form 

𝐌1
3(1),  𝐌1

3(−1),𝐌1
3(0) , resp. Moreover, we show that mean curvature of those 

hypersurfaces are zero in three space forms respectively. Finally by software 

Mathematica and Jreality, we show some special hypersurfaces foliated by time-like 

pseudo circles. 

 

1. Introduction 

Let 𝐑2
5 be the 5-dimensional Lorentz space, equipped with the inner product 

 〈𝑋, 𝑌〉 = 𝑋1𝑌1 + 𝑋2𝑌2 + 𝑋3𝑌3 − 𝑋4𝑌4 − 𝑋5𝑌5, 𝑋, 𝑌 ∈ 𝐑2
5.  

By O(3,2) we denote the Lorentz group in 𝐑2
5 which preserves the light-cone 

 𝐂2
4 = {𝑋 ∈ 𝐑2

5|〈𝑋, 𝑋〉 = 0}. 

Let 𝐒2
4 be the de-sitter hypersphere 𝐒2

4 = {𝑋 ∈ 𝐑2
5|〈𝑋, 𝑋〉 = 1}. It is easy to check that 

there is a 1 − 1  correspondence between 𝐒2
4  and the moduli space 𝐌  of pseudo 

spheres   

             𝑆1
2(𝑝, 𝑟) = {𝑋 ∈ 𝐑1

3|〈𝑋 − 𝑝, 𝑋 − 𝑝〉 = 1}  

and Lorentz planes 

 𝐿(𝜔, 𝛿) = {𝑋 ∈ 𝐑1
3|〈𝑋, 𝜔〉 = 𝛿, 〈𝛿, 𝛿〉 = 1},  

which is shown as: 

                             𝛾:𝐌 → 𝐒2
4 

𝑆1
2(𝑝, 𝑟) →

1

𝑟
(
1−〈𝑝,𝑝〉+𝑟2

2
, 𝑝,

1+〈𝑝,𝑝〉−𝑟2

2
)                                       (1) 

𝐿(𝜔, 𝛿) → (−𝛿,𝜔, 𝛿) 

Any points in 𝐑1
3 can also be injected into 𝐑2

5 by                             (2) 

                             γ:𝐑1
3 → 𝐂2

4 

𝑥 → (
1−〈𝑥,𝑥〉

2
, 𝑥,

1+〈𝑥,𝑥〉

2
) ∈ 𝐑2

5                                               (3) 

It follows the fact that 𝑥 ∈ 𝑆1
2(𝑝, 𝑟) if and only if 〈𝛾(𝑥), 𝑋〉 = 0. And two pseudo 

spheres 𝑒1 , 𝑒2  have an angle 𝜃  of intersection if and only if 𝑒1 , 𝑒2 ∈ 𝐒2
4  satisfy 

〈𝑒1 , 𝑒2〉 = cos 𝜃. In particular, two pseudo spheres intersect orthogonally if and only if 
〈𝑒1 , 𝑒2〉 = 0. 
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Define time-like hyperbolic curves in 𝐑1
3 as time-like pseudo circles. Given any two 

pseudo spheres which intersect orthogonally, the intersection must be a time-like pseudo 

circle; while conversely, given any time-like pseudo circle, it has to be the orthogonal 

intersection of two pseudo spheres. 

Let 𝐐2
3 be the moduli space of time-like pseudo circles in Lorentz space 𝐑1

3. In this 

paper, we show that 𝐐2
3 is a complex 3-manifold, equipped with a Mobius invariant 

Hermit metric ℎ of type (1,2). So the geodesics with respect to the Lorentz metric 

𝑔 = Re(ℎ) on form a one-parameter family of time-like pseudo circles in 𝐑1
3, which is 

so-called generalized helicoid in a space form with zero mean curvature. 

In this paper, our main theorems are: 

Theorem 1.1. Geodesics on (𝐐2
3, 𝑔) are Möbius equivalent to the following: 

(1) The one-parameter family of parallel straight lines, time-like pseudo circles 

origin-centered in a certain plane in 𝐑1
3, or rotating time-like pseudo circles with same 

origin; 

(2) The one-parameter family of time-like pseudo circles lying in a generalized helicoid of 

space form 𝐌1
3(1),  𝐌1

3(−1),𝐌1
3(0). 

Theorem 1.2. Mean curvatures of three generalized helicoids are zero in corresponding 

space forms. 

 

2. Moduli Space of Time-like Pseudo Circles in 𝐑𝟏
𝟑  

Let 𝐂2
5 be the complex 5-space, equipped with inner product 

 〈𝑍,𝑊〉 = 𝑍1𝑊1 + 𝑍2𝑊2 + 𝑍3𝑊3 − 𝑍4𝑊4 − 𝑍5𝑊5, 𝑍,𝑊 ∈ 𝐂2
5, 

and 𝑁2
4 be a complex submanifold in 𝐂2

5 defined by 

 𝑁2
4 ≜ {𝑍 ∈ 𝐂2

5|〈𝑍, 𝑍〉 = 0, 〈𝑍, �̅�〉 > 0}.  

We define the horizontal subspace 𝐻𝑍 in 𝑇𝑍𝑁2
4 by 

 𝐻𝑍 ≜ {𝑊 ∈ 𝐂2
5|〈𝑊, 𝑍〉 = 0, 〈𝑊, �̅�〉 = 0}.  

Then we have a complex orthogonal decomposition 

 𝐂2
5 = 𝐂�̅� ∪ 𝑇𝑍𝑁2

4 = 𝐂�̅� ∪ 𝐂𝑍 ∪ 𝐻𝑍.  

Let 𝐐2
3 be the complex 3-manifold defined by 𝐐2

3 ≜ {[𝑍]|〈𝑍, 𝑍〉 = 0, 〈𝑍, �̅�〉 > 0}, 
where [𝑍] is the equivalent class of [𝑍] ∈ 𝑁2

4 for the equivalent relation 𝑍~𝑊 if and 

only if 𝑍 = 𝑘𝑊, 𝑘 ∈ 𝐂\{0}. 
Then we have complex line bundle 𝜋:𝑁2

4 → 𝐐2
3  with 𝑑𝜋𝑍

−1(0) = 𝐂𝑍, 𝑑𝜋𝑍: 𝐻𝑍 ≅
𝑇[𝑍]𝐐2

3 being an isomorphism. The complex structure J for 𝐐2
3 is determined by 𝑑𝜋 ° 𝑖 =

𝐽 ° 𝑑𝜋. 

For any [𝑍] ∈ 𝐐2
3 we may assume that 𝑍 = 𝑒1 + 𝑖𝑒2 and 〈𝑍, 𝑍〉 = 2. So we get  

                        〈𝑒1, 𝑒1〉 = 〈𝑒2, 𝑒2〉 = 1 , 〈𝑒1, 𝑒2〉 = 0 

Thus {𝑒1, 𝑒2} are two orthogonal pseudo spheres in 𝐑1
3, and the intersection of them 

gives a time-like pseudo circle in 𝐑1
3. Conversely, let 𝛾 be and time-like pseudo circle in 

𝐑1
3  as orthogonal intersections of two pseudo spheres {𝑒1, 𝑒2} , then 𝑍 = 𝑒1 + 𝑖𝑒2 

satisfies 〈𝑍, 𝑍〉 = 0, 〈𝑍, �̅�〉 = 2  and thus [𝑍] ∈ 𝐐2
3 . For another pair of pseudo 

spheres{𝑒1̃, 𝑒2̃}, also orthogonally intersecting into 𝛾, there must have �̃� = 𝑒1̃ + 𝑖𝑒2̃ =
𝑒𝑖𝛼𝑍, then [𝑍] = [�̃�]. 

Specifically, without loss of generality, we set the Lorentz plane which lies on be 
{(𝑡, 0, 𝑠)|𝑡, 𝑠 ∈ 𝐑}. Select three points randomly on 𝛾: 

 𝑥1 = (cosh𝑢 , 0, sinh𝑢),   
 𝑥2 = (cosh(𝑢 + 1) , 0, sinh(𝑢 + 1)) 
 𝑥3 = (cosh(𝑢 + 2) , 0, sinh(𝑢 + 2)). 

Due to (3), we have 

 𝛾(𝑥1) = (0, cosh𝑢 , 0, sinh𝑢 , 1), 
  𝛾(𝑥2) = (0, cosh(𝑢 + 1) , 0, sinh(𝑢 + 1), 1), 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC  113 

 𝛾(𝑥3) = (0, cosh(𝑢 + 2) , 0, sinh(𝑢 + 2) , 1). 
Consider the linear space 𝐕 = Span{𝛾(𝑥1), 𝛾(𝑥2), 𝛾(𝑥3)}, we claim that dim𝐕 = 3. 

Otherwise there exists 𝑎, 𝑏, 𝑐 ∈ 𝐑 but not all being zero satisfying 𝑎𝛾(𝑥1) + 𝑏𝛾(𝑥2) −
𝑐𝛾(𝑥3) = 0. Noticing 𝑐 = 𝑎 + 𝑏, we have 

 𝑎cosh(𝑢 + 1) + 𝑏cosh(𝑢 + 1) = (𝑎 + 𝑏) cosh(𝑢 + 2),  

 𝑎 sinh(𝑢 + 1) + 𝑏 sinh(𝑢 + 1) = (𝑎 + 𝑏) sinh(𝑢 + 2). 

Therefore, 𝑎2 + 𝑏2 + 2𝑎𝑏cosh1 = (𝑎 + 𝑏)2
𝑦𝑖𝑒𝑙𝑑𝑠
→    cosh1 = 1. Contradiction! 

Noticing that {𝛾(𝑥1), 𝛾(𝑥2), 𝛾(𝑥3),  𝑋1,  𝑋2} and {𝛾(𝑥1), 𝛾(𝑥2), 𝛾(𝑥3), 𝑋1
′ ,  𝑋2

′ } 
are two basis of 𝐑2

5 in which { 𝑋1,  𝑋2} and {𝑋1
′ ,  𝑋2

′ } are both orthogonal subsets, we 

get 𝑍′ = 𝑋1
′ + 𝑖𝑋2

′ = 𝑒𝑖𝛼𝑍
𝑦𝑖𝑒𝑙𝑑𝑠
→    [𝑍] = [�̃�]. It follows that the complex 3-manifold 𝐐2

3 

defined by (4) is exactly the moduli space of time-like pseudo circles in 𝐑1
3. The action of 

Möbius group on which is equivalent to the action of O+(3,2) on 𝐐2
3, which is subgroup 

of O(3,2). 
A Hermit metric on 𝐐2

3 can be defined globally by ℎ = ℎ𝑍, shown as 

 ℎ𝑍 =
1

〈𝑍,𝑍〉
〈𝑑𝑍 −

〈𝑑𝑍,𝑍〉

〈𝑍,𝑍〉
𝑍, 𝑑�̅� −

〈𝑑𝑍,𝑍〉

〈𝑍,𝑍〉
�̅�〉, 

which makes 𝑑𝜋𝑍 an isometric map. Its real part 𝑔 = Re(ℎ) is a Möbius invariant 

Lorentz metric of type (2,4) with Levi-Civita connection reads 

∇𝑋𝑌 = 𝑑𝜋𝑍 (𝑋(𝑌(𝑍)) −
〈𝑋(𝑍),𝑍〉

〈𝑍,𝑍〉
𝑌(𝑍) −

〈𝑌(𝑍),𝑍〉

〈𝑍,𝑍〉
𝑋(𝑍) +

〈𝑋(𝑍),𝑌(𝑍)〉

〈𝑍,𝑍〉
�̅�)              (4) 

Moreover, we claim that it is independent of the choice of the local section Z, which 

means it is globally defined. In fact, for any 𝑋, 𝑌 ∈ 𝑇𝑍𝐐2
3
, and any smooth function 𝑓, we 

have  

∇𝑋𝑌 − ∇𝑌𝑋 = 𝑑𝜋([𝑋, 𝑌](𝑍)) = [𝑋, 𝑌], 

∇𝑓𝑋𝑌 = 𝑑𝜋 (𝑓𝑋(𝑌(𝑍)) −
〈𝑓𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑌(𝑍)−

〈𝑌(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑓𝑋(𝑍)+

〈𝑓𝑋(𝑍), 𝑌(𝑍)〉

〈𝑍, �̅�〉
�̅�) = 𝑓 ∙ ∇𝑋𝑌, 

∇𝑋(𝑓𝑌) = 𝑑𝜋 (𝑋(𝑓𝑌(𝑍)) −
〈𝑋(𝑍),�̅�〉

〈𝑍,�̅�〉
𝑓𝑌(𝑍)−

〈𝑓𝑌(𝑍),�̅�〉

〈𝑍,�̅�〉
𝑋(𝑍)+

〈𝑋(𝑍),𝑓𝑌(𝑍)〉

〈𝑍,�̅�〉
�̅�) = 𝑓 ∙ ∇𝑋𝑌 +

𝑋(𝑓) ∙ 𝑌. 

That makes ∇ a Riemannian connection. Secondly, we will show its compatibility with 

metric 𝑔. Define 𝑋∗ = 𝑋(𝑍) −
〈𝑋(𝑍),𝑍〉

〈𝑍,𝑍〉
𝑍 ∈ 𝐻𝑍, then 𝑑𝜋(𝑋∗) = 𝑑𝜋(𝑋(𝑍)) = 𝑋, ℎ(𝑋, 𝑌) =

ℎ(𝑋∗,𝑌∗̅̅ ̅). Thus,  

∇∗𝑊𝑋(𝑍) = 𝑊(𝑋(𝑍)) −
〈𝑊(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑋(𝑍) −

〈𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑊(𝑍) +

〈𝑊(𝑍), 𝑋(𝑍)〉

〈𝑍, �̅�〉
�̅�

−
〈𝑊(𝑋(𝑍)), �̅�〉

〈𝑍, �̅�〉
𝑍 +

2〈𝑊(𝑍), �̅�〉〈𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑍, 

yields
→   〈∇∗𝑊𝑋(𝑍), 𝑌

∗(�̅�)〉 = 〈𝑊(𝑋∗(𝑍)), 𝑌∗(�̅�)〉 −
〈𝑊(𝑍), �̅�〉

〈𝑍, �̅�〉
〈𝑋∗(𝑍)), 𝑌∗(�̅�)〉, 

〈∇∗𝑊𝑌(𝑍), 𝑋
∗(�̅�)〉 = 〈𝑊(𝑌∗(𝑍)), 𝑋∗(�̅�)〉 −

〈𝑊(𝑍), �̅�〉

〈𝑍, �̅�〉
〈𝑌∗(𝑍)), 𝑋∗(�̅�)〉. 

By 〈𝑌∗(�̅�), 𝑍〉 = 〈𝑌∗(�̅�), �̅�〉 = 0, we get 

𝑊(𝑔(𝑋, 𝑌)) = −
〈𝑊(𝑍), �̅�〉 + 〈𝑊(�̅�), 𝑍〉

2〈𝑍, �̅�〉2
(〈𝑋∗(𝑍)), 𝑌∗(�̅�)〉 + 〈𝑌∗(𝑍)), 𝑋∗(�̅�)〉)

+
1

2〈𝑍, �̅�〉
(〈𝑊(𝑋∗(𝑍)), 𝑌∗(�̅�)〉 + 〈𝑋∗(𝑍),𝑊(𝑌∗(�̅�))〉

+ 〈𝑊(𝑌∗(𝑍)), 𝑋∗(�̅�)〉 + 〈𝑌∗(𝑍),𝑊(𝑋∗(�̅�))〉) 

=
1

2〈𝑍, �̅�〉
(〈∇∗𝑊𝑋(𝑍), 𝑌

∗(�̅�)〉 + 〈∇∗𝑊𝑋(�̅�), 𝑌
∗(𝑍)〉 + 〈∇∗𝑊𝑌(𝑍), 𝑋

∗(�̅�)〉

+ 〈∇∗𝑊𝑌(�̅�), 𝑋
∗(𝑍)〉) 
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= 𝑔(∇𝑊𝑋, 𝑌) + 𝑔(∇𝑊𝑌, 𝑋). 
Finally, we assume that 𝑍∗be another section of 𝜋. There must exist some smooth 

function 𝜆 such that 𝑍∗ = 𝜆𝑍 on the intersection of both 𝑍 and 𝑍∗̅̅ ̅. Therefore, 

∇𝑋𝑌 = 𝑑𝜋𝑍∗ (𝑋(𝑌(𝑍
∗)) −

〈𝑋(𝑍∗), 𝑍∗̅̅ ̅〉

〈𝑍∗, 𝑍∗̅̅ ̅〉
𝑌(𝑍∗) −

〈𝑌(𝑍∗), 𝑍∗̅̅ ̅〉

〈𝑍∗, 𝑍∗̅̅ ̅〉
𝑋(𝑍∗) +

〈𝑋(𝑍∗), 𝑌(𝑍∗)〉

〈𝑍∗, 𝑍∗̅̅ ̅〉
𝑍∗̅̅ ̅) 

=  𝑑𝜋𝜆∙𝑍 (𝜆 ∙ 𝑋(𝑌(𝑍)) + 𝑋(𝜆)𝑌(𝑍) + 𝑌(𝜆)𝑋(𝑍) + 𝑋𝑌(𝜆) ∙ 𝑍 − 𝜆 ∙
〈𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑌(𝑍)

− 𝑋(𝜆)𝑌(𝑍) − 𝑌(𝜆) ∙ (
〈𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
+
𝑋(𝜆)

𝜆
)𝑍 − 𝜆 ∙

〈𝑌(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑋(𝑍)

− 𝑌(𝜆)𝑋(𝑍) − 𝑋(𝜆) ∙ (
〈𝑌(𝑍), �̅�〉

〈𝑍, �̅�〉
+
𝑌(𝜆)

𝜆
)𝑍 + 𝜆 ∙

〈𝑋(𝑍), 𝑌(𝑍)〉

〈𝑍, �̅�〉
�̅�) 

= 𝑑𝜋𝜆∙𝑍 (𝜆 ∙ 𝑋(𝑌(𝑍)) −
〈𝑋(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑌(𝑍) −

〈𝑌(𝑍), �̅�〉

〈𝑍, �̅�〉
𝑋(𝑍) +

〈𝑋(𝑍), 𝑌(𝑍)〉

〈𝑍, �̅�〉
�̅�) + 𝑑𝜋𝜆∙𝑍(𝜆

∙ 𝑍) 

= 𝑑𝜋𝜆∙𝑍 (𝜆 ∙ 𝑋(𝑌(𝑍)) −
〈𝑋(𝑍),𝑍〉

〈𝑍,𝑍〉
𝑌(𝑍) −

〈𝑌(𝑍),𝑍〉

〈𝑍,𝑍〉
𝑋(𝑍) +

〈𝑋(𝑍),𝑌(𝑍)〉

〈𝑍,𝑍〉
�̅�),  

which indicates that this connection is globally defined. ∎ 

 

3. Geodesics on Moduli Space 𝐐𝟐
𝟑 

In this section we determine all the geodesics on (𝐐2
3, 𝑔). 

Let 𝛾(𝑡) be a geodesic on (𝐐2
3, 𝑔), 𝑍:𝑈 → 𝑁2

4 be a local section of 𝜋:𝑁2
4 → 𝐐2

3. 

Then 𝑐(𝑡) = 𝑍 ° 𝛾(𝑡)is a curve in 𝑁2
4. For another local section �̃�, we have 𝑐∗(𝑡) =

𝑘(𝑡)𝑐(𝑡) for some smooth function 𝑘(𝑡) ≠ 0. Since 

〈𝑐∗
′(𝑡), 𝑐∗(𝑡)̅̅ ̅̅ ̅̅ 〉 = 𝑘(𝑡)̅̅ ̅̅ ̅̅ (𝑘′(𝑡)〈𝑐(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉, 𝑘(𝑡)〈𝑐′(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 ).                      (5) 

We may take an 𝑘(𝑡) ≠ 0  adapted such that  𝑐′(𝑡) ∈ 𝐻𝑐(𝑡) , or equivalently, 

〈𝑐′(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 = 0. Therefore we call such 𝑐(𝑡) the horizontal lift of 𝛾(𝑡), which from (5) 

is uniquely determined up to a constant 𝑘 ∈ 𝐂\{0}. 
For a horizontal lift, (5) yields 

 ∇𝛾′(𝑡)𝛾
′(𝑡) = 𝑑𝜋𝑐(𝑡) (𝑐

′′(𝑡) +
〈𝑐′(𝑡),𝑐′(𝑡)〉

〈𝑐(𝑡),𝑐(𝑡)̅̅ ̅̅ ̅̅ 〉
𝑐(𝑡)̅̅ ̅̅ ̅) = 0.  

Since 𝑑𝜋𝑍
−1(0) = 𝐂𝑐(𝑡), we can find 𝜇(𝑡) such that  

𝑐′′(𝑡) +
〈𝑐′(𝑡),𝑐′(𝑡)〉

〈𝑐(𝑡),𝑐(𝑡)̅̅ ̅̅ ̅̅ 〉
𝑐(𝑡)̅̅ ̅̅ ̅ + 𝜇(𝑡)𝑐(𝑡) = 0.  

Multiplying this equation with 𝑐(𝑡)̅̅ ̅̅ ̅, we can solve 𝜇(𝑡) and get the following equation: 

𝑐′′(𝑡) +
〈𝑐′(𝑡),𝑐′(𝑡)̅̅ ̅̅ ̅̅ ̅〉

〈𝑐(𝑡),𝑐(𝑡)̅̅ ̅̅ ̅̅ 〉
𝑐(𝑡) +

〈𝑐′(𝑡),𝑐′(𝑡)〉

〈𝑐(𝑡),𝑐(𝑡)̅̅ ̅̅ ̅̅ 〉
𝑐(𝑡)̅̅ ̅̅ ̅ = 0.                                 (6) 

Using 〈𝑐′(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 = 0 and (6), it is easy to verify that 

{
 
 

 
           〈𝑐′(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 + 〈𝑐′(𝑡)̅̅ ̅̅ ̅̅ , 𝑐(𝑡)〉 = 0

yields
→   〈𝑐(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 = const;

                           2〈𝑐′′(𝑡), 𝑐′(𝑡)〉 = 0
yields
→   〈𝑐′(𝑡), 𝑐′(𝑡)〉 = 0;

〈𝑐′′(𝑡)̅̅ ̅̅ ̅̅ ̅, 𝑐′(𝑡)〉 + 〈𝑐′′(𝑡), 𝑐′(𝑡)̅̅ ̅̅ ̅̅ 〉 = 0
yields
→   〈𝑐′(𝑡), 𝑐′(𝑡)̅̅ ̅̅ ̅̅ 〉 = 0.

                (7) 

Taking another horizontal lift  𝑘𝑐(𝑡) for some constant  𝑘 ∈ 𝐂\{0} , we may 

assume 〈𝑐(𝑡), 𝑐(𝑡)̅̅ ̅̅ ̅〉 = 〈𝑐(0), 𝑐(0)̅̅ ̅̅ ̅̅ 〉 = 2. Such horizontal lift 𝑐(𝑡) is determined up to a 

change 𝑐(𝑡) → 𝑒𝑖𝜃𝑐(𝑡) for some constant 𝜃 ∈ 𝐑. We write 𝑐(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡),.thus we 

get 
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{
𝑢′′(𝑡) +

1

2
(〈𝑐′(0), 𝑐′(0)̅̅ ̅̅ ̅̅ ̅〉 + 〈𝑐′(0), 𝑐′(0)〉)𝑢(𝑡) = 0

𝑣′′(𝑡) +
1

2
(〈𝑐′(0), 𝑐′(0)̅̅ ̅̅ ̅̅ ̅〉 − 〈𝑐′(0), 𝑐′(0)〉)𝑢(𝑡) = 0

 ,                         (8) 

with initial value  

{
〈𝑢(0), 𝑢(0)〉 = 〈𝑣(0), 𝑣(0)〉 = 1

〈𝑢(0), 𝑣(0)〉 = 0
.                                           (9) 

Noticing that {𝑢(0), 𝑣(0)} is orthogonal to {𝑢′(0), 𝑣′(0)}, we have to consider the two 

cases that 𝑢′(0) and 𝑣′(0) are linearly dependent or independent. 

 

3.1. {𝒖′(𝟎), 𝒗′(𝟎)} are Linearly Dependent 

Select certain 𝜃 such that 𝑣′(0) = 𝑘𝑢′(0) be a real vector, or 𝑣′(0) = 0. With arc 

length parametric transformation 𝑡 → 𝑎𝑡, 𝑡 ∈ 𝐑 such that 𝐾 = 〈𝑢′(0), 𝑣′(0)〉 = 1, 0 or −
1, we get 

(1)                             {
𝑢;;(𝑡) + 𝐾𝑢(𝑡) = 0 

𝑣 ;;(𝑡) = 0
, 

 

3.1.1. 𝑲 = 𝟏. We get the solution to (10), which is: 

                        {
𝑢(𝑡) = 𝑢(0) cos 𝑡 + 𝑢′(0) sin 𝑡

𝑣(𝑡) = 𝑣(0)
. 

Take a Möbius transformation such that 

 𝑢(0) = (0,−1,0,0,0), 𝑢′(0) = (0,0,1,0,0), 𝑣(0) = (1,0,0,0,0).  

Then 𝑢(𝑡) represents one-parameter Lorentz planes 𝐿((− cos 𝑡 , sin 𝑡, 0), 0), 𝑡 ∈ 𝐑 

in 𝐑1
3, with 𝑣(𝑡) representing a pseudo sphere 𝑆1

2((0,0,0), 1) in 𝐑1
3. The intersection is 

one-parameter time-like pseudo circles in rotating Lorentz planes with same center and 

radius: 

 (cosh 𝑠 sin 𝑡 , cosh 𝑠 cos 𝑡 , sinh 𝑠), 𝑠, 𝑡 ∈ 𝐑. 

3.1.2. 𝑲 = 𝟎. We get the solution to (10), which is: 

                        {
𝑢(𝑡) = 𝑢(0) + 𝑢′(0)𝑡

𝑣(𝑡) = 𝑣(0)
 

Take a Möbius transformation such that 

 𝑢(0) = (0,0,1,0,0), 𝑢′(0) = (−1,0,0,0,1), 𝑣(0) = (0,1,0,0,0).  

Then 𝑢(𝑡) represents one-parameter Lorentz planes 𝐿((0,1,0), 𝑡), 𝑡 ∈ 𝐑 in 𝐑1
3, with 

𝑣(𝑡) representing Lorentz plane 𝐿((1,0,0), 0) in 𝐑1
3. The intersection is one-parameter 

time-like parallel lines in Lorentz plane: 

 (0, 𝑡, 𝑠), 𝑠, 𝑡 ∈ 𝐑. 

3.1.3. 𝑲 = −𝟏. We get the solution to (10), which is: 

                        {
𝑢(𝑡) = 𝑢(0) cosh 𝑡 + 𝑢′(0) sinh 𝑡

𝑣(𝑡) = 𝑣(0)
 

Take a Möbius transformation such that 

 𝑢(0) = (1,0,0,0,0), 𝑢′(0) = (0,0,0,0,−1), 𝑣(0) = (0,1,0,0,0). 

Then 𝑢(𝑡) represents one-parameter pseudo spheres 𝑆1
2((0,0,0), 𝑒𝑡), 𝑡 ∈ 𝐑 in 𝐑1

3, 

with 𝑣(𝑡) representing Lorentz plane 𝐿((1,0,0), 0) in 𝐑1
3. The intersection is 

one-parameter time-like pseudo circles in Lorentz plane with the same center but different 

radius:  

𝑒𝑡(0, cosh 𝑠 , sinh 𝑠), 𝑠, 𝑡 ∈ 𝐑. 

 

3.2. {𝒖′(𝟎), 𝒗′(𝟎)} are Linearly Independent  

Take a Möbius transformation 𝑐(𝑡) → 𝑒𝑖𝜃𝑐(𝑡) such that 

 𝑢′(0) →
1

√2
(𝑢′(0) − 𝑣′(0)), 𝑣′(0) →

1

√2
(𝑢′(0) + 𝑣′(0)).  
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Applying (10) we get 

(2)                        {
𝑢;;(𝑡) + 〈𝑢′(0), 𝑢′(0)〉𝑢(𝑡) = 0
𝑣 ;;(𝑡) + 〈𝑣′(0), 𝑣′(0)〉𝑣(𝑡) = 0

 , 

Consider the solution to (11) in three cases: 

 

3.2.1. Span {𝒖′(𝟎), 𝒗′(𝟎)}  is of type  (𝟎, 𝟐) . With arc length parametric: 

transformation  𝑡 → 𝑎𝑡, 𝑡 ∈ 𝐑  such that  〈𝑣′(0), 𝑣′(0)〉 = −1, 〈𝑢′(0), 𝑢′(0)〉 = −𝛼2  for 

some constant α ∈ 𝐑, we get the solution to (11), 

 {
𝑢(𝑡) = 𝑢(0) cosh𝛼𝑡 + 𝑢′(0) sinh𝛼𝑡
𝑣(𝑡) = 𝑣(0) cosh 𝑡 + 𝑣′(0) sinh 𝑡

. 

By Mobius transformation, we get 

 𝑢(0) = (1,0,0,0,0), 𝑣(0) = (0,1,0,0,0), 𝑢′(0) = (0,0,0,0,−𝛼), 𝑣′(0) =
(0,0,0,1,0). 

Then  𝑢(𝑡)  represents one-parameter pseudo spheres  𝑆1
2((0,0,0), 𝑒𝛼𝑡), 𝑡 ∈ 𝐑  and 

𝑣(𝑡)  represents Lorentz spaces  𝐿((cosh 𝑡 , 0, sinh 𝑡), 0), 𝑡 ∈ 𝐑  in  𝐑1
3 . Therefore, the 

intersection will be surface in 𝐑1
3, which writes as 

  𝑒𝛼𝑡(sinh 𝑠 sinh 𝑡 , cosh 𝑠 , sinh 𝑠 cosh 𝑡), 𝑠, 𝑡 ∈ 𝐑.  

Noticing 𝑒𝛼𝑡 cosh 𝑠 > 0, consider metric �̅� =
𝑑𝑥2+𝑑𝑦2−𝑑𝑧2

𝑦2
 in 𝐑1

3, we calculate the 

Christoffel symbols: �̅�12
1 = �̅�22

2 = �̅�33
2 = �̅�23

3 = −
1

𝑦
, �̅�11
2 =

1

𝑦
, with others being zero. Then 

we get a 3-dimensional manifold 𝐌1
3 with constant section curvature −1. For fixed 𝑡0, the 

curve  

𝛾(𝑠) ≜ 𝑒𝛼𝑡0(sinh 𝑠 sinh 𝑡0 , cosh 𝑠 , sinh 𝑠 cosh 𝑡0), 𝑠 ∈ 𝐑  

is a geodesic on surface above, which is a generalized helicoid in  𝐌1
3(−1). With 

Mathematica and Jreality, we get pictures of that surface shown as below: 

 

Figure 1. Surface Drawn by Mathematica 
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Figure 2. Surface Drawn by Jreality 

3.2.2. Span  {𝒖′(𝟎), 𝒗′(𝟎)} is of type (𝟎, 𝟏) . With arc length parametric: 

transformation  〈𝑣′(0), 𝑣′(0)〉 = 0, 〈𝑢′(0), 𝑢′(0)〉 = −𝛼2  for some constant  α ∈ 𝐑 , we 

get the solution to (11),  

 {
𝑢(𝑡) = 𝑢(0) cosh𝛼𝑡 +

𝑢′(0)

𝛼
sinh𝛼𝑡

𝑣(𝑡) = 𝑣(0) + 𝑣′(0)𝑡
 

By Mobius transformation, we get 

 𝑢(0) = (0,1,0,0,0), 𝑣(0) = (0,0,1,0,0), 𝑢′(0) = (0,0,0, 𝛼, 0),
𝑣′(0) = (−1,0,0,0,1). 

Then  𝑢(𝑡) represents Lorentz planes 𝐿((cosh𝛼𝑡 , 0, sinh𝛼𝑡), 0), 𝑡 ∈ 𝐑  and 𝑣(𝑡) 

represents Lorentz spaces 𝐿((0,1,0), 0)  in  𝐑1
3 . Therefore, the intersection will be 

generalized helicoid in 𝐌1
3(0) due to the metric �̅� = 𝑑𝑥2 + 𝑑𝑦2 − 𝑑𝑧2 in 𝐑1

3, 

 (𝑠 sinh𝛼𝑡 , 𝑡, 𝑠 cosh𝛼𝑡), 𝑠, 𝑡 ∈ 𝐑. 

With Mathematica and Jreality, we get pictures of that surface shown as below: 

 

Figure 3. Surface Drawn by Mathematica 
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3.2.3. Span {𝒖′(𝟎), 𝒗′(𝟎)} is of type (𝟏, 𝟏). With arc length parametric: 

transformation 𝑡 → 𝑎𝑡, 𝑡 ∈ 𝐑 such that 〈𝑣′(0), 𝑣′(0)〉 = 1, 〈𝑢′(0), 𝑢′(0)〉 = −𝛼2 for 

some constant α ∈ 𝐑, we get the solution to (11), 

 {
𝑢(𝑡) = 𝑢(0) cos 𝛼𝑡 + 𝑢′(0) sin𝛼𝑡
𝑣(𝑡) = 𝑣(0) cosh 𝑡 + 𝑣′(0) sinh 𝑡

 

By Mobius transformation, we get 

 

 

Figure 4. Surface Drawn by Jreality 

𝑢(0) = (0,−1,0,0,0), 𝑣(0) = (1,0,0,0,0), 𝑢′(0) = (0,0, 𝛼, 0,0), 𝑣′(0) =
(0,0,0,0, −1). 

Then  𝑢(𝑡) represents Lorentz spaces  𝐿((− cos𝛼𝑡 , sin 𝛼𝑡 , 0), 0), 𝑡 ∈ 𝐑  and 𝑣(𝑡) 

represents pseudo spheres 𝑆1
2((0,0,0), 𝑒𝑡), 𝑡 ∈ 𝐑. Therefore, the intersection will be a 

generalized helicoid in 𝐌1
3(1) due to the metric �̅� =

𝑑𝑥2+𝑑𝑦2−𝑑𝑧2

𝑧2
 in 𝐑1

3,  

     𝑒𝑡(cosh 𝑠 sin𝛼𝑡 , cosh 𝑠 cos𝛼𝑡 , sinh 𝑠), 𝑠, 𝑡 ∈ 𝐑. 

With Mathematica and Jreality, we get pictures of that surface shown as below: 

 

Figure 5. Surface Drawn by Mathematica 
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Figure 6. Surface Drawn by Jreality 

This completes the proof of Theorem 1.1. 

Proof of Theorem 1.2. Three cases will be discussed as following: 

Firstly, Consider surface 𝛾(𝑠, 𝑡) = 𝑒𝛼𝑡(sinh 𝑠 sinh 𝑡 , cosh 𝑠 , sinh 𝑠 cosh 𝑡), 𝑠, 𝑡 ∈ 𝐑, 

with corresponding space form  𝐌1
3(−1) and metric �̅� =

𝑑𝑥2+𝑑𝑦2−𝑑𝑧2

𝑦2
. Assume 

𝛾:𝑀 → 𝐑1
3 with locally by 𝛾𝑖 = 𝑥𝑖 ° 𝛾, which inducts Riemannian 

metric 𝑔 =
𝛼2+sinh2 𝑠

cosh2 𝑠
𝑑𝑡2 +

−1

cosh2 𝑠
𝑑𝑠2. Write 

𝜕

𝜕𝑡
=

𝜕

𝜕𝑢1
,
𝜕

𝜕𝑠
=

𝜕

𝜕𝑢2
, then the Christoffel 

symbols of 𝑔 are 

 Γ11
1 = Γ12

2 = Γ22
1 = 0, Γ11

2 = (1 − 𝛼2) tanh 𝑠 , Γ12
1 =

1−𝛼2

𝛼2+sinh2 𝑠
tanh 𝑠 , Γ22

2 = − tanh 𝑠.  

By Gauss Formula, we get 

�̅� 𝜕

𝜕𝑢𝑖

𝛾∗ (
𝜕

𝜕𝑢𝑗
) = 𝛾∗ (𝐷 𝜕

𝜕𝑢𝑖

𝜕

𝜕𝑢𝑗
) + ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
) = ∑ Γ𝑖𝑗

𝑘 𝜕𝑓
𝑐

𝜕𝑢𝑘
𝑘,𝑐

𝜕

𝜕𝑥𝑐
+ ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
)             

𝑦𝑖𝑒𝑙𝑑𝑠
→     ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
) = ∑ (

𝜕2𝛾𝑐

𝜕𝑢𝑖𝜕𝑢𝑗
+ ∑

𝜕𝛾𝑎

𝜕𝑢𝑖
𝜕𝛾𝑏

𝜕𝑢𝑗
Γ̅𝑎𝑏
𝑐

𝑎,𝑏 − ∑ Γ𝑖𝑗
𝑘 𝜕𝛾

𝑐

𝜕𝑢𝑘𝑘 )
𝜕

𝜕𝑥𝑐𝑐 . 

By direct calculation 𝑐 = 1,2,3, we get 

 ℎ (
𝜕

𝜕𝑡
,
𝜕

𝜕𝑡
) = ℎ (

𝜕

𝜕𝑠
,
𝜕

𝜕𝑠
) = 0

yields
→   𝐻 =

1

2
𝑔𝑖𝑗ℎ𝑖𝑗 = 0. 

(2) Consider surface 𝛾(𝑠, 𝑡) = (𝑠 sinh𝛼𝑡 , 𝑡, 𝑠 cosh𝛼𝑡), 𝑠, 𝑡 ∈ 𝐑, with corresponding space 

form 𝐌1
3(0) and its metric �̅� = 𝑑𝑥2 + 𝑑𝑦2 − 𝑑𝑧2, then we get 

 𝛾𝑠 = (sinh𝛼𝑡 , 0, cosh𝛼𝑡), 𝛾𝑡 = (𝛼𝑠 cosh𝛼𝑡 , 1, 𝛼𝑠 sinh𝛼𝑡) 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐸 = −1, 𝐹 = 0, 𝐺 = 1 + 𝛼2𝑠2.  

Moreover,  

𝑛 = (− cosh𝛼𝑡 , 1, − sinh𝛼𝑡), 𝛾𝑠𝑠 = 0, 𝛾𝑡𝑡 = (𝛼
2𝑠 sinh𝛼𝑡 , 0, 𝛼2𝑠 cosh𝛼𝑡) 

                            
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐿 = 𝑁 = 𝐻 = 0. 

(3) Consider surface  𝛾(𝑠, 𝑡) = 𝑒𝑡(cosh 𝑠 sin 𝛼𝑡 , cosh 𝑠 cos𝛼𝑡 , sinh 𝑠), 𝑠, 𝑡 ∈ 𝐑 , space 

form  𝐌1
3(1) and its metric  �̅� =

𝑑𝑥2+𝑑𝑦2−𝑑𝑧2

𝑧2
. Assume the injection  𝛾  which inducts 

Riemannian metric  𝑔 =
1+𝛼2 cosh2 𝑠

sinh2 𝑠
𝑑𝑡2 +

−1

sinh2 𝑠
𝑑𝑠2 . Write

𝜕

𝜕𝑡
=

𝜕

𝜕𝑢1
,
𝜕

𝜕𝑠
=

𝜕

𝜕𝑢2
, the 

Christoffel symbols of g can be written as 
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 Γ11
1 = Γ12

2 = Γ22
1 = 0, Γ11

2 = −(1 + 𝛼2) coth 𝑠 , Γ12
1 = −

1+𝛼2

1+𝛼2 cosh2 𝑠
coth 𝑠 , Γ22

2 =

−coth 𝑠.  

By Gauss formula, 

     �̅� 𝜕

𝜕𝑢𝑖

𝛾∗ (
𝜕

𝜕𝑢𝑗
) = 𝛾∗ (𝐷 𝜕

𝜕𝑢𝑖

𝜕

𝜕𝑢𝑗
) + ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
) = ∑ Γ𝑖𝑗

𝑘 𝜕𝑓
𝑐

𝜕𝑢𝑘
𝑘,𝑐

𝜕

𝜕𝑥𝑐
+ ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
)             

𝑦𝑖𝑒𝑙𝑑𝑠
→     ℎ (

𝜕

𝜕𝑢𝑖
,
𝜕

𝜕𝑢𝑗
) = ∑ (

𝜕2𝛾𝑐

𝜕𝑢𝑖𝜕𝑢𝑗
+ ∑

𝜕𝛾𝑎

𝜕𝑢𝑖
𝜕𝛾𝑏

𝜕𝑢𝑗
Γ̅𝑎𝑏
𝑐

𝑎,𝑏 − ∑ Γ𝑖𝑗
𝑘 𝜕𝛾

𝑐

𝜕𝑢𝑘𝑘 )
𝜕

𝜕𝑥𝑐𝑐 . 

Then we have  ℎ (
𝜕

𝜕𝑡
,
𝜕

𝜕𝑡
) = ℎ (

𝜕

𝜕𝑠
,
𝜕

𝜕𝑠
) = 0

yields
→   𝐻 =

1

2
𝑔𝑖𝑗ℎ𝑖𝑗 = 0.  ∎                            

Problem 3.1. Determine all Willmore surfaces foliated by time-like pseudo circles in 𝐑1
3. 
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