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Abstract 

A new fabric defect detection algorithm base on Gabor filters is proposed. The spectral 

characteristics of both fabric texture and defects are analyzed. Gabor wavelet which can 

be considered as a bank of Gabor filters are used for the decomposition of fabric image. 

Based on spectral characteristics of fabric texture and defects, a new tuning method of 

Gabor wavelet is proposed to enhance the energy of defective region and attenuate the 

energy of normal texture. Decomposition images from different scales and orientations 

are fused into a single one to emphasize the presence of different kinds of defects. For 

comparison, the performance of proposed method as well as other two other defect 

detection methods using Gabor filters is evaluated with typical fabric defect samples. The 

experiment results obtained indicate that the proposed method is more effective than the 

other two. 
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1. Introduction 

Fabric defect is the most important factor affecting the quality of the fabrics. It is 

reported that the price of the fabric decreases 45%-65% due to the presence of defects [1]. 

The traditional defect detection task is accomplished by human inspector, which makes 

the quality of fabric devoid of consistency and reliability. It is found that even a highly 

trained inspector can only detect about 70% of defects at a speed of 15-20 m/min [2], the 

inspector has to detect a fabric repeatedly to achieve 100% detection rate. As the 

development of computer science and image processing technology, automatic visual 

inspection plays an important role in industrial fabric quality assurance and many 

methods base on texture analysis were proposed for fabric defect detection. 

The characteristic of fabric surface depends on the spatial distribution of the gray value 

of its pixels. Thus several spatial statistical methods were proposed as the earliest 

attempts (up to 90’s) for fabric defect detection using fractal dimension [3-[4], 

morphological feature [5-6] (Mallick-Goswami and Datta, 2000; Chandra et. al., 2010), 

and co-occurrence matrix [6]. As the statistical features characterize only the global 

texture pattern, they are not sensitive to the local textural variation caused by tiny defects, 

so that they are more efficient to detect global defects than local tiny ones. Cohen et. al., 

[8] used the Gauss Markov random field (GMRF) to model the texture pattern of non-

defective fabric image, and the defect was detected by the rejection of the model using 

hypothesis testing theory. More recently, as the development of the multi-resolution 

theory, the spectral method for visual inspection of fabric defect becomes more and more 

popular and is used as an alternative way to replace the statistical and model based 

methods. Chan and Pang [9] used Fourier transform to detect fabric defects. However 

because of poor its local resolution in spatial domain, it turned out to be only suitable to 
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detect global defects rather than local ones. As the Gabor filter achieves the optimal joint 

resolution in spatial and spectral domain, it was used for detecting local defects [11-14]. 

Similar to Gabor transform, the wavelet transform also provides local resolution in both 

spatial and spectral domains. Besides, because the wavelet basis is orthogonal or bi-

orthogonal, there is no redundancy between different decomposition scales and 

orientations. Thus several fabric defect detection algorithms using wavelet transform were 

also proposed [15-17]. 

As suggested by psychophysical studies [18], the visual images are processed by 

human brain through multi-scale analysis with different frequencies and orientations. As 

the textural fabric images are consist of repetition of some basic texture primitives with a 

displacement, they exhibit high degree of periodicity along certain orientation. Thus it is 

suitable to use multi-scale analysis such as Gabor and wavelet transform for fabric texture 

characterization and defect detection.  

For defect detection with multi-scale analysis, the selection of the mother wavelet (or 

wavelet basis), decomposition scales and orientations are the most important factors 

affecting the detection results. An adaptive Gabor filter [11] (wavelet basis [16]) was used 

to characterize each kind of defects, whose characteristics were already known as a prior 

knowledge, and a set of Gabor filters (wavelet basis) were used for detecting multiple 

kinds of the defects. This method is not proper for online inspection, where the 

characteristic of detects are usually unknown. Jasper et. al., [15] and Yang et. al., [17] 

designed an adaptive wavelet basis to characterize fabric texture and only one scale was 

used so that multi-resolution representation of the defect was not provided. Sari-Sarraf 

and Goddard [2] used Daubechies D2 wavelet basis and selected decomposition scale 

manually by human observation without automatic selection scheme.  

Generally, the wavelet transform generates decomposition scales mutually orthogonal 

to each other, however it is not shift-invariant which means that defects appear at different 

location may produce different detection results. A solution to this problem is to use 

undedicated wavelet transform [19], which is shift-invariant but not orthogonal, to replace 

standard wavelet transform. However, for the wavelet basis such as Haar, Daubechies and 

Meyer, their pass-bands of each scale and orientation are localized at fixed points in the 

frequency domain, thus it is not applicable to set the center of their pass-band flexibly to 

specified frequency points of interest. Similar to wavelet transform, the Gabor wavelet 

can also produce a multi-resolution representation of images. Besides Gabor wavelet can 

provide a flexible scheme to set its pass-band center at arbitrary position in the frequency 

domain. Thus in this paper, a bank of Gabor filters called Gabor wavelets are used for 

multi-scale analysis. The center frequencies of the Gabor filters are tuned adaptively to 

the fabric texture to enhance the energy distinction between the defective and non-

defective regions. And the detection results with and without the adaptive tuning scheme 

are provided to illustrate the improvement of the proposed method. 

 

2. Gabor Wavelets 

A two dimensional Gabor function ( , )g x y and its Fourier transform ( , )G u v  can be 

defined as 

2 2

2 2
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and W  denotes the center frequency of the Gabor function. The space constants 

x
 and 

y
  define the Gaussian envelope along the x and y axes. A bank of self-

similar functions referred to as Gabor wavelets can be produced by using ( , )g x y  as 

the mother Gabor wavelet. By appropriate dilations and rotations of ( , )g x y , a bank 

of self-similar functions can be obtained and written as 

                                                                (4) 
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where   /n N  ,   0 ,1, 1n N   , and N is the total number of orientations. m = 

0, 1, ..., M–1, and M is the number of scales in the multi-scale decomposition. The 

scale factor a-m ensures that the energy in Equation (4) is independent of m and θ, 

which means all the Gabor filters defined by self-similar functions with different 

scales and orientation have the same energy. And the Fourier transform of 

 ,
,  

m n
g x y can be written as  
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Gabor wavelet can provide a complete but redundant representation of image and 

is of the property of shift-invariant [20]. Because of the non-orthogonality of the 

Gabor wavelet, there are redundancies between different scales and orientations. As 

illustrated in [21], asymmetric Gabor filters are used to reduce this redundancy for 

texture characterization. Let 
l

U , and 
h

U , denote the lower and upper center 

frequencies of interest. In order to make sure that the half-peak magnitude support 

of the filter responses in the frequency spectrum touch each other as illustrated in  

Figure 1, Equation (8-10) are used to calculate the parameters a, 
u

and 
v

 in 

Equation (6).  
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Figure 1. Frequency Response of Gabor Filter Bank with 
  0 .1,    0 .4 ,    6 ,    3

l h
U U N M     

Figure 1, illustrates the frequency response of a bank of Gabor filters 

with   0 .1,    0 .4 ,    6 ,    3
l h

U U N M    . The ellipses in Figure 1 indicate the half 

peak magnitude of the filter responses. It can be seen that the   M N  Gabor filters 

cover the frequency region from 
l

U  to
h

U . Along each orientation, the center 

frequency of filters from neighboring scales are placed an octave apart.  

 

3. Spectral Characteristic of Fabric Texture and Defects 

Figure 2, illustrates several non-defective fabric image samples of different 

texture patterns. It can be seen that because of the regularity in the fabric weaving 

process, the texture of fabric images exhibit a high degree of periodicity. That 

means the fabric texture has significant spectral characteristics which i s indicated in 

its Fourier spectrum. Figure(a), shows a non-defective fabric sample which is made 

zero mean to suppress the zero-frequency component in its 2D Fourier spectrum as 

illustrated in Figure 2 (b). 

 

              

(a)                                                (b)                                                  (c) 

Figure 2. Non-Defective Fabric Defect Samples 
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(a)                               (c)                                             (e) 

Figure 3. Spectral Characteristic of Non-Defective Fabric Texture 

Because of high degree of periodicity of fabric texture, in Figure 2 (b), there are 

two spectral frequency response peaks, which is symmetrical to the origin of the 

spectral coordinate. The magnitudes of spectral frequency response in the 

neighboring regions centered at these two peaks are much larger than elsewhere. 

Thus the main energy of the fabric texture is located in the neighboring regions of 

these two peaks. Besides, there also exists symmetrical spectral frequency response 

peaks in 1D Fourier spectrum along wrap direction (0°) and fill direction (90°) as 

illustrated Figure 2(d), and Figure 2(e), respectively. The frequency point 
0

f and 

9 0
f , where the response peaks are located, are the reciprocal of the texture 

periodicity T0 and T90 (see Figure 2(c)) along 0° and 90°. Similar to the response 

peaks in 2D situation, the response magnitudes nearby f0 and f90 are also much larger 

than elsewhere in 1D Fourier spectrum. Base on descriptions above, our first 

argument can be acquired as 

Argument A1: For fabric texture, because of its high degree of periodicity, there 

exists frequency response peaks in its Fourier spectrum (in both 1D and 2D format) 

and the main energy of the texture image is located nearby the response peaks.  

Figure 4, illustrates several typical fabric defects with different texture 

backgrounds. It can be seen that the normal fabric texture is composed by repetition 

and displacement of certain texture primitive called textel. Because of the high 

degree of periodicity of fabric texture, the intensities of image pixels along each 

orientation keep vibrating with a certain pattern. However, the presence of defects 

will break this pattern. And the intensities of pixels within the defective region tend 

to has lower variations than the normal texture pixels. 
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(a)                                      (b)                                        (c)                                        (d) 

         

(e)                                      (f)                                        (g)                                         (h) 

Figure 4. Defect Break-End, Miss-Yarn, Weft, Big-Knot, Slack-End, Dirty-
Yarn, Miss-Pick in (a)-(h) Respectively 

For fabric defects with comparative large size, such as defect weft and defect hole 

in Figure 4(c), (g) respectively, their texture patterns are quite different from normal 

texture. Especially for defect hole, with its boundary, the pixel intensities nearly 

keep constant (with white pixels). Thus its intensity variation is much lower than the 

normal texture. The intensity variation distinction between defective region and 

normal texture also exists in small defects such as miss-pick in Figure 4(h) and even 

tiny defect such as slack-end in Figure 4(e). And this distinction also indicates an 

important spectral characteristic of fabric defects.  

Figure 5 illustrates the spectral characteristic of defect slack-end. Along 0° (wrap 

direction), it appears in the form of sharp transition, however along 90° (fill 

direction), the intensity variation of pixels in defective region are still lower than 

the normal texture. In Figure 5(a), two lines of both non-defective and defective 

pixels along 90° are marked by two white rectangles. The intensity variations of 

pixels within the two rectangles are illustrated in Figure 5(b), and Figure 5(c). 

Respectively. In Figure 5(b), the intensities of non-defective pixels keep vibrate 

with a certain periodicity; however in Figure 5(c), when defective pixel appears, the 

vibration stops and the intensity variation becomes much lower. The intensity 

variation distinction is also indicated in the Fourier spectrum in Figure 5(d). In 

intermediate and high frequency region the response of defective and non-defective 

pixels are nearly the same. However, in low frequency region the response of 

defective pixels are much larger than the non-defective ones, which means the main 

energy of defect is located in the lower frequency regions than the normal texture. 

This is because defective pixels have lower intensity variation. Figure 6 illustrates 

this situation for defect miss-pick. The texture pattern of the miss-pick is very 

similar to the normal texture, however along 90°, it  also results higher low-

frequency response than normal texture. Thus our second argument can be acquired 

as 

Argument A2: For fabric defect, within its boundary, tend to have lower intensity 

variation than normal texture, which means the main energy of the  defect lies in 

lower frequency region than the normal texture in the frequency domain.  



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC  45 

90° Direction

90° Direction

F
re

q
u

en
cy

 r
es

p
o

n
se

 m
ag

n
it

u
d

e

Fourier transform
Normal 

Defective

P
ix

el
 v

al
u

e

(a)

(b)

(c)

(d)

defective 

pixels

Low frequency region

Fourie
r tr

ansfo
rm

P
ix

el
 v

al
u

e

90° Direction

 

Figure 5. Spectral Characteristic of Defect Slack-End 
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Figure 6. Spectral Characteristic of Defect Miss-Pick 

4. Adaptive Tuning of Gabor Wavelet 

Fabric defect detection can be considered as detection of unknown defects from the 

normal texture background whose characteristic has already known as a prior knowledge. 

The Gabor filters are tuned adaptively to the “known” fabric texture to make sure that 

they have low frequency responses to the normal texture but high frequency responses to 

the “unknown” defect. The Gabor filters are used to enhance the energy distinctions 

between defective regions and normal texture, which facilitates the detection of defects by 

thresholding. As shown in Equation (8-10) there are four parameters 
l

U , ,  ,
h

U M and N 

which should be selected for the tuning of Gabor filters. The objective tuning Gabor 

filters is to enhance the energy (frequency responses) of defective region and attenuate the 

energy (frequency responses) of normal texture in the filtered images. 

 

4.1. Selection of 
h

U  

As described in section2, Uh refers to as the upper boundary of the interest 

frequency region. According to Argument A1, the main energy of the texture image 

is located nearby two response peaks in its 2D Fourier spectrum. Let the localization 

of the response peaks be (fu, fv) and (-fu, -fv). According to Argument A2, the main 

energy of the defect lies in lower frequency region than the normal texture in the 

frequency domain. Thus the defective frequency region should be within the 

boundary between (fu, fv) and (-fu, -fv). In order to enhance the energy of the non-

defective region, the pass-band of the Gabor filters should be also within that 
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boundary. Thus Uh, which denotes the upper boundary of the pass-band of Gabor 

filters, is set by the following formula 

2 2

h u v
U f f 

  

In order attenuate the energy of normal texture, the frequency response peaks of 

normal texture, which is located at (fu, fv) and (-fu, -fv), should be in the stop-band of 

the Gabor filters. A small modification is made to the Gabor wavelets described in 

SEC to meet this requirement. Let Gm,n be the Gabor filter at scale m+1 and 

orientation n, where scale 0 denotes original image. All the Gabor filters in the filter 

bank are rotated by an angle φ = tan
-1

 (fv / fu) to make sure that the center frequency 

of the Gabor filter G0,0 is located at (fu, fv), as illustrated in Figure 7. Then θ in 

Equation (5) is converted to θ = nπ/K + φ. The modified Gabor filters still cover the 

frequency region with Uh as its upper boundary but with an initiation angle φ instead 

of zero. The Gabor filter G0,0 is indicated by gray color in Figure 7, with (fu, fv) is at 

its center frequency. This Gabor filter will be not involved in image filtering and 

will be excluded from the Gabor filter bank, because ( fu, fv) is in its pass-band. 

Filtering fabric image with this filter will enhance the normal texture pattern instead 

of attenuate it. As the half-peak frequency response magnitudes of neighboring filter 

touch each other in the frequency spectrum, it can be found out that ( fu, fv) and (-fu, -

fv) are in the stop-band of all the other Gabor filters. 

 

φ

(fu, fv)

Uh

u

v

Gabor approximation Scale 2

Gabor approximation Scale 1

 

Figure 7. Frequency Response of Modified Gabor Filter Bank 

Figure 8, illustrates a sample image with defect miss-pick and its filtered image 

by filter G0,0, G1,0, G2,0. G3,0 respectively with (fu, fv) = (0.21, 0.07), N = 1, M = 

4, 2 2
0 .2 2

h u v
U f f   . In the image filtered by G0,0, the texture pattern is enhanced 

and the defect is attenuate which is not desirable for defect detection. While in the 

images filtered by all the other three Gabor filters, the texture backgrounds are 

effectively attenuated to emphasis the presence of defect, which make it easy to 

defect. Thus Gabor filter G0,0 should not be excluded and all the others in the Gabor 

filter bank are used for filtering the fabric image.  
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(a) 

      

(b)                                   (c)                                       (d)                                          (e) 

Figure 8. (a) is a Defective Fabric Sample, (b)-(e) are The Filtered Images of 
(a) Using 

0 , 0 1 , 0 2 , 0 3 , 0
,  ,  . G G G G  

4.2. Selection of 
l

U  

As described above, the objective of using Gabor filters is to enhance the energy 

of defective region and attenuate the energy of normal texture. The attenuation of 

the normal texture is achieved by analyzing frequency characteristic of non-

defective sample fabric image and setting  
h

U  adaptively to the normal texture to 

make sure that the frequency region corresponding to the normal texture is in the 

stop-band of all the Gabor filters in the filter bank. Similarly, an intuitive method of 

selecting 
l

U  is to set it adaptively to make sure that the frequency region 

corresponding to the defects is in the pass-band of the Gabor filters. However, 

practically, this is not applicable. Due to the diversity of the fabric defects, the 

frequency characteristics of defects in a certain fabric are unknown before detection. 

Different defects may correspond to different frequency regions in frequency 

domain. Thus the problem of 
l

U  selection is solved in an alternative way.  

For standard wavelet transform, the wavelet approximation at scale i is further 

decomposed into wavelet coefficients and wavelet approximation at scale i+1. 

Similarly for Gabor wavelet, its approximation, which can be considered as Gabor 

approximation , at scale i can also be decomposed into Gabor wavelet coefficients 

and approximation at scale i+1. For Gabor approximation at scale i, the Gabor 

approximation and Gabor wavelet coefficients at scale i+1 are complimentary to 

each other (not strictly orthogonally complimentary because of the non-orthogonally 

of Gabor wavelet). For each scale, the half peak boundary of the Gabor  

approximation is a circle centered at (0,0) touching the half peak boundary of all the 

Gabor filters in the same scale as indicated by dash curve in Figure 7. The selection 

of 
l

U  is determined by examining at which scale of Gabor approximation the normal 

texture pattern is most effectively attenuated. Figure 9 illustrates a normal fabric 

texture, and its Gabor approximations from scale 1 to scale 4 with their half peak 

boundaries set to ,  / 2 ,  / 4
h h h

U U U  and ,  / 2 ,  / 4U h U h U h  / 8
h

U  respectively. As the scale 

increases, the texture background in Gabor approximations is increasingly 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 8 (2016) 

 

 

48                                                                                                             Copyright ⓒ 2016 SERSC 

attenuated. Particularly, the texture pattern in Gabor approximation a t scale 3 is 

almost removed and there is little change between Gabor approximations at scale 3 

and scale 4. Because Gabor filters at scale 4 captures the texture information 

existing in Gabor approximations at scale 3 but not in scale 4 and the texture pattern 

has already been removed at scale 3, the Gabor filters at scale 4 will not capture any 

useful texture information. Thus the Gabor filters at scale 4 should not be used and 

only three scales should be involved for image filtering, that is    / 4
l h

U U  in this 

case. 

 

 

(a) 

       

(b)                                    (c)                                     (d)                                      (e) 

Figure 9. (a) A Normal Fabric Sample, (b)-(e) Gabor Approximations of 
(a) From Scale 1 to Scale 4 

In order to find out the optimal Gabor approximation scale at which the texture is 

most efficiently attenuated (like scale 3 in Figure 9), a texture feature called gray-

level co-occurrence matrix (GLCM) is used to characterize the Gabor 

approximations at different scales. GLCM estimates image properties related to 

second-order statistics. A GLCM is a square matrix whose elements correspond to 

the relative frequency of occurrence of pairs of gray level values of pixels separated 

by a certain distance in a given direction. The L L  gray-level co-occurrence matrix 

Pd for a displacement vector d = (dx, dy) is defined as follows. The entry (i, j) of Pd 

is the number of occurrences of the pair of gray levels i and j which are a distance d 

apart. Formally, it is given as 

1 1 2 2 1 1 2 2
( , ) { (( , ) , ( , )) : ( , ) , ( , ) }dP i j x y x y I x y i I x y j  

                                                            (11) 

where I denotes an image of size U×V with L gray values,    1 1 2 2
, ,  , ,x y x y U V   

   2 2 1 1
,    ,  x y x d x y d y     and | . | is the cardinality of a set. Haralick [22] proposed 

14 features from GLCM for texture characterization. In this paper, inverse 

difference moment IDM is used to measure the attenuation degree of the texture 

background, which is formulated as 

1 1

2

0 0

1
( , )

1 ( )

L L

i j

ID M p i j
i j

 

 


 

 
                                                                                            (12) 
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ID M  can measure the homogeneity of the texture. The more the texture pattern is 

attenuated, the more homogeneous the texture is, which corresponds to larger value 

of ID M . Figure 10(a), illustrates the ID M  values of Gabor approximation from 

scale 0 to scale 4 (see Figure 9) with four co-occurrence matrix displacement 

parameter d = (0,1), (-1,1), (-1,0), (-1,-1), which correspond to 0°, 45°, 90° and 135° 

respectively. The scale 0 corresponds to the original image in Figure 9(a). Figure 

10(b) shows the difference values of ID M  from scale 1 to scale 4. It can be seen 

that the value of ID M  increases as the increase of scale, and the optimal scale can 

be determined by find out at which scale the difference value of ID M  reaches its 

maximum. For four displacement parameters, the ID M s  of them all reach their 

maximum at scale 3.  However d = (-1, 1) has the most prominent maximum, 

because it corresponds to 45°, which is closest to the orientation vertical to the 

primary orientation of texture pattern, thus it can characterize the texture pattern 

better than the other three displacement parameters. The primary orientation of the 

texture pattern can be obtained from the Fourier spectrum of the texture image [9], 

which can be calculated as 90°-φ. 
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Figure 10. Value and Difference Value of IDM of Successive Scales in 
(a),(b) Respectively 

Formally, the selection of 
1

U  can be summarized as following steps. 1) Obtain the 

Gabor approximation Am (m = 1,2,3,…) with successive scales from a non-

defective fabric image sample. The frequency half peak boundaries of each Gabor 

approximation are set to / 2 1,
h

U m   where frequency half peak boundaries of the 

neighboring Gabor approximations are distant by an octave. 2) Calculate the GLCM 

feature IDM of each Gabor approximation using one of the four displacement 
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parameters which is closest to the orientation vertical to the primary orientation of 

texture pattern. 3) Find out the optimal scale p by finding the maximum of 

difference value of IDM, then   / 2 1
l h

U U p  .   

 

4.3. Selection of M and N 

Parameter M and N denote the total number of scales and orientations of the 

Gabor filter decomposition respectively. N is set to 4 empirically, that is four 

orientations is used for image filtering. M is set to  2
/ 1

h l
lo g U U   to make sure that 

the center frequency of filters from neighboring scales are placed an octave apart 

from Uh to Ul.  

 

5. Fabric Defect Detection Algorithm 

The flow of the proposed fabric defect detection algorithm is illustrated in Figure 

11. Preprocess is used to make the fabric image zero mean to suppress its zero-

frequency component in frequency domain. A bank of adaptively tuned Gabor filters 

(see Section 4) is used to enhance the energy of the defect and attenuate the energy 

of normal background. As the output the Gabor filter is in complex form containing 

real and imaginary parts, a non-linear transform |.|
2
 is used to calculate the energy of 

pixels in the filtered images.  

Different defects correspond to different frequency regions in frequency domain 

so any Gabor filter in the filter bank can only characterize parts of them. A fusion 

scheme, as described in [11] is used to fuse the filtered images of all scales and 

orientations into a single image to emphasize the presence of all kinds of defects. 

Let Fm,n be the image filtered by Gabor filter Gm,n, then the fused image S is 

calculated by following formulas. 

1

,

0

1
( , ) ( , )

M

n m n

m

R x y F x y
M





 
                                                                                          (13) 

 
2

1 / 2

1

0

1
( , ) ( , ) ( , )

1

N

n n

n

S x y R x y R x y
N











                                                                   (14) 

Arithmetic mean is used to fuse the images of all scales in the same orientation 

and geometric mean is used to fuse the images of different orientations. M and N 

denote total scales and orientations respectively. Particularly, F0,0 is not involved in 

the image fusion, because it corresponds to the Gabor filter G0,0 which has already 

been excluded from the filter bank.  

The fused image is subjected to thresholding to generate binary images to detect the 

defective pixels. The threshold value T is set to μ+λσ, where μ and σ are mean and 

standard deviation of the fused image of non-defective samples. λ is a parameter 

compromising between false alarm and miss detection. 
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Figure 11. Flow Diagram of Fabric Defect Detection Algorithm 

5.1. Results and Discussion 

Defects with three categories of texture background containing one plain and two 

twill fabrics are used to evaluate the performance of the fabric detection algorithm. 

All the three fabrics and defects on them are produced in factory practice. All of the 

images are acquired by line scan CCD camera with a spatial resolution of 

0.2mm/pixel against a backlighting illumination and digitalized into 256×256 pixels 

with a gray level of 256. Each of them is considered as one sample for defect 

detection. 

 

             

(a)                                       (b)                                        (c) 

              

(e)                                           (f)                                          (g) 

Figure 12. Normal Texture Samples of Three Kinds of Fabrics in (a)-(c) 
and Their 2-D Fourier Spectrum in (d)-(f) 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 8 (2016) 

 

 

52                                                                                                             Copyright ⓒ 2016 SERSC 

Figure 12(a)-(c), illustrate the normal texture samples of these three categories of 

fabrics. It can be seen that there exists two peaks in their 2-D Fourier spectrum in 

Figure 12(d)-(f), indicating the location of the main energy of the normal texture. 

The parameters of adaptively tuned Gabor wavelet of three categories of fabric 

texture are presented in Table 1, where fu, fv are normalized frequencies ranging 

from -0.5 to 0.5. These parameters are obtained from a large non-defective image 

sample of size 1024×1024 using method described in SEC. The Gabor filtering is 

implemented by convolution, and the mask size of convolution is set to 7×7.  

Table 1. Parameters of Adaptively Tuned Gabor Wavelet of Three Kinds 
of Fabric Texture 

 

 

 

 

 

 

 

 

 

 

 

For comparison, two other fabric defect detection algorithms using Gabor filters 

(described in [10] are also implemented to the experimental fabric image samples. 

The detection algorithms described in [10] are unsupervised detection methods 

without using non-defective texture for the adaptive tuning of Gabor filters. They 

rigidly use the same bank of Gabor filters with fixed parameters to detect fabric 

defects with all kinds of texture background. In [10], the filter bank consists of 28 

Gabor filters containing four orientations 0°, 45°, 90°, 135° and seven scales with 

(unnormalized) center frequencies 2 , 2 2 , 4 2 , 8 2 ,W  1 6 2 , 3 2 2 , 6 4 2  

cycles/image-width. While in [11], the filter bank consists of 24 Gabor filters 

containing 6 orientations 0°, 30°, 60°, 90°, 120°, 150° and four scales with 

normalized center frequencies W = 1/2, 1/4, 1/8, 1/16. These two algorithms are 

quite similar with only difference that the center frequencies of Gabor filters in the 

filter bank are distributed in different locations in frequency domain. 

 

 

 

 

 

 

 

Parameters 
Fabric texture  

Category1 

Fabric texture  

Category2 

Fabric texture  

Category3 

Fabric type plain twill twill 

Figure NO. Figure 12(a) Figure 12(b) Figure 12(c) 

(fu, fv) (0.20, 0.01) (0.16, 0.13) (0.15,0.07) 

φ 2.9° 39.1° 25.0° 

Uh 0.20 0.21 0.17 

Ul 0.10 0.11 0.09 

M 2 2 2 

N 4 4 4 
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(a)                                          (b)                                             (c) 

         

(d)                                          (e)                                             (f) 

         

(g)                                          (h)                                             (i) 

         

(j)                                          (k)                                             (l) 

           

(m)                                          (n)                                             (o) 

Figure 13. (a)-(c) are Defect Broken Picks, Missing End, Irregular Book 
in Fabric Texture Category 1; (d)-(f) and (g)-(i) are the Fused Images and 
Final Detection Results of (a)-(c) Using Proposed Method Respectively; 
(j)-(l) and (m)-(o) are the Fused Images and Final Detection Results of 

(a)-(c) Using Method in [10] 
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(a)                                          (b)                                             (c) 

           

(d)                                          (e)                                             (f) 

            

(g)                                          (h)                                             (i) 

            

(j)                                          (k)                                             (l) 

           

(m)                                          (n)                                             (o) 

Figure 14. (a)-(c) are Defect Broken Picks, Missing End, Irregular Book 
in Fabric Texture Category 2; (d)-(f) And (g)-(i) are the Fused Images 

and Final Detection Results of (a)-(c) Using Proposed Method 
Respectively; (j)-(l) and (m)-(o) are the Fused Images and Final 

Detection Results of (a)-(c) Using Method in [11] 
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(a)                                          (b)                                             (c) 

           

(d)                                          (e)                                             (f) 

             

(g)                                          (h)                                             (i) 

             

(j)                                          (k)                                             (l) 

             

(m)                                          (n)                                             (o) 

Figure 15. (a)-(c) are Defect Broken Picks, Missing End, Irregular Book 
in Fabric Texture Category 2; (d)-(f) and (g)-(i) are the Fused Images and 
Final Detection Results of (a)-(c) Using Proposed Method Respectively; 
(j)-(l) and (m)-(o) are the Fused Images and Final Detection Results of 

(a)-(c) Using Method in [11] 
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Figure 13-15, illustrate several typical defects of three categories of fabric texture 

and provide a comparison of detection results between three fabric defect detection 

methods (including our proposed method and methods in [10-11]). It can be seen 

that in the fused images there are larger distinctions between defective and non-

defective texture in our proposed method than the other two methods.  Thus our 

method achieves better detection results. This is because in detection methods in 

[10] and [11], Gabor filter bank is used rigidly with fixed parameters to detect 

defects with all kinds of fabric texture rather than tuned adaptively to the fabric 

texture. Thus some undesirable Gabor filters may be involved in the image filtering 

which may lead to the enhancement of normal texture and attenuation of defective 

regions (as illustrated in Figure 8(b)). And this will bring negative effects to the 

final detection results, particularly in Figure 13(m), and Figure 14(n), which 

indicate the failure of .detection using methods in [10-11]. 

Table 2, presents the detection accuracy of thee detection methods. It can be seen 

that our method achieves better detection accuracy than the other two methods.  

Besides, the Gabor filter bank in [10-11] is used to cover the whole frequency 

domain, so multiply Gabor filters (28 and 24 respectively) are involved in image 

filtering which leads to large computational load. However, in our proposed the 

Gabor filter bank only covers only parts of the frequency regions in frequency 

domain (from Ul to Uh). As indicated in Table 1, only 8 Gabor filters (2 scales and 4 

orientations) are used for all three categories of fabric texture. Thus our proposed 

method has less computational complexity and has better real -time performance. 

Table 2. Detection Results of Three Detection Methods 

Fabric 

category 

defective 

samples 

detection accuracy 

proposed 

method 

method 

in [10]  

method 

in [11] 

1 33 93.9% 90.9% 87.9% 

2 41 92.7% 85.3% 87.8% 

3 37 97.3% 86.5% 89.2% 

total 111 94.6% 87.4% 88.3% 

 

Compared to the detection method in [10] the proposed method uses an extra non-

defective image sample for prior learning to obtain the frequency characteristics of 

the fabric texture and adaptive tuning of Gabor filters. However, because the non-

defective samples of the fabric image are usually readily to get (even in practical 

factory occasions), thus our method will not bring any actual inconvenience in 

detection progress but gets better detection accuracy and real -time performance.  

 

6. Conclusions 

A new method of fabric defect detection using Gabor filters been demonstrated. 

In order to emphasize the presence of defects, a new Gabor wavelet tuning method 

is used to enhance the energy of defective region and attenuate the energy of normal 

texture. As a major contribution of this work, the parameters of Gabor wavelet are 

tuned adaptively to the spectral characteristics of normal texture which is obtained 

from non-defective fabric samples. The performances of the proposed method and 

two other Gabor filter based detection methods without adaptive tuning have been 

evaluated by defect samples with different texture backgrounds. The results indicate 
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that the proposed method has better detection accuracy and real -time performance, 

thus is more suitable for the implementation of industrial inspection. 
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