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Abstract 

Multiple-input multiple-output (MIMO) radar waveforms design with specified 

properties has a number of superiority over its phased-array counterpart, such as clutter 

suppression and interference mitigation. In this paper, we consider the problem of 

waveform optimization with prior information on targets of interest to improve the 

parameter estimation performance of MIMO radar in the presence of signal-dependent 

noise, which is based on the constrained Cramer-Rao bound (CRB). The waveform 

covariance matrix (WCM) is designed to minimize the trace of the constrained CRB such 

that the parameter estimation performance can be improved. In order to solve the 

resultant nonlinear optimization problem, a novel diagonal loading (DL) based method is 

proposed to relax this optimization issue as a semidefinite programming (SDP) one, 

which can be solved very efficiently. Following that, an optimal solution to the initial 

issue can be obtained via the least squares (LS) fitting of the solution acquired by the 

relaxed one. The effectiveness of the proposed method is verified by numerical examples, 

as compared to the uncorrelated waveforms. 

 

Keywords: Multi-input multi-output (MIMO) radar, waveform design, diagonal 

loading (DL), signal-dependent noise, constrained Cramer-Rao bound (CRB), 

semidefinite programming (SDP) 

 

1. Introduction 

Multi-input multi-output (MIMO) radar has been intensively researched recently [1-

20]. MIMO radar is defined as a radar system with multiple antennas to simultaneously 

transmit arbitrary waveforms other than coherent waveforms in traditional phased-array 

radars, which is the so-called waveform diversity [1]. In terms of the spacing between its 

antennas, MIMO radar can be classified into two categories shown as: (1) MIMO radar 

with widely separated antennas (e.g., [2]), and (2) MIMO radar with colocated antennas 

(e.g., [1]). The former employs the widely-spaced transmitting and receiving elements 

along with diverse transmitted waveforms to view the different aspects of the target 

thereby improving the target detection performance. In contrast, the latter employs the 

close-spaced elements in transmitting and receiving arrays to obtain the identical target 

radar cross sections (RCSs) observed from all transmit/receive paths, which can utilize the 

waveform diversity to increase the virtual aperture of the receiving array [1]. 

Accordingly, it has several advantages including improved parameter identifiability [3-4], 

and more flexibility for transmit beampattern design [5-20]. In this paper, we consider 

MIMO radar with collocated antennas. 

For both types of MIMO radar, a particularly critical issue is the waveform 

optimization [5-20], which has received considerable attention recently. According to the 

objects needed to be optimized, the current design methods can be divided into two 

categories: (1) only the transmitter to be designed [5-11], and (2) the transmitter and 

receiver to be designed jointly [12-20]. Specific issues that have been considered in first 
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category include the transmit beam pattern design and radar ambiguity function design. In 

[5-6], the waveform covariance matrix (WCM) was designed to attain a desired beam 

pattern, while the constant modulus signal design is considered in [7-9]. The robust 

waveform covariance matrix is considered in [10] with a general class of cost functions 

encompassing several known performance measures, e.g., signal-to-disturbance ratio. 

Meanwhile, the spatial-range-Dopper domain characteristics of the transmitted waveforms 

were considered jointly in [11] to improve the radar performance. Some works have been 

done in the second category approaches to investigate the waveform design problem by 

jointly optimizing the radar transmitter and receiver. In [12], the transmit waveforms were 

optimized for multiple point targets  based on several design criteria, for example, 

minimizing the trace of the Cramér-Rao Bound (CRB) matrix. The output signal-to-

interference-plus-noise ratio (SINR) was maximized in [13] to improve the detection 

performance for MIMO radar in the case of extended target by exploiting a gradient based 

method. Unfortunately, the method proposed in [13] cannot guarantee nondecreasing 

SINR in each iteration step. In order to guarantee convergence, a new iterative algorithm 

was derived in [14].The mutual information between the received waveforms and the 

target radar signatures was employed to design the transmit waveform for extended target 

[15-17]. Other information theoretic based transmit waveform designs were considered in 

[18] for multiple extended targets. In [19], MIMO waveform was devised by minimizing 

the estimation error of the minimum mean squared error (MMSE) estimators for 

uncorrelated and correlated targets. The joint optimization of the WCM and receiver is 

investigated to improve the parameter estimation performance in [20].  

In [12], J. Li et. al., has investigated the problem of waveform design for parameter 

estimation of point targets based on CRB in the absence of signal-dependent noise (i.e., 

clutter). However, it can be seen that the received signal is generally contaminated by 

clutter in many applications (see, e.g., [8-19]). Moreover, it is well-known that the CRB 

provides a lower bound on the variance when any unbiased estimator is used without 

employing any prior information. In fact, in many array signal processing fields, some 

prior information may be available (see, e.g., [21]), which can be regarded as a constraint 

on the estimated parameter space. A variant of the CRB for this kind of the constrained 

estimation problem was developed in [22], which is called the constrained CRB. Based on 

the discussion above, from the parameter estimation point of view, it is worth considering 

the waveform optimization problem with prior information in the presence of clutter. 

In this paper, we investigate the problem of MIMO radar waveform optimization with 

prior information of targets of interest in the presence of clutter, which is based on the 

constrained CRB. The WCM is optimized to minimize the trace of the constrained CRB 

such that the parameter estimation performance of MIMO radar in the presence of clutter 

can be improved. In order to solve the resultant complicated nonlinear optimization 

problem, a novel diagonal loading (DL) [23] based method is proposed to relax this issue 

as a semidefinite programming (SDP) [24] one, which can be solved very efficiently (may 

use many methods, see, e.g., [25]). Following that, an optimal solution to the initial 

optimization problem is constructed through a suitable approximation to an optimal 

solution of the relaxed one (in a least squares (LS) sense). 

The rest of this paper is organized as follows. Section 2 introduces the MIMO radar 

model, gives the derivation of the CRB, and formulates the waveform optimization 

problem. Section 3 proposes an DL-based algorithm to solve the nonlinear waveform 

optimization problem and constructs an optimal solution to the initial issue. Section 4 

shows the effectiveness of the proposed method via numerical examples. Finally, Section 

5 concludes this paper.  

Throughout the paper, matrices and vectors are denoted by boldface uppercase and 

lowercase letters, respectively. We use  
T

 ,  
*

 , and  
H

  to denote the transpose, 

conjugate, and conjugate transpose, respectively.  vec   is the vectorization operator 
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stacking the columns of a matrix on top of each other, I  denotes the identity matrix,   

and   indicates the Khatri-Rao and Kronecker product, respectively. Denote by  tr  , 

 R e  , and  Im   the trace, real and imaginary part of a matrix, respectively. The 

notation  E   stands for the expectation operator,  d iag a  for a diagonal matrix with its 

diagonal given by the vector a , and 
F

A  for the Frobenius norm of the matrix A . Given 

a vector function :
n k
f , we denote by 





f


 the k n  matrix whose ijth element is 

i

j





f


. Finally, the notation A B°  means that B - A  is positive semidefinite. 

 

2. Problem Formulation 

Consider a MIMO radar system with t
M  transmitting elements and r

M  receiving 

elements. Let 1 2
[ , , , ] t

t

M LT

M


      be the transmitted waveform matrix, where 

1L

i


 , 1, 2 , ,

t
i M  denotes the discrete-time baseband signal of the ith transmit 

element with L  being the number of snapshots. Under the assumption that the transmitted 

signals are narrowband and the propagation is non-dispersive, the received signals by 

MIMO radar can be expressed as: 

1

( ) ( ) ( ) ( ) ( ) d

K
T T

k k c c

k




      




   Y a v a v W                                                         (1) 

where the columns of r
M L

Y  are the collected data, 
1

{ }
K

k k



 are the complex 

amplitudes proportional to the RCSs of targets with K  being the number of targets at the 

considered range bin, and 
1

{ }
K

k k



 denote the locations of these targets. The parameters 

1
{ }

K

k k



 and 

1
{ }

K

k k



 need to be estimated from Y . The second term in the right hand of 

the equation above indicates the clutter data collected by the receiver. ( )   is the reflect 

coefficient of the clutter patch at  . The term W  denotes the interference plus noise, 

which is independent of the clutter. Similar to [12], the columns of W  can be assumed to 

be independent and identically distributed circularly symmetric complex Gaussian 

random vectors with mean zero and an unknown covariance B . ( )
k

a  and ( )
k

v  denote, 

respectively, the receiving and transmitting steering vectors for the target located at k
 , 

which can be expressed as  

00 1 0 2

00 1 0 2

2 ( )2 ( ) 2 ( )

2 ( )2 ( ) 2 ( )

( ) [ , , , ]

( ) [ , , , ]

M kk k r

M kk k t

j fj f j f T

k

j fj f j f T

k

e e e

e e e

       

       









a

v

                                                                   (2) 

where 0
f  represents the carrier frequency, ( ) , 1, 2 ,

m k r
m M    is the propagation time 

from the target located at k
  to the mth receiving element, and ( ) , 1, 2 ,

n k t
n M    is 

the propagation time from the nth transmitting element to the target. Also, ( )
c
a  and 

( )
c
v  denote the receiving and transmitting steering vectors for the clutter patch at  , 

respectively. 

If the isorange ring is divided in the cross-range dimension into ( )
C C

N N N M L  

clutter patches, then (1) can be recast as 

1 1

( ) ( ) ( ) ( ) ( )
C

NK
T T

k k k i c i c i

k i

      
 

   Y a v a v W                                                         (3) 
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where ( )
c i
a  and ( )

c i
v  denote the receiving and transmitting steering vectors for the 

clutter patch at i
 , respectively.  

Let 
1

( ) ( ) ( )

N
T

c i c i c i

i

   


 H a v , according to [26], v e c ( )
c

H  can be considered as an 

identically distributed complex Gaussian random vector with mean zero and covariance 

v e c ( ) v e c ( )
c

H

c c
E  
 H

R H H 0±                                                                                      (4) 

We now consider the constrained CRB of the unknown target parameters 

, ,
T

T T T

R I
 
 

x    , where 
,1 , 2 ,

, , ,
T

R R R R K
   

 
 , 

,1 , 2 ,
, , ,

T

I I I I K
   

 
 , 

 1 2
, , ,

T

K
   ,  R e

R
  , and  Im

I
  . According to [22], the constrained 

CRB can be written as 

1
( )

H H
J U U F U U                                                                                                            (5) 

where F denotes the Fisher information matrix (FIM), and U  satisfies:  

( ( ) , ( ) ( )
H

  G x U x 0 U x U x I                                                                                         (6)  

in which 
( )

( )G





g x
x

x
 is assumed to have full row rank with ( )g x  being the equality 

constraint set on x  and U  is the tangent hyperplane of ( )g x  [22].  

Following [21] and [22], some prior information of signal or targets of interest can be 

available in array signal processing, for example, constant modulus constraint on the 

transmitted waveform, etc.. Due to the fact that the knowledge of one target of interest 

can be acquired roughly by many methods (see, e.g., [27] for more details), in this paper, 

the complex amplitude matrix 1 2
d ia g

K
         can be assumed to be known as: 

,

,

( ) 1 0 , 1, ,

( ) 1 0 , 1, , 2

i R i

j I j

g i K

g j K K





   

    

x

x
                                                                              (7) 

Following (7), we can obtain 2 2 2
[ , ]

K K K K 
G 0 I , where 2 K K

0  denotes a zero matrix of 

size 2 K K . Hence, the corresponding null space U  can be expressed as 

2
[ ]

H

K K K K 
U I 0                                                                                                              (8) 

Based on the discussion above, the FIM F  with respect to x  can be derived in 

Appendix A and given by  

1 1 1 2 1 2

1 2 2 2 2 2

1 2 2 2 2 2

R e ( ) R e ( ) Im ( )

2 R e ( ) R e ( ) Im ( )

Im ( ) Im ( ) R e ( )

T

T T

 

 


 

   

F F F

F = F F F

F F F

                                                                      (9) 

where,  
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c
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c
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                  (10) 
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                            (11) 

1
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1 1
( ( ) )( ) ( ( ))

c

H   
     

H
F V I R BA AB R VR

                                                 (12) 

 
*

1 2
, , , ,

TT

K
   R


                                                                              (13) 

   1 2 1 2
= ( ), ( ), , ( ) , = ( ), ( ), , ( )

K K
     A a a a V v v v                               (14) 

1 1

1 1

( ) ( ) ( ) ( )
,

K K

K K

   

   

      
    

      

a a v v
A V                                                (15) 

The MIMO radar waveform design with prior information of targets of interests to 

improve the parameter estimation performance in the presence of clutter can now be 

briefly stated as follows: Optimize the WCM to minimize the constrained CRB under the 

constraints about the WCM. Based on (5), (8) and (9), under the Trace-opt criterion [12], 

this optimization problem can be illustrated as: 

m in ( )

. .

( )

t r

s t

tr P

R

0

J

R

R







±                                                                                                               (16) 

where P  denotes the total transmitted power. The second constraint holds due to the 

power transmitted by any transmitting element is more than or equal to zero in practice. 

  It is obvious that the trace of the CRB matrix, i.e., the objective in (16), is a rather 

complicated nonlinear function of R
 . Moreover, due to the fact that 

, ,
c

H
0 0B R 0R± ±

 , then  
1

( )
c




H
R B R

  is indefinite matrix [29]. Consequently, 

the problem is difficult to be solved by using the tradition method, for example, the 

convex optimization method [24]. 

 

3. Proposed DL-Based Method 

In this section, we demonstrate how to obtain an optimal solution of the nonlinear 

optimization problem in (16). For this purpose, the DL approach, which has been 

commonly exploited in the robust beamforming (see, e.g., [23]), is employed to R
 , and 

c
H

R , respectively,  such that 

c c

    
H H

R R I 0 , R R I 0
                                                                            (17) 

where m ax m ax
( ), ( )

c

   
H

R R
  are the so-called loading factors, and m a x

( )   

denotes the largest eigenvalue of a matrix. In the following, we choose 

m ax m ax
( ) 1000 , ( ) 1000

c

    
H

R R
  by numerical examples. By replacing 

,
c

H
R R

  in (9) with ,
c

H
R R

 , respectively, we can obtain 

1 1 1
( ( ) ) ( )

c

  
  

H
I R B R R B 0

  .  

The proposition below can reformulate the nonlinear objective in (16) with the variable 

R
  as a linear one, and gives the corresponding linear matrix inequality (LMI) 

formulations of constraints, which is proved in Appendix B. 
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Proposition: Using matrix manipulations, the constraints in (16) can be converted into 

the following LMIs 

c c c

- 
H H H

I R R R IE° °                                                                                               (18) 

where  

1 1 1
( ( ) ) ( )

c

  
   

H
E I R B R R B

                                                                              (19) 

and  ,   are given in (51) and (52), respectively. With this Proposition, the problem in 

(16) can be cast as SDP relying on the following lemma [29, pp.472]: 

Lemma 1 (Schur’s Complement): Let 

H
 

  
 

A B
Z

B C
 be a Hermitian matrix with 

C 0 , then Z 0±  if and only if C 0± , where C  is the Schur complement of C  in 

Z  and is given by 1H 
 C A - B C B . 

According to Lemma 1 and the Proposition above, the optimization problem (16) can 

be readily recast as an SDP: 

m in tr ( )

s .t .
c c c

H H

- 

 

 
 

H H

X , E

H

X

E

X U
0

U U

I R I

F U

R R° °

±

                                                                                      (20) 

where the matrix X  is an auxiliary variable. 

After obtaining the optimum E , R


 can be constructed via a suitable approximation to 

it (in a LS sense), which is formulated as 

1 11
a rg m in

. . t r ( )

c F

s t L P

 
  



H
R

R

R

R

(E R ) - R B

0











±

                                                                       (21) 

By using the Lemma 1, similar to the discussion above, (21) can be equivalently 

represented as an SDP: 

,

1 1

1 1

1

1

m in

v e c ( )
. .

v e c ( )

tr ( )

c

c

t

H

t

t
s t

L P

 

 





  

 
   



R

H

H

R

R

(E R ) - R B

0

(E R ) - R B I

0











±

±

                (22) 

where t  is an auxiliary variable. 

 Using many well-known algorithms (see, e.g., [24]) for solving SDP problems, the 

problems in (20) and (22) can be solved very efficiently. In the following examples, the 

optimization toolbox in [25] is used for these problems. Note that we only obtain the 

WCM other than the ultimate transmitted waveforms in this paper. In practice, the 

ultimate waveforms can be asymptotically synthesized by using the method in [30]. 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC   31 

4. Numerical Examples 

In this section, we assess the effectiveness of the proposed method by using some 

examples, compared to the uncorrelated transmitted waveforms (i.e., ( / )
t

P M
S

R I ). 

Consider a MIMO radar system with 5
t

M   transmitting elements and 5
r

M   

receiving elements. The following two MIMO radar systems are exploited with various 

antenna configurations: MIMO radar (0.5, 0.5), and MIMO radar (2.5, 0.5), where the 

parameters specifying each radar system are the inter-element spacing of the transmitter 

and receiver (in units of wavelengths), respectively. The number of snapshots is 256L  . 

The array signal-to-noise ratio (ASNR) defined as 2
/

t r
P M M 

W
 varies from -10 to 50 dB 

in the following examples, where 2


W
 denotes the variance of the additive white thermal 

noise. One target with unit amplitude at 0  is considered. The clutter is modeled using 

discrete points, the RCSs for which are modeled as independent identical Gaussian 

random variables with mean zero and variance 
2

, 1, ,
i C

i N   and assumed to be fixed in 

the coherent processing interval (CPI). The clutter-to-noise ratio (CNR) defined as 
2

t r ( ) /
c

R 
H W  ranges from 10 to 50 dB. There is a strong jammer at 8  with an array 

interference-to-noise ratio (AINR) equal to 60 dB, defined as the product of the incident 

interference power and r
M  divided by 2


W

. The jammer is modeled as point source 

which transmits white Gaussian signal uncorrelated with the signals transmitted by 

MIMO radar.  

Figure 1 shows the optimal transmit beampatterns with ASNR=50 dB and CNR=10 

dB. It can be seen that the proposed method places a peak at the target location, which 

means that the main transmitted power is focused at the target angle such that the 

performance of parameter estimation can be improved. Also, it is obvious that a notch is 

placed almost at the jammer location. Moreover, we can see grating lobes of the peak in 

the case of MIMO radar (2.5, 0.5) shown in Figure 1 (b), which is due to the sparse 

transmit array. 
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Figure 1. Optimal Transmit Beampatterns with ASNR=50 dB and CNR=10 
dB. (a) Optimal Transmit Beampatterns for MIMO Radar (0.5, 0.5). (b) 

Optimal Transmit Beampatterns for MIMO Radar (2.5, 0.5) 

Figure 2, shows the constrained CRB of the target angle as a function of ASNR or 

CNR. One can see that the CRB obtained by the proposed method or uncorrelated 

waveforms decreases as the increasing of ASNR, while increases as the decreasing of 

CNR. Moreover, the CRB obtained by the proposed method is much lower than that of 

uncorrelated waveforms, regardless of ASNR or CNR. Furthermore, it can be seen from 

Figure 2 (a), or (b), that the total CRB for MIMO radar (2.5, 0.5) is lower than that for 
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MIMO radar (0.5, 0.5), which is due to the fact that the virtual receiving array aperture for 

the former radar is much larger than that for the latter [1]. 
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Figure 2. Constrained CRB Obtained by the Proposed Method, Along with 
That of the Uncorrelated Waveforms, Versus ASNR or CNR. (a) Constrained 
CRB Versus ASNR with CNR=10 dB. (b) Constrained CRB Versus CNR with 

ASNR=-10 dB 

In order to examine the effect of the prior information on the CRB, Figure 3, shows the 

CRB with and without the prior information as well as that obtained by uncorrelated 

waveforms as a function of ASNR or CNR. One can observe that the optimized 

transmitted waveforms with the prior information can significantly improve the accuracy 

of parameter estimation for each MIMO radar configuration, as compared to that without 

the prior information and uncorrelated waveforms, regardless of ASNR or CNR. 
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Figure 3. CRB Obtained Only by Using the Prior Information, Along with 
That of That without the Prior iIformation and the Uncorrelated Waveforms, 

Versus ASNR or CNR. (a) CRB Versus ASNR with CNR=10 dB for MIMO 
Radar (0.5, 0.5). (b) CRB Versus CNR with ASNR=-10 dB for MIMO Radar 

(0.5, 0.5). (c) CRB Versus ASNR with CNR=10 dB for MIMO Radar (2.5, 0.5). 
(d) CRB Versus CNR with ASNR=-10 dB for MIMO Radar (2.5, 0.5) 

5. Conclusions 

In this paper, we have investigated the problem of waveform optimization with 

the prior information of targets of interests to improve the parameter estimation 

performance of MIMO radar in the presence of clutter, which is based on the 
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constrained CRB. In order to solve the resultant nonlinear optimization problem, a 

novel DL based algorithm has been proposed to relax this problem as an SDP issue, 

which can be solved very efficiently. Following that, an optimal solution to the 

initial problem has been obtained via the LS fitting of the solution of the SDP one. 

Numerical examples show that the optimized transmitted waveforms generated by 

the proposed method can significantly improve the accuracy of parameter 

estimation, as compared to the optimized transmitted waveforms without prior 

information and uncorrelated waveforms.  

 

Appendix A 
 

Fisher Information Matrix 

According to [14], the constrained CRB can be written as Based on the signal 

model in (3), and stack the columns of Y  in a 1
r

M L   vector as 
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In this paper, we calculate the FIM with respect to  , R
 , I

  (Here we only 

consider one-dimensional targets.). According to [28], we have 
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where Q  denotes the covariance of the clutter plus interference and noise, which 

can be represented as 
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With (4), the equation above can be simplified as 
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where i
e  represents the ith column of the identity matrix, then 
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Besides, note that 
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Let 
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inversion lemma, we can get  
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where 
* T

R


  . 

Based the discussion above, we can get that 
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where i j
X  denotes the (i,j)th element of X . Hence,  
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F  given in (10). 
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Hence 
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where 2 2
F  is given in (12). 

From (32) and (35)-(38), we can obtain (9) immediately. 

 

Appendix B 
 

Proof of Proposition 

In order to reshape the objective in (16) as a linear function, let 
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Substitute (39) into the objective in (16), we can see that the outer optimization is the 

linear function with respect to E . 
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Following it, we can obtain, 
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According to Weyl’s theorem [29], we can obtain 
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where 
m in

( )   denotes the smallest eigenvalue of a matrix. Based on the fact that 
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(45) can be equivalently represented as 
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Note that 
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With (17) and (48), (47) can be recast as 
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As a sequence, we can obtain 
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With (50)-(52), (18) holds immediately. 
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