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Abstract 

Image super-resolution is the process of combining multiple images into a single image 

that has higher resolution than any of the original images. We present a variational 

framework for fusing multiple co-registered images using the Total Variation (TV) and 

Mumford-Shah regularizations. We also propose an alternating minimization strategy for 

aligning and fusing multiple images in the case when the co-registration parameters are 

unknown. We discuss applications to video enhancement and present two novel 

applications to barcode scanning and Magnetic Resonance Imaging (MRI). 

 

Keywords: Image super-resolution, Image inpainting, Image registration, Total 

Variation, Mumford-Shah energy, Calculus of variations 

 

1. Introduction 

It is very difficult to digitally zoom a single image to produce an image that has a 

significantly higher effective resolution than the original image. One way to break the 

"pixel limit" of an image is to combine multiple images of the same scene, such as a video 

sequence, into a single high-resolution image. This process is called super-resolution.  

Huang and Tsai were the first to notice that sub-pixel motion in an image sequence and 

image aliasing gave the potential for the construction of higher resolution images.  The 

authors described two basic steps in the super-resolution process: image registration and 

data fusion [1]. 

Let {𝑢𝑖:Ω𝑖 → ℜ}1≤𝑖≤𝑁 denote the original sequence of 𝑁 low-resolution grayscale 

images, where Ω𝑖 denotes the lattice or grid of pixels of the 𝑖𝑡ℎ image.  Let 𝑀 ≥ 1 denote 

the desired magnification factor. That is, we expect the final image to have 𝑀 times as 

many pixels as the original image (s). The goal of super-resolution is to fuse the 

information of the entire image sequence to produce a single high-resolution image 

𝑢:Ω𝑀 → ℜ, where Ω𝑀 denotes the high-resolution lattice.    

The first and often most difficult step of super-resolution is the registration step.  We 

need to properly align the images 𝑢𝑖 to a common grid Ω𝑀. Let 𝜑𝑖:Ω𝑖 → Ω𝑀 denote the 

coordinate transformation mapping the image 𝑢𝑖 to the high-resolution grid.  Determining 

the transformations 𝜑𝑖 is often an ill-posed problem, so we generally restrict the class of 

allowable transformations. For example, if the visual scene is sufficient distance from the 

camera to ignore parallax effects, we could restrict 𝜑𝑖 to the class of planar homographies 

[2].  For this paper, we will restrict the camera/scene motion to translations. The methods 

we discuss could extend to general planar homographies, but as we consider more general 

transformations the problem becomes more difficult computationally. 

There exist several methods for image registration under a translational model, notably 

the method by Irani and Peleg [3]. However, for a magnification factor 𝑀 > 1 the 

registration needs to be precise to the sub-pixel level, often a very difficult if not 

insurmountable task. It is assumed that the transformation 𝜑𝑖 maps to the discrete 

gridpoints of Ω𝑀, so for a continuous warping it may be necessary to round the position 

of pixel 𝜑𝑖(𝑥) to its nearest gridpoint on Ω𝑀 .  Once the images are aligned to a common 
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high-resolution lattice Ω𝑀, we obtain an image-like data set on Ω𝑀 with some pixels 

having known value, some unknown, and some pixels having multiple values addressed 

to them (see Figure 1). Each pixel 𝑥 ∈ Ω𝑀 in the final image can be mapped backwards to 

a corresponding pixel 𝜑𝑖
−1(𝑥) in each of the low-resolution images 𝑢𝑖. The corresponding 

gray value or color in the original low-resolution image will then be given by 𝑢𝑖 ∘
𝜑𝑖

−1(𝑥). 
 

 

Figure 1. Illustration of the Image Registration Step 

The second step of super-resolution is a fusion step that combines the registered images 

into a single high-resolution image 𝑢.  The simplest image fusion approach is to take the 

median through all pixel values 

𝑢(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑢𝑖 ∘ 𝜑𝑖
−1(𝑥) | 𝜑𝑖

−1(𝑥) ∈ Ω𝑖},     𝑥 ∈ Ω𝑀 . 

The median image is commonly used as the benchmark for super-resolution 

algorithms. More sophisticated approaches use the Maximum Likelihood Estimate [3] and 

the Maximum A Posteriori model [4]. Some fusion algorithms are scene-aware, such as 

the method developed by Baker and Kanade for human faces [5]. In the next section, we 

will present a variational framework for data fusion. 

 

2. Variational Super-Resolution 

The variational approach to image processing is a general strategy that has proven 

effective for a wide variety of problems including denoising, deblurring, inpainting, and 

segmentation [6]. In simplest terms, the idea is to create an energy that describes the 

overall "quality" of an image and then optimize the energy to produce a superior image. 

For example, given a noisy grayscale image 𝑓:Ω → ℜ defined on some lattice Ω, we can 

compute a denoised image 𝑢:Ω → ℜ by minimizing the general energy. 

min
𝑢

𝐸[𝑢 | 𝑓] = 𝑅(𝑢) + 𝜆 ∫(𝑢 − 𝑓)2 𝑑𝑥
 

Ω

. 

The first term 𝑅(𝑢) represents a regularization term describing the smoothness of the 

resulting image 𝑢. The second term of the energy is called the fidelity or matching term 

and forces the computed image to remain close to the original image in the least squares 

sense. The parameter 𝜆 is a weight chosen to control the balance between the 

regularization term and the fidelity term. 

As mentioned previously, the super-resolution result relies heavily on precise 

determination of the registration functions 𝜑𝑖. We will separately consider the cases when 

the coordinate transformations 𝜑𝑖 are known and unknown. Assuming the transformations 
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𝜑𝑖 are known will greatly simplify the problem by eliminating the registration step and 

will generally produce better final results.  However, in general this is not a practical 

assumption for real-world applications. 

 

2.1. Data Fusion with Known Registration 

The variational model for image denoising extends naturally to multiple images.  

Instead of the fidelity term matching to a single image, the final image should match on 

average all images in the sequence in the least squares sense. Suppose we are given a 

sequence of 𝑁 images 𝑢𝑖:Ω𝑖 → ℜ  and the corresponding registration functions 𝜑𝑖:Ω𝑖 →
Ω𝑀 that map the images to a common high-resolution lattice Ω𝑀. Each low-resolution 

image 𝑢𝑖 will map pixel values to the registered image domain on the set 𝐷𝑖: = Ω𝑀 ∩
𝜑𝑖(Ω𝑖).  The variational super-resolution model evolves a new image 𝑢:Ω𝑀 → ℜ  by 

minimizing the energy 

min
𝑢

𝐸[𝑢 | 𝑢1≤𝑖≤N,  𝜑1≤𝑖≤N] = 𝑅(𝑢) +
𝜆

𝑁
∑∫ (𝑢 − 𝑢𝑖 ∘ 𝜑𝑖

−1)
2
 𝑑𝑥

 

Di

𝑁

𝑖=1

. 

This model will perform variational smoothing on the known pixels and inpainting in 

unknown regions.  However, the model is not equivalent to matching to the mean image, 

as pixels with multiple consistent values will receive more weight in the minimization. 

There are many possible choices for the regularization energy 𝑅(𝑢) and it is often 

developed to perform a specific task.  In this paper, we will focus on two of the most 

popular regularization strategies: the Total Variation (TV) norm [7] and the Mumford-

Shah energy [8].   

The TV regularization was first proposed in the seminal paper by Rudin, Osher, and 

Fatemi [7]: 

𝑅𝑇𝑉(𝑢) = ∫‖∇𝑢‖ 𝑑𝑥
 

Ω

. 

TV regularization encourages image smoothness while allowing for the presence of 

jumps and discontinuities, a key feature in image processing because of the importance of 

edges in vision.  The norm is generally chosen to be the 𝐿2-norm  

‖∇𝑢‖ = √𝑢𝑥
2 + 𝑢𝑦

2 . 

There are several methods for minimizing the TV energy, including PDE-based 

methods [9], graph cuts [10], and Bregman iteration [11-12].  We performed TV 

minimization by modifying the digital TV filter proposed by Chan, Osher, and Shen [13].  

We initialize the image 𝑢(0) as the median image and then evolve a new image 𝑢(𝑛) for 

𝑛 ≥ 1 according to the formulas 

𝑢(𝑛+1)(𝑥) =
∑ ℎ(𝑛)(𝑦) 𝑢(𝑛)(𝑦) +

𝜆
𝑁

∑ 1𝐷𝑖
(𝑥) 𝑢𝑖 ∘ 𝜑𝑖

−1(𝑥)𝑁
𝑖=1𝑦∈𝑁(𝑥)

∑ ℎ(𝑛)(𝑦) +
𝜆
𝑁

∑ 1𝐷𝑖
(𝑥) 𝑁

𝑖=1𝑦∈𝑁(𝑥)

 

ℎ(𝑛)(𝑦) =
1

‖∇𝑢(𝑛)(𝑦)‖
 

where 𝑁(𝑥) is the 4-connected neighborhood of pixel x and 1𝐷𝑖
(𝑥) is the region indicator 

function 

1𝐷𝑖
(𝑥) = {

1  if 𝑥 ∈ 𝐷𝑖

0  otherwise
. 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 8 (2016) 

 

 

332                                                                                                           Copyright ⓒ 2016 SERSC 

The gradient in the formula for ℎ(𝑛) can be approximated using a standard finite 

difference scheme. To avoid division by zero, a small lifting parameter 𝑎 > 0 can be 

introduced into the norm 

1

‖∇𝑢(𝑛)(𝑦)‖
≈

1

√𝑎2 + ‖∇𝑢(𝑛)(𝑦)‖
2
. 

The digital TV filter computation is stable for 𝑎 = 𝑂(10−4) [13]. 

Another popular choice for the regularization term 𝑅(𝑢) is the Mumford-Shah energy 

[8]. Suppose the image 𝑢:Ω𝑀 → ℜ has a corresponding edge set Γ. The Mumford-Shah 

regularization is 

𝑅𝑀𝑆(𝑢,Γ) = ∫ ‖∇𝑢‖2𝑑𝑥
 

Ω𝑀\Γ

+ 𝛾𝐿(Γ) 

where 𝐿(Γ) is the one-dimensional Hausdorff measure indicating the length of the edge 

set and 𝛾 is a parameter determining the weight of the edge term.  The first term smooths 

the image away from the edges and the second term minimizes the total edge length. 

Minimizing the Mumford-Shah energy is more difficult computationally than minimizing 

the TV energy, because it requires simultaneously tracking both 𝑢 and Γ. The advantage 

of the Mumford-Shah energy is that it tends to give sharper edges and smoother flat 

regions. The resulting images are crisper but may also have a "cartoon-like" appearance. 

There are several algorithms for minimizing the Mumford-Shah energy such as level 

sets [14] and graph cuts [15]. We implemented an alternating minimization scheme using 

the Ambrosio-Tortorelli Γ-convergence approximation to track the edge set [16]. Let 

𝑧:Ω𝑀 → [0,1] denote the "edge canyon" function with 𝑧 = 0 on the edge set and 𝑧 = 1 

otherwise.  For a small parameter 𝜀 > 0, the Γ-convergence approximation to the 

Mumford-Shah regularization is given by 

𝑅𝑀𝑆(𝑢, 𝑧) = ∫ 𝑧2 ‖∇𝑢‖2𝑑𝑥
 

Ω𝑀

+  𝛾 ∫ (𝜀‖∇𝑧‖2 +
(1 − 𝑧)2

4𝜀
)𝑑𝑥

 

Ω𝑀

. 

The associated Euler-Lagrange equations are 

−∇ ∙ (𝑧2 ‖∇𝑢‖) + 
𝜆

𝑁
∑1𝐷𝑖

(𝑥) (𝑢 − 𝑢𝑖 ∘ 𝜑𝑖
−1)

𝑁

𝑖=1

= 0 

‖∇𝑢‖2 𝑧 +  𝛾 (−2𝜀∆𝑧 +
𝑧 − 1

2𝜀
)  = 0. 

We assume Neumann boundary conditions for the variables at the image boundaries 

𝜕𝑢

𝜕𝑛⃑ 
=  

𝜕𝑧

𝜕𝑛⃑ 
= 0. 

These equations can be solved by an elliptic solver such as Gauss-Jacobi, alternating 

the minimization of 𝑢 and 𝑧.  For inpainting problems, setting the parameter 𝜀 = 1 will 

usually suffice [17]. 

To produce artificial datasets with known registration functions, we aligned a high-

resolution video sequence manually and then worked with downsampled versions of the 

data. Figure 2, shows the result of super-resolution of a 5-image sequence with 

magnification factor 𝑀 = 4 and using the 3rd image of the sequence as the base image for 

alignment.  The center image shows the result using the TV regularization with 𝜆 = 20. 

The image at right shows the result using Mumford-Shah regularization with 𝜆 = 20 and 

𝛾 = 2000.  Both super-resolution results are clearly superior to the original image. The 
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super-resolution results are similar, but the Mumford-Shah regularization produces 

slightly sharper edges than the TV regularization. 

 

 

Figure 2. Comparison of TV and Mumford-Shah Super-Resolution 

The algorithm extends easily to color images by simply applying the process to each 

color channel. Figure 3, compares the super-resolution results to zooming a single image 

with different interpolation techniques: nearest neighbor, bilinear, bicubic, and staircased 

cubic.  Clearly making use of the entire image sequence produces higher quality images.  

The Mumford-Shah super-resolution also outperforms simply taking the median of the 

image sequence. 

 

 

Figure 3. Zooming A Single Image Vs. Super-Resolution of an Image 
Sequence 

The super-resolution procedure extends naturally to video processing. Each frame of 

the video is repeatedly selected as the base frame, aligning all other frames to the 

upsampled lattice of the base. Figure 4, shows video super-resolution of an 11-frame 

video sequence with known registration. The text is not legible in any of the orginal 11 

frames, but becomes much clearer after super-resolution. The features of the woman's 

face are also improved, but the face appears somewhat unrealistic. Because it minimizes 

the edge length, the Mumford-Shah model is well-suited for lines and text, but tends to 

over-smooth textured regions. This suggests variational super-resolution is best suited for 

applications that do not require photo-realistic images. 
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Figure 4. Mumford-Shah Super-Resolution of A Video Sequence 

2.2. Simultaneous Registration and Fusion 

In most applications, the registration functions 𝜑𝑖 will be unknown and the super-

resolution problem becomes much harder. To make the problem tractable, the registration 

functions should be restricted to a suitable class of spatial transformations.  For example, 

Irani and Peleg outline an iterative refinement based on a truncated Taylor series for 

affine transformations consisting of rotations, translation, and scaling [3]. We found that 

this iterative refinement worked well on low-resolution lattices, but the result was not 

accurate enough on the high-resolution lattice Ω𝑀 to produce acceptable results.  That is, 

the registration was accurate to the pixel level but not the sub-pixel level. 

To refine the registration, we propose an alternating minimization model.  Suppose one 

of the images in the sequence is identified as the base frame and the high-resolution lattice 

Ω𝑀 is generated by upsampling this frame's lattice.  Each low-resolution image is aligned 

to the low-resolution base frame and the aligned images are upsampled to the lattice Ω𝑀.  

The minimum energy image 𝑢 is computed from this registration, followed by minimizing 

over the registration functions for this image.  The process continues, alternately freezing 

and minimizing the image and registration functions until the registration functions reach 

a steady-state. 

Note that if the initial registration is accurate to the pixel level on the low-resolution 

lattice, then this registration will be accurate within ⌊
𝑀

2
⌋ pixels on the high-resolution 

lattice. For rigid transformations, the update to the registration functions can be computed 

by a local search of pixel mappings on Ω𝑀. We implemented this procedure using the 

Mumford-Shah model and restricting the transformations to simple translations 

𝜑𝑖(𝑥, 𝑦) = (𝑥 + 𝑎, 𝑦 + 𝑏) ↑ 𝑀 

where ↑ 𝑀 denotes upsampling by a factor 𝑀.  The initial registration was computed by 

the Irani-Peleg method and the updates were computed by a local enumerative search over 

the window within ⌊
𝑀

2
⌋ units of the (𝑎, 𝑏) translation parameters. 

For most sequences, the process converged within three iterations and resulted in a 

better image than using the initial registration. However, if the initial registration was not 

accurate enough, the resulting image was poor. This is because the alternating 

minimization is drawn towards a local minimum close to the initialization which may not 

correspond to the global minimum over 𝑢 and 𝜑 jointly. The alternating minimization 

helps refine the registration, but the initial registration still needs to be precise. 

Figure 5, compares the super-resolution result with known registration to the super-

resolution result with the alternating minimization method. Both images are clearly an 

improvement over the original image, but the second image is less blurred than the third.  
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However, the second image was produced synthetically using known registration 

parameters. The third image is based only on the input video sequence and is reproducible 

in practice. 

 

 

Figure 5. Super-Resolution with Known and Unknown Registration 
Functions 

3. Applications of Super-Resolution 
 

3.1. Video Enhancement 

The variational method we outlined can be used to enhance certain types of video. One 

application is to enhance traffic surveillance video for vehicle tracking and recognition. 

Figure 6, shows one frame of a video sequence taken from a stationary camera over an 

intersection in Karlsruhe, Germany. Performing super-resolution on the original video 

would accomplish little, as the streets would be blurred by moving vehicles and the 

stationary objects do not exhibit sub-pixel shifts to permit enhanced resolution. On the 

other hand, tracking a moving vehicle would be a good candidate for super-resolution. 

The camera is far enough from the scene that parallax effects are negligible as long as the 

vehicle does not change direction. The four vehicles indicated in Figure 6, were tracked 

manually for 11 consecutive frames. 

 

 

Figure 6. Frame from Traffic Video of Intersection in Karlsruhe 

Each of the four vehicle sequences were enhanced by a magnification factor 𝑀 = 4 

using the Mumford-Shah alternating minimization method with 𝜆 = 5 and 𝛾 = 2000. The 
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registration assumes a translational model. As Figure 7, shows, the super-resolution result 

gives a clearer picture of the vehicle than just using bicubic interpolation to zoom a single 

frame. 

However, the images appear to be blurred with a horizontal jitter effect.  It is likely that 

the video was interlaced: the odd and even lines were acquired separately and the vehicle 

changed position slightly during the acquisition phase.  To de-interlace the video, each 

frame is separated into two images consisting of alternating horizontal lines.  This new set 

consisting of twice the number of frames is then sent through the same super-resolution 

algorithm.  To maintain the aspect ratio of the original frame, a blank row is inserted on 

alternating lines for the inpainting mask.  The de-interlaced images are crisper and 

features such as windows and tires are more visible on the vehicles. 

 

 

Figure 7. Super-Resolution of Four 11-Frame Sections of Video in Figure 6 

3.2. Barcode Scanning 

A linear barcode is a series of alternating black and white stripes encoding information 

in the relative widths of the bars. The traditional barcode scanners are laser scanners that 

extract a 1D signal from the barcode.  Imaging scanners that obtain a full 2D image of the 

barcode are also being used more in practice, especially as cellphones become more 

common. However, the imaging scanners generally have much lower resolution than the 

laser scanners, resulting in poorer decoding performance for image-based systems. Many 

barcodes that would be decoded by a traditional laser scanner cannot be decoded by a 

modern imaging scanner. 

The current imaging software treats each row of the image as a separate scanline and 

attempts to decode it.  If we think of each of the barcode scanlines as a separate one pixel 

high image, super-resolution can be used to create a single high-resolution signal from the 

collection of scanlines. Even though we are only working with a single image, we are 
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using the super-resolution concept to fuse multiple pieces of information into a single 

high-resolution result. 

 

 

Figure 8. TV Super-Resolution of Code 128A Barcode Image 

Figure 8, shows a Code 128A barcode image that would not decode using traditional 

software. The first signal plotted is the ideal signal for this barcode. The second signal is a 

scanline taken from the center of the image, which has length 150 pixels. The third plot 

shows the result when we project all scanlines in the image to a common axis. Note this 

signal is very noisy and consists of many more data points. The TV regularization has 

been shown to be effective for denoising 1D barcode signals, as it tends to produce blocky 

signals [18-19]. We applied the TV super-resolution method with 𝜆 = 10. The resulting 

signal is shown in the bottom row of Figure 8.  Although it appears similar visually to the 

original signal, this signal has higher resolution than the original signal and gives more 

accurate information about the location of the peaks and valleys, so it is decoded correctly 

by the barcode software. 
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The super-resolution process allows us to potentially decode barcodes that would not 

have been decoded otherwise. As an experiment, we ran the TV super-resolution 

algorithm on a library of 71 barcode images that were misdecoded by decoding software. 

A misdecode is a case where the scanner incorrectly interpreted the signal as the wrong 

information, whereas a non-decode occurs when the scanner failed to interpret the 

barcode as any information.  Since barcodes are used for tracking sensitive items such as 

airplane parts and medication, obtaining a non-decode result is highly preferable to a 

misdecode. The same decoding software was able to correctly decode 28 (39%) of the 

super-resolved barcodes. Even more encouraging, all of the remaining 43 barcodes were 

detected as a non-decode rather than a misdecode.  However, the computational costs of 

aligning the datasets make it difficult to implement this procedure in a real-time system. 

 

3.3. Reconstruction from MRI Sensor Data 

In a phased-array Magentic Resonce Imaging (MRI) apparatus, multiple independent 

receiver elements (coils) are placed around the subject, generally at equally spaced 

intervals along a circle or ellipse.  Each of the sensors obtains a graycale image 𝑢𝑖:Ω𝑖 →
ℜ  that is accurate close to the sensor, but quickly goes dark and becomes noisy far from 

the sensor position, as shown in Figure 9. Each sensor has a sensitivity profile 𝑃𝑖:Ω𝑖 → ℜ 

that reflects the sensitivity or confidence of the 𝑖𝑡ℎ sensor at each pixel.  In theory, each 

sensor image 𝑢𝑖 is derived from the ideal total image 𝑢 by multiplying by the sensitivity 

profile with additive Gaussian noise 𝑛𝑖: 

𝑢𝑖(𝑥) = 𝑃𝑖(𝑥)𝑢(𝑥) + 𝑛𝑖(𝑥). 

 

Figure 9. Image from A Single MRI Sensor 

The standard approach for combining a set of 𝑁 sensor images is to take the 𝐿2-norm 

through the images 

𝑣(𝑥) = √∑|𝑢𝑖(𝑥)|2
𝑁

𝑖=1

. 

 

It has been shown that among all known reconstruction techniques without knowledge 

of the sensitivity profiles, the 𝐿2-norm produces images with the highest SNR [20]. 

However, the resulting image tends to be very dark in the center, as seen in the center 
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image in Figure 10. Generally, contrast enhancement techniques are required to view the 

image. 

It is possible to incorporate the sensitivity profiles 𝑃𝑖 into our super-resolution model 

by making a small adjustment to the matching term: 

min
𝑢

𝐸[𝑢 | 𝑢1≤𝑖≤N,  𝜑1≤𝑖≤N] = 𝑅(𝑢) +
𝜆

𝑁
∑∫ (𝑃𝑖𝑢 − 𝑢𝑖 ∘ 𝜑𝑖

−1)
2
 𝑑𝑥

 

Di

𝑁

𝑖=1

. 

However, this requires knowledge of the sensitivity profile 𝑃𝑖 for each sensor.  Since 

magnetic force decays with the square of the distance from the source, we propose the 

sensitivity profile 

𝑃𝑖(𝑥) = exp(−
𝑑2(𝑥, 𝑠𝑖)

𝜎2 ) 

where 𝑠𝑖 is the position of the 𝑖𝑡ℎ sensor and 𝜎 is a parameter indicating the rate of decay. 

The sensor position 𝑠𝑖 may be directly measured on the MRI apparatus. If this information 

is not available, we can interpolate the sensor positions by tracing backwards from the 𝐿2-

norm image 𝑣(𝑥) to the sensor images 𝑢𝑖. Matching 𝑃𝑖𝑣 and 𝑢𝑖 in the least squares sense 

gives the sensor positions 𝑠𝑖 and sensitivity parameter 𝜎 by  

min
𝑠𝑖,𝜎

∑(exp(−
𝑑2(𝑥, 𝑠𝑖)

𝜎
) 𝑣(𝑥) − 𝑢𝑖(𝑥))

2

.

𝑁

𝑖=1

 

Figure 10, shows an example of interpolating sensor positions from sensor images. 

 

 

Figure 10. Positions of 16 MRI Sensors Found by Backwards Tracing 
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Figure 11, shows the result of Mumford-Shah super-resolution with 𝜆 = 100 and 

𝛾 = 2000. We used the interpolated sensor positions shown in Figure 10. The 𝐿2-norm 

image is bright around the edges but dark in the center, a well-known problem in MR 

image processing. The super-resolved image is brighter and the contrast is more 

consistent throughout the image. Also, many of the noise and texture features have been 

smoothed. This may or may not be a desirable feature for medical analysis, as diagnosis 

depends on shape but also texture. 

 

 

Figure 11. Comparison of L2 Image and Super-Resolution Image 

4. Conclusions and Further Research 

We have presented a variational framework for image super-resolution that can handle 

the cases when the registration functions are known and unknown. We focused on the TV 

and Mumford-Shah energies, but there are other regularization strategies that may be 

suited for specific purposes. It is possible to incorporate a blur kernel into the model to 

help sharpen the resulting image. It is also possible to consider non-local features to 

interpolate textures and produce more photo-realistic results. 

We have also presented applications of super-resolution beyond the standard 

application of video processing. Super-resolution is the process of fusing multiple datasets 

together and should not be narrowly interpreted. We have shown that the variational 

super-resolution model can improve barcode scanning and MRI analysis in certain 

situations.  It may be possible to extend the super-resolution concept to other interesting 

applications, such as audio processing and hyperspectral images. 
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