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Abstract 

A novel algorithm for segmenting digital contours in edge images to digital straight 

segments (DSS) is proposed in this paper. While exploring contours, the algorithm 

maintains a dynamically-updated histogram of directions between every two adjacent 

contour pixels which are considered connected with respect to a generalized concept of 

connectedness. Directions of pixels are compared with the direction of the greatest value in 

histogram, and the ones of differences less than a given threshold are collected as the 

candidates of DSS. Finally, DSS is split and merged based on the analyses of the properties 

associated with the histogram such as balance and modality. Implementation of the 

proposed algorithm is visually introduced by using UML activity diagrams, and the 

experimental results of the artificial and real-life images are illustrated and discussed. 

Analyses of the experiments showed the validity of the segmentations and the bottleneck of 

the proposed algorithm. 

 

Keywords: Digital straight segment; Line segment; Feature extraction; Digital image 

processing 

 

1. Introduction 

Digital straight segment is a fundamental geometrical descriptor for digital image 

processing. Due to its multifarious applications as fingerprint recognition [1], Shape 

classification [2], aerial stereo images analysis [3], geometric estimators [4], etc., plentiful 

algorithms have been developed for tackling identifying DSS in digital images during past 

several decades. The essential issues of segmenting DSS from the given images mainly 

involve how to estimate directions and endpoints of DSS. Commonly, rectangular 

coordinate system is introduced for representing DSS analytically and directions are 

estimated by computing the slopes. The slope calculations are based on various means 

such as arithmetic approaches [5-7], convex hull [8-12] and dual-space [9-12]. According 

to DSS definitions, i.e., whether DSS is assumed to be 4 or 8-connected, these algorithms 

may be coarsely classified to two categories: algorithms of tight connectedness [5-10] and 

loose connectedness [11-12]. 

Conventionally, DSL is defined as {(x, y) ∈ ℤ2|μ ≤ ax − by < 𝜇 + |a| + |b|} with 

the common assumption that 0 < 𝑎 < 𝑏 and gcd(a, b) = 1. DSS is a segment of DSL 

with respect to two endpoints. For a DSS, there are two leaning lines ax − by = μ and 

ax − by = μ + |a| + |b| − 1which in combination determine the borders of DSS. Points 

of DSS on leaning lines are called leaning points. Weakly exterior points lie on lines 

ax − by = μ − 1 and ax − by = μ + |a| + |b| and both lines are outside of DSS and 

next to its leaning lines. 

For algorithms of tight connectedness, DSL is commonly assumed to be 8-connected 

[5-10] and DSS is assumed to be either 8-connected [7-10] or 4-connected [6]. One 

emblematic algorithm named DR95 [5] inspires many algorithm designs of tight 
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connectedness including the recent work [6]. DR95 incrementally updates the slope of 

DSS based on arithmetical relationship between its leaning points and weakly exterior 

points found by traversing along a given 8-connected digital contour. Like DR95, 

algorithms proposed by Lachaud and Said [6], Ouattara et. al., [7] and Debled-Rennesson 

et. al., [9] also depend on arithmetic means but they focus on some special cases, i.e., 

segmenting DSS of minimal parameters or characteristics with respect to the known 

endpoints of a digital straight line of known parameters. These additional conditions lead 

to elaborately-designed algorithms of high efficiency. Although, algorithms of tight 

connectedness are highly efficient, additional conditions and requirements like noiseless 

digital contour, their applications in practice are limited [8-12]. 

Oppositely, algorithms of loose connectedness take into account that noise, geometrical 

width or thickness, disconnectedness presented in segmentation. Commonly, 

connectedness is mainly reflected by thickness. Thickness of DSS in growing is 

dynamically measured by using convex hull and compared with a given threshold for 

controlling thickness [11-12]. Buzer [11] proposed a greedy algorithm which may lead to 

incorrect segmentations. This deficiency is remedied by Faure et. al., [12] by using 

tangential cover which generates strip-like polygons based on segmented DSS. Because 

the tangential cover is originally designed for one-pixel-width contour, boundaries of 

thick contour have to be extracted and combined to a chain of boundary points. This 

extraction is error-prone and sometimes may be impracticable for real-life images. 

This paper proposed an algorithm of loose connectedness to identify DSS statistically 

for given digital contours in edge images. The statistical approach is completely different 

from the conventional DSS segmentation algorithms as the ones discussed above. No 

additional information or preprocessing is required and no assumption of 4 or 

8-connectedness is assumed. DSS growing is controlled by dynamical estimations of the 

direction and width by using statistically-designed measurement named statistical 

straightness and linear regression. The experiments yielded positive results for real-life 

images. 

This paper is organized as follows. Section 2, introduces the schemas of classical 

algorithms and common concepts employed in the proposed algorithm. Section 3, 

mathematically describes the concept of statistical straightness and the relevant 

definitions for identifying DSS statistically. Section 4 visually illustrates the algorithm 

implementation by using UML activity diagrams [13], and experimental results are 

analyzed in Section 5. Section 6 draws the conclusions. 

 

2. Related Works and Basic Concepts 

This section introduces algorithms proposed by Lachaud and Said [6], Ouattara et. al., 

[7], Debled-Rennesson et. al., [8-9], Sivignon [10], Buzer [11] and Faure et. al., [12] 

sequentially, and illustrates two common concepts about directions and their differences 

in digital images. 

Said [6] and Ouattara et. al., [7] both employed arithmetic approaches. Said [6] 

designed two algorithms named SmartDSS and ReverseSmartDSS based on the patterns 

calculated by using Berstel formulae. SmartDSS predicts weakly exterior points 

arithmetically and updates the slope by extending partial quotients of current DSS. 

According to the types of weakly exterior points, updating is determined by the number of 

patterns. ReverseSmartDSS additionally requires two upper leaning points closest to 

endpoints are given and starts by predicting an upper leaning point between two given 

points. It recursively estimates slopes associated with the greatest, smallest and reverse 

subpatterns until one of the estimated slope agrees with the deepest slope. The slopes 

estimated by two algorithms are represented by Stern–Brocot tree, a visual representation 

of partial quotients. The estimation order of slopes can be visualized as traveling between 

top and bottom of Stern–Brocot tree. Ouattara et. al., [7] converted the estimation of 
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minimal DSS to estimating coordinates of the two upper or lower leaning points based on 

the maximal or minimal remainders defined as ℛ(x) = (ax − c) mod b for a point of 

abscissa x. 

Debled-Rennesson et. al., [8], Sivignon [10] and Buzer [11] all focused on the thick 

digital contours by using convex hull. Debled-Rennesson et. al., [8] conceptualized the 

thickness by arithmetic property (|a| + |b|) max(a, b)⁄  called order and the 

segmentation is controlled by dynamically estimating the order of current DSS and the 

comparison with a pre-defined threshold. If the order exceeds threshold then the growing 

of current DSS stops and a new DSS starts. Although 8-connectedness is still required, the 

concept of dynamic thickness is first introduced. Sivignon [10] refined this algorithm 

through adopting convex hull to guarantee each segmented DSS is as long as possible and 

of minimized order with respect to the threshold. Buzer [11] developed an algorithm 

capable of segmenting disconnected DSS of thickness restricted by a threshold α. This 

algorithm is similar with the one designed by Debled-Rennesson et. al., [9], i.e., it also 

employs convex hull cooperated with the α-thickness defined as α ∙ max(a, b) to control 

the DSS thickness. 

Debled-Rennesson et. al., [9] and Faure et. al., [12] both combined convex hull and 

dual space in their researches. Debled-Rennesson et. al., [9] proposed two algorithms to 

estimate the minimal DSS. Both algorithms adapts the separating lines ax − by + ρ = 0 

where  μ ≤ ρ < 𝜇 + 1 and ρ ∈ ℝ. The first computes the upper convex hull of points X 

in DSL and the lower convex hull of points X + (0,1). The minimal parameters are 

determined by convex hull edge of the maximal denominator associated with its slope. 

The second maps the separating lines 0 ≤ αx − y + β < 1 to a dual space (α, β) and the 

minimal characteristics are represented by a point Λ = (a b⁄ , μ b⁄ ) in Farey Fan, i.e., a 

set of rays R(x, y) = {(a, b)|b = −ax + y} where 0 ≤ y ≤ x ≤ n, 0 ≤ α, β ≤ 1 and n 

is the length of DSS. In Farey Fan, the algorithm investigates the intersections between 

the highest ray through or below Λ, and the minimal characteristics are determined by 

two vertical lines of abscissae with the denominators smaller than n and closest to a b⁄ . 

Faure et. al., [12] employed tangential cover for mapping DSS to arcs defined in a dual 

space, and the arcs are adapted to generate polygons overlapping DSS. The inner and 

outer borders of thick digital contour are extracted and combined to a single chain based 

on both the border growing ratio and the visibility between points joined by chain. The 

chain is segmented to DSS’s by using convex hull with respect to threshold α defined by 

Buzer [11]. Finally, DSS’s are mapped through tangential cover and the polygons of the 

least vertices overlapping DSS are generated. 

The basic and common concepts are introduced in the rest of this section. Let IF 

denotes the foreground of an edge image. Digital contours are represented by connected 

pixels in IF. For any two pixels Pk1, Pk2 ∈ IF, k1, k2 ∈ ℤ+, 1 ≤ k1, k2 ≤ |IF|, k1 ≠ k2, 

vector Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  reflects not only the Euclidean distance between Pk1 and Pk2

 by its 

magnitude |Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |, but also an unique direction θk2 whose definition is given below. 

Definition 1. Direction 0 ≤ θk2 < 2𝜋  of vector Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the angle formed by 

anticlockwise rotating the positive x-axis (denoted by 𝕆 ) originated at Pk1  until 

overlapping Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . This process is formulated as θk2 = Rac(𝕆, Pk1Pk2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), e.g., θ of 

P1P2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗  shown in Figure 1. Conversely, any given direction 0 ≤ θ < 2𝜋 is considered as 

the angle formed by continuously rotating 𝕆 originated at arbitrary pixel Pk1 until the 

radius scanned by 𝕆 equals θ. 
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Figure 1. Proposed Algorithm Explores Foreground Pixels 

There is no requirement about 4 or 8-connectedness for Pk1  and Pk2 . The 

connectedness of Pk1 and Pk2 is determined by a given parameter ℛ, i.e., Pk1 and 

Pk2 are connected iff |Pk1 − Pk2| ≤ ℛ. Hence, any pixel within the circle of radius ℛ 

expanded at Pk1 will be considered as connected to Pk1. However, for a Pk1comprised 

by a DSS, not every pixel Pk2 connected with Pk1 can become a member of the DSS. 

Their memberships are determined by differences between θk2 and direction θ of DSS 

which is statistically estimated and dynamically updated. 

For two given direction θ1 and θ2, 0 ≤ θ1, θ2 < 2𝜋, set their initial points of vectors 

coincide, then the difference θ∆2 between θ1 and θ2 is the smaller angle formed by 

clockwise or anticlockwise rotating vector of θ1  until overlapping vector of θ2 . 

Formally, let Rc(θ1, θ2) , Rac(θ1, θ2)  respectively denotes the angles formed by 

clockwise and anticlockwise rotating vector of θ1, and sgn(a − b) is 1 when a ≥ b 

and −1 when a < 𝑏, then definition of direction difference is given below. 

Definition 2. For any two direction θn1 and θn2, 0 ≤ θn1, θn2 < 2𝜋, n1, n2 ∈ ℤ, the 

direction difference between θn1 and θn2 denoted by θ∆n2 = ∆(θn1, θn2) is defined as 

followings. 

𝜃∆𝑛2
= sgn (𝑅𝑐(𝜃𝑛1

, 𝜃𝑛2
) − 𝑅𝑎𝑐(𝜃𝑛1

, 𝜃𝑛2
))min(𝑅𝑐(𝜃𝑛1

, 𝜃𝑛2
), 𝑅𝑎𝑐(𝜃𝑛1

, 𝜃𝑛2
))    (1) 

For a given direction θ2 of P1P2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  shown in Figure 1, difference θ∆3 for P2P3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the 

angle formed by rotating vector of θ2 clockwise, and the difference θ∆4 for P2P4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is 

angle formed by rotating vector of θ2  anticlockwise. θ∆3 < 0 because Rc(θ2, θ3) <

Rac(θ2, θ3) and θ∆4 > 0 comes from Rc(θ2, θ4) > Rac(θ2, θ4). 

 

3. Statistical Straightness 

This section mathematically illustrates the ideas of segmenting arbitrary digital contour 

to DSS with respect to the statistical straightness and the generalized connectedness 

described by the previous sections. It consists of three subsections. Section 3.1, introduces 

the statistical straightness and how to obtain DSS through segmentations based on it. 

Section 3.2, describes analyzing statistical straightness of a given DSS for enhancing its 

straightness. Section 3.3, supplements Section 3.2, for merging DSS. 

 

3.1. DSS Based on Statistical Straightness 

Suppose an arbitrary pixel P1 ∈ IF is given, a circle of radius ℛ can be expanded at 

P1 and S1 = {P ∈ IF ∖ {P1} ||P1P⃗⃗⃗⃗⃗⃗ |  ≤ ℛ} represents foreground pixels found in circle. If 

|S1| ≠ 0 , then θ1 = ∑ θi1
|S1|
i1=1 |S1|⁄  where  θi1 = Rac(𝕆,P1Pi1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) , Pi1 ∈ S1  and i1 ∈ ℤ+  
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is the average direction of DSS consisting of accepted pixels {P ∈ S1 ||∆ (θ1, Rac(𝕆,

P1P⃗⃗⃗⃗⃗⃗ ))| ≤ Θ} and not-rejected pixels {P ∈ S1 ||∆ (θ1, Rac(𝕆,P1P⃗⃗⃗⃗⃗⃗ ))| > 𝛩} with respect to 

a given direction difference threshold Θ < π 2⁄ . 

Afterwards, a semicircle is expanded at the first pixel of {p ∈ S1 |minp |∆ (θ1, Rac(𝕆,

P1P⃗⃗⃗⃗⃗⃗ ))|} denoted by P2  and its diameter is perpendicular to θ1 . Let S2 = {P ∈ IF ∖

{S1⋃{P1, P2}} ||P2P⃗⃗⃗⃗ ⃗⃗ |  ≤ ℛ}  denote pixels found in semicircle. Suppose |S2| ≠ 0 , let 

f: 𝔏 → ℤ denotes the map between interval 𝔏(θi2) = (θi2 − σ, θi2 + σ) where σ ∈ ℝ, 

θi2 = Rac(𝕆,P2Pi2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), Pi2 ∈ S2, and number of vectors whose directions lying in 𝔏, then 

there is an inverse function f−1: ℤ → 𝔏 maps f(𝔏(θi2)) back to θi2 or the median of 

the ordered set comprising directions mapped to the same value of f . Then θ2 =

f−1(maxθi2
f(𝔏(θi2))), i.e., θ2 is the direction determined by 𝔏 of maximum value in a 

histogram of axes 𝔏 and f.  

Generally, let 𝓉 ∈ ℤ+ denotes the times of expanding circle or semicircle of radius 

ℛ ≥ 2 at pixels P𝓉 ∈ IF accepted by a DSS, then the set of foreground pixels detected by 

the 𝓉th circle expansion can be defined as below. 

S𝓉 = {
{P ∈ IF ∖ {P1} ||P1P⃗⃗⃗⃗⃗⃗ |  ≤ ℛ}                                                                                    𝓉 = 1

{P ∈ IF ∖ {S𝓉−1⋃{P𝓉−1}} ||P𝓉P⃗⃗⃗⃗⃗⃗ |  ≤ ℛ ∪ ∆(θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) <
π

2
}    𝓉 > 1

        (2) 

Where θt−1 denotes the direction of DSS at the (t − 1)th circle expansion and its 

definition is given by Definition 3 in the followings. If DSS(𝓉) denotes the set of points 

contained by a DSS at the 𝓉th circle expansion, 𝓌𝓉 denotes the geometrical thickness 

or width of DSS(𝓉) and α ∈ ℝ, then set of accepted pixels denoted by S𝓉
1 for S𝓉, is 

defined as below. 

S𝓉
1 = {P ∈ S𝓉 |∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) ≤ Θ ∪𝓌𝓉 ≤ αℛ}                                                  (3) 

Definition for set of not-rejected pixels S𝓉
0 is similar with S𝓉

1 except ∆ (θt−1, Rac(𝕆,

Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) ≤ Θ  is replaced by ∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) > 𝛩 . Let P1 ∈ IF  denotes an 

arbitrary given pixel, then pixel P𝓉 ∈ IF which is chosen as the center for expanding 

circle or semicircle can be defined as following. 

P𝓉 ∈ {
{P1}                                                                       𝓉 = 1                  

{P ∈ S𝓉
1 |minp |∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ))|}     𝓉 > 1, |S𝓉

1| ≠ 0 
                                (4) 

Definition 3. If Θ  denotes the threshold of direction difference, σ ∈ ℝ  and 

𝔄θ = {θij = Rac (𝕆,PjPij
⃗⃗ ⃗⃗ ⃗⃗  ⃗) |Pij ∈ Sj

1, i, j ∈ ℤ+, 1 ≤ i ≤ |Sj
1|, 1 ≤ j ≤ 𝓉}  denotes the 

directions of all accepted pixels, statistical straightness or direction of DSS is defined as 

below. 

θ𝓉 = {
∑ θi1

|S1|
i=1 |S1|⁄                           𝓉 = 1, |S1| ≠ 0

f−1 (maxθij
∈𝔄θ

f (𝔏 (θij)))     𝓉 > 1, |S𝓉
1| ≠ 0

                                                          (5) 

Definition 4. If |Si
1| ≠ 0, i ∈ ℤ+, 1 ≤ i ≤ 𝓉, then definition of generalized DSS 

without requirement of 4 or 8-connectedness at the 𝓉th circle expansion is given as 

following. 
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DSS(𝓉) = ⋃ (Si
1 ∪ Si

0)𝓉
i=1                                                                                                             (6) 

⋃ Si
1𝓉

i=1  and ⋃ Si
0𝓉

i=1  respectively represent sets of accepted pixels and not-rejected 

pixels for DSS(𝓉). If |S𝓉+1
1 | = 0, then DSS = DSS(𝓉) which means there will be no 

more circle expansion for segmentation of DSS and it will be analyzed for guaranteeing a 

strong statistic straightness. 

A simple example may illustrate definitions mentioned above. Suppose Θ = 15°, 

α = 2 and R = 1.5 pixel, for a given digital contour of eight pixels shown by squares of 

red centers in Figure 2, DSS is segmented by following steps. 

For 𝓉 = 1, P1 in Figure 2, is initially given, then P2 and Q are found in a full circle 

(not shown) expanded at P1. At this moment, there are two possible directions: θ2 of 

P1P2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗  and θQ  of P1Q⃗⃗ ⃗⃗ ⃗⃗  . However, θ2  and θQ  are equally close to average direction, 

hence both P2 and Q are accepted and chosen as centers for expanding next circle, 

meanwhile they are erased in IF. DSS1 denotes DSS containing three pixels. 

For 𝓉 = 2, two semicircles (not shown) are simultaneously expanded at P2 and Q. In 

either semicircles, P3 is found and θDSS1 is estimated based on (5). θ∆3 is found to be 

0 with respect to θDSS1 and 𝓌DSS1 < 2ℛ, hence P3 is accepted and chosen for the 

center of the next circle expansion. P3 is erased. 

For 𝓉 = 3 , P4  is found in range, θDSS1  remains same based on (5) and and 

𝓌DSS1 < 2ℛ. P4 is not-rejected because θ∆4 > 𝛩 and no pixel can be chosen as center 

for next expansion. 

For 𝓉 = 4, |𝑆4
1| = 0 because no semicircle can be expanded and segmentation of 

𝐷𝑆𝑆1 terminates. Finally, 𝐷𝑆𝑆1 = {𝑃1, 𝑃2, 𝑃3, 𝑄} ∪ {𝑃4}. Since 𝑃4 is not erased, 𝑃4 is 

the initial pixel for 𝐷𝑆𝑆2 shown in Fig.2. 𝐷𝑆𝑆2 and 𝐷𝑆𝑆3 are segmented in similar 

procedures. 
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Figure 2. Not-Rejected Pixels 

3.2. Analyzing Statistic Straightness of DSS 

For any DSS(𝓉) of |S𝓉+1
1 | = 0, its statistical straightness or direction should be 

analyzed because the segmentation based on Section 3.1 never takes into account the 

cases that the initial direction θ1  may be an incorrect assumption of θ𝓉  and the 

direction distribution of DSS(𝓉) may be multimodal. 
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Incorrect assumption of θ1 leads to misclassifications of the accepted and not-rejected 

pixels, and thus resulting in unbalanced values of |⋃ Si
1𝓉

i=1 | and |⋃ Si
0𝓉

i=1 |. The balance 

is simply estimated by the following criterion. 

|⋃ Si
0𝓉

i=1 |

|⋃ Si
1𝓉

i=1 |
> 𝑏 ⟺ DSS(𝓉) is unbalanced                                                                                   (7) 

Where 𝒷 ∈ ℝ+ is a given balance threshold. If (7) is met, then pixels in ⋃ Si
1𝓉

i=1  and 

⋃ Si
0𝓉

i=1  are interchanged. Multimodal direction distribution leads to weak statistical 

straightness i.e., the DSS is geometrically curvaceous. Multimodal distribution can be 

detected by investigating histogram 𝒽𝓉  of axes 𝔏(θij)  and f  where 𝔏 = (θij −

σ, θij + σ), θij ∈ 𝔄θ, σ and 𝔄θ are defined in Definition 3. For a given multimodal 

threshold 𝓂 ∈ ℝ+ and θmax = f−1 (maxθij
∈𝔄θ

f (𝔏 (θij))) which is a fixed value on 

account of |S𝓉+1
1 | = 0, 𝒽𝓉 is considered multimodal if following condition is met. 

|ℑ| = |{𝔏 (θij) ∈ 𝒽𝓉 |
maxθij

∈𝔄θ\{θmax} f(𝔏(θij
))

maxθij
∈𝔄θ

f(𝔏(θij
))

> 𝑚}| > 1 ⟺ 𝒽𝓉 is multimodal       (8) 

If (8) is met and ∆(θn1, θn2) > 𝛩 where θn1 and θn2 are consecutive elements in 

ordered set {θij|𝔏(θij) ∈ ℑ}, then directions like θn1 and θn2 are collected in set 𝔖θ 

and DSS(𝓉) should be further segmented based on 𝔖θ. According to (4), there are 

P1, P2, … , P𝓉 pixels as the centers of circles corresponding to resulting S1
1, S2

1, …, S𝓉
1. 

Suppose 𝓉 > 1, 𝓃 ∈ ℤ+ denotes a given parameter and arg minθ𝔖
∆(θj, θ𝔖) represents 

direction value θ𝔖 ∈ 𝔖θ minimizing ∆(θj, θ𝔖), then DSS(𝓉) is split at positions of 

pixels defined below. 

𝔖p = {Pj |minθ𝔖∈𝔖θ
(∆(θj, θ𝔖))

−1
≠ minθ𝔖∈𝔖θ

(∆(θj−n′ , θ𝔖))
−1

, n′ = 1,2,… ,𝓃}     (9) 

Where n′ = 1,2,… , 𝓃. Namely, θ𝔖 ∈ 𝔖θ differing minimally from θj is found for 

arbitrary Pj  and compared with the last 𝓃  consecutive directions in 𝔖θ . If all 𝓃 

comparisons fail, then Pj is envisaged as a split position for DSS(𝓉). For all Pj ∈ 𝔖p, 

DSS(𝓉) is thus split to DSSn3
s , n3 = 1,2,… , |𝔖p| + 1 and the direction of each DSSn3

s , 

is updated by using linear regression. Suppose (xi′ , yi′) ∈ ℤ2  where 1 ≤ i′ ≤ n =
|DSSn3

s , |  denotes coordinates of pixels contained by DSSn3
s ,, then its direction is 

estimated by the following formula. 

θDSSn3
s = tan−1 (

∑ (x
i′
−x)(y

i′
−y)n

i′=1

∑ (xi′−x)2n
i′=1

)    where   x =
∑ x

i′
n
i′=1

n
, y =

∑ y
i′

n
i′=1

n
                (10) 

Once θDSSn3
s  is obtained, 𝓌DSSn3

s  can be approximated by difference of maximal and 

minimal ordinates in the coordinate system whose origin is (x, y) and positive x-axis 

coincides with θDSSn3
s . Pixels of maximal or minimal coordinates in rotated coordinate 

system are named marginal points and denoted by set 𝔈DSSn3
s . Any pixel causing 

𝓌DSSn3
s > 𝛼ℛ will be removed from DSSn3

s  which guarantees DSSn3
s  is compatible 

with (6). 

Figure 3 depicts a simple case of splitting a given DSS: DSS1. Suppose Θ = 15°, 
𝓂 = 0.7 , 𝓃 = 2  and a digital contour consisting of seven pixels in Figure 3 is 

segmented to DSS1,then 𝒽𝓉 of DSS1 comprises two peaks: θDSS2
= 0 of times 2 and 

θDSS3
= 45° of times 2, i.e., |ℑ| = |{θDSS2

, θDSS3
}| = 1 > 𝓂 based on (8) and 𝒽𝓉 is 
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multimodal. Because ∆(θDSS2
, θDSS3

) > 𝛩 , 𝔖θ = ℑ . According to (9), 𝔖p = {P4} . 

Namely, follow the pixels defined by (4) for DSS1, the direction of minimal difference to 

Rac(𝕆, P1P2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is θDSS2

, for Rac(𝕆, P2P3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) it also is θDSS2

, for Rac(𝕆, P3P4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) it changes 

to θDSS3
. However, θDSS2

 consecutively occurs 2 times which equals 𝓃, this causes P4 

is labeled as a split position. 

 

DSS2

P1

Q

P3P2

P4

P5

P6

DSS3

DSS1

P

X D
S

S
3

X D
S

S
2

X D
S

S
3

X D
S

S
2

 

Figure 3. Split or Merge DSS 

3.3. Merging DSS 

Split discussed in Section 3.2, implies possibility of merging the split DSS with ones 

not from the same source. The merging is based on the differences between the directions 

of two compared DSS and their relative positions. For DSS1, DSS2, …DSS|𝔇| in 𝔇 

containing all DSS found in IF, they are categorized to collections 𝔇M defined below. 

{𝐷𝑆𝑆𝑘1
, 𝐷𝑆𝑆𝑘2

∈ 𝔇 ||∆(𝜃𝑘1
, 𝜃𝑘2

)| ≤ Θ, |𝑥𝑘1
− 𝑥𝑘2

| ≤ 𝛼ℛ 2⁄ }                                     (11) 

Where k1, k2 ∈ ℤ+, k1 ≠ k2, 1 ≤ k1, k2 ≤ |𝔇M|, θki and xki respectively denote 

direction and mean abscissa of DSSki, i = 1,2 in a coordinate system of positive x-axis 

pointing to ∑ θki
|𝔇M|
ki=1 |𝔇M|⁄ . 𝔇M is then further split to subgroups 𝔇Mk

, k = 1,2,… 

defined as following for merging. 

{𝐷𝑆𝑆𝑘3
∈ 𝔇𝑀 ||𝑥𝑃𝑛4

− 𝑥𝑃𝑛5
|  ≤ 𝛼ℛ, 𝑃𝑛4

∈ 𝔈𝐷𝑆𝑆𝑘3
, 𝑃𝑛5

∈ 𝔈𝐷𝑆𝑆Max
}                                (12) 

Where k3, n4, n5 ∈ ℤ+ , 1 ≤ k3 ≤ |𝔇M| , 1 ≤ n4 ≤ |𝔈DSSk3
| , 1 ≤ n5 ≤ |𝔈DSSMax

| , 

DSSMax = arg maxDSSki
|SDSSki

1 |, DSSki ∈ 𝔇Mk
∖ 𝔇M

k′ , Mk ≠ Mk′  and DSSMax  is the 

member of the maximal number of accepted points SDSSki

1  in 𝔇Mk
. Real values xPn4

 

and xPn5
 respectively denote the abscissae of points Pn4 and Pn5. 

Once 𝔇Mk
 is obtained, all members in each 𝔇Mk

 are removed from 𝔇 and their 

accepted points and not-rejected points are assigned to DSSMax. The direction of DSSMax 

is finally updated by using linear regression of (10).  

If DSS2 and DSS3 in Figure 3 are given for merging and suppose Θ = 45°, α = 1.6, 

ℛ = √5  pixel, then DSS2  and DSS3  will be merged as DSS1 . Because 

|∆(θDSS2
, θDSS3

)| = 45° ≤ Θ  and |xDSS2
− xDSS3

| ≈ 0.75√2 ≤ αℛ 2⁄ , i.e., 𝔇M =
{DSS2, DSS3} based on (11), and DSSMax = DSS2. In Figure 3, the mean of DSS2 is a 

black point labeled by P̅ and P5 is the mean of DSS3. The largest difference between all 

marginal points of DSS2 and DSS3 is denoted by |xDSS2
− xDSS3

| and shown in Figure 

3. Since |xDSS2
− xDSS3

| ≈ 3 √2⁄ ≤ αℛ holds, DSS2 and DSS3 are confirmed to be 

merged by (12). The resulting DSS is DSS1 of direction computed based on (10). 
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4. Algorithm Implementation 

This section introduces the implementation of ideas proposed in previous sections. The 

whole procedure consisting of two main subroutines: Subroutine 1: find DSS; Subroutine 

2: merge DSS. The procedure is shown in Figure 4. Subroutine 1 reflects the 

segmentation and split discussed in Section 3.1, and 3.2, respectively. Subroutine 2, 

provides functionality of merging DSS described in Section 3.3. 

 

Detect Edge

Proposed Algorithm

Subroutine 1: find DSS

Subroutine 2: merge DSS

DSS collection

[rendering DSS is required]

Render DSS tangential cover Return DSS collection

[else]

detection radius, 
direction difference threshold

binary edge image, 

 

Figure 4. General Design of the Proposed Algorithm 

4.1. General Schema of DES 

Three classes are employed by the proposed algorithm, i.e., DSSGroup, DSS and 

DSSPoint depicted by Figure 5. Names of these classes and their properties are 

self-introductory and they are discussed in the reverse order of their dependencies shown 

in Figure 5, in followings. 

DSSPoint preserves the deviations of the current pixel and the previous pixel. The 

deviations determine the direction computed according to Definition 1. It also retains 

coordinates with respect to different coordinate systems for finding marginal points and 

estimating DSS direction by using (10). DSS Class holds points defined by (6). The 

marginal points are referenced by properties of type DSSPoint. DSSGroup maps to 𝔇M 

of (11) and its property DSSForMerging reflects 𝔇Mk
 defined by (12). Its class diagram 

also depicts a constructor accepting two parameters DSS1 and DSS2. The rest properties 

of DSSGroup serve the computations required by (11). 

 

DSSGroup(DSS1: DSS, DSS2: DSS)

AverageDirection: Double
DSSCollection: List<DSS>
DSSDistances: Dictionary<DSS, 
double>
DSSForMerging: Dictionary<DSS, 
List<DSS>>

DSSGroup
Direction: double
XmeanToImageCenter:double
YmeanToImageCenter:double
XmaxPoint: DSSPoint
YmaxPoint: DSSPoint
XminPoint: DSSPoint
YminPoint:  DSSPoint
AcceptedPoints: List<DSSPoint>
NotRejectedPoints: List<DSSPoint>

DSS

Deviation: integer
PreviousDeviation: integer
DirectionToPrevious: double
XtoImageCenter: double
YtoImageCenter: double
XtoDSSCenter:double
YtoDSSCenter:double

DSSPoint

 

Figure 5. Class Diagram for the Proposed Algorithm 

Based on the classes depicted in Figure 5, the schema of the proposed algorithm is 

shown in form of UML activity diagram of Figure 6. Subroutine 1 and 2 respectively 

contains 5 and 3 subroutines. Subroutine 1.1 and 1.2 implement segmentation described 

by Section 3.1. Subroutine 1.3, to 1.5 split DSS based on criterions discussed in Section 

3.2. Packing these subroutines into a single unit Subroutine 1 avoids the redundancy of 

two separate loops respectively for the segmentation and splitting. Subroutine 2 merges 

DSS according to the logic presented in Section 3.3. 
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Subroutine 1

detection radius, 
direction difference threshold

binary edge image, 

Try to read an unvisited pixel just adjacent to a visited  one from 

left to right in a row and from top to bottom in image space

[an unvisited foreground pixel is found]

Subroutine 1.1: Find first two points of DSS

[else]

Subroutine 1.2: Continue search until no pixel is found compatible with DSS

Subroutine 1.3: Estimate accepted and not-rejected points of DSS

Subroutine 1.4: Build direction distribution histogram and split DSS if necessary

Subroutine 1.5: Estimate DSS width and shrink it if necessary

[fail] [sucess]

DSS collection

Subroutine 2

Initialize a DSSGroup object

Subroutine 2.2: divide groups to subgroups based on DSS distances

Subroutine 2.3: Merge DSS contained by subgroups

Subroutine 2.1:Group DSS in collection with respect to their directions

[at least 1 group is preserved in DSSGroup] [else]

[Merging occured] [else]

DSS collection

 

Figure 6. General Schema of the Proposed Algorithm 

4.2. Algorithms for Identifying and Splitting DSS 

This section sequentially introduces subroutines comprised by Subroutine 1 in order of 

the logic flow shown in Figure 6. The proposed algorithm begins with Subroutine 1.1 

which assumes the input pixel is the first point of an unknown DSS and expands a full 

circle at the point which corresponds to P1 of (4). All foreground pixels lying in circle 

are envisaged as potential points of DSS, i.e., S1  from (2), and their directions 

corresponding to input pixel are computed based on Definition 1. The average of the 

computed directions, i.e., θ1  of (5), is in turn compared with these directions and 

employed for categorizing pixels as accepted or not-rejected corresponding to S1
1 and S1

0 

from (3). The point with the direction closest to the average is chosen as the center of  

the initial semicircle expansion in Subroutine 1.2, i.e., P2 of (4). 

Subroutine 1.2 assumes α in (3) is set to 2, namely, the maximal value of 𝓌𝓉 for any 

DSS is the diameter of semicircle. Subroutine 1.2 repeatedly expands semicircle whose 

diameter perpendicular with the DSS direction computed in previous search, i.e., θ𝓉−1 

from (5) at pixel P𝓉 given by (4). It then collects pixels within the semicircle as S𝓉 

defined by (2) and statistically updates DSS direction as θ𝓉 based on S𝓉−1
1  of (3). For 

θij ∈ 𝔄θ, 𝔏(θij) = (θij − σ, θij + σ) is obtained by using ⌊θij⌋, i.e., value of σ varies 

with θij . Collected pixels are finally categorized to S𝓉
1  and S𝓉

0  based on (3). This 

procedure repeats until no further pixel can be found within semicircle. 

Subroutine 1.3 is the first step to split a given DSS. It simply computes the ratio 

defined by (7) with assumption that 𝒷 is set to 1.5 for estimating whether the numbers of 

accepted and not-rejected pixels of a given DSS are unbalanced. 

Subroutine 1.4 attempts to check whether 𝒽𝓉 of a given DSS is multimodal and 

estimate split positions if so. The multimodal threshold 𝓂 adapted in (8) is set to 0.7 and 

𝓃 employed in (9) is set to 4. When a DSS is given, its histogram of axes 𝔏 (θij), 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC   305 

θij ∈ 𝔄θ and f is built and ratio of maximal and submaximal values of f in 𝒽𝓉 is 

computed. Value of 𝔏 (θij) is obtained by using ⌊θij⌋ just as Subroutine 1.2 and the 

ratio is compared with 𝓂. The values of θij meeting criterion (8) are recorded and 

removed from 𝒽𝓉. The comparison of maximal and submaximal values of altered 𝒽𝓉 

continues until (8) is not met and all values of θij causing (8) met are preserved in ℑ. If 

there is at least one pair of such values retained in ℑ, i.e., |ℑ| > 1, then Subroutine 1.4 

tries to find the split positions based on 𝔄θ and (9). (9) is implemented by sequentially 

visiting pixels in their collective order and check whether the value in 𝔄θ closest to 

direction of current pixel is different from the previous closest value in 𝔄θ. If the time of 

closest value changes 𝓃 = 4 times, then the current visited pixel is marked as a split 

position. Then DSS is split at these pixels and directions of all new DSS are updated by 

using (10). Subroutine 1.5 simply removes any pixels causing geometrical thickness of 

DSS exceeding diameter of semicircle. 

 

4.3. Algorithms for Merging DSS 

This section introduces Subroutine 2.1, to 2.3 comprised by Subroutine 2 serving for 

merging DSS. Subroutine 2.1 attempts to categorize DSS based on their direction 

similarities estimated by (11). Since the coordinate computation is relatively coasty, the 

distance estimation associated with (11) is integrated with Subroutine 2.2. 

Subroutine 2.2, is critical for merging DSS. It finds DSS of maximal number of 

accepted pixels then estimates the distances involved in (11) between the found DSS and 

all other DSS in the group, then it estimates the distances of marginal points associated 

with (12) to categorize DSS to different merging groups. 

Subroutine 2.3 completes merging phrase by simply assigning all points of DSS for 

merging to the DSS of maximal number of accepted points for each merging group. Then 

the collection of merged DSS is returned as the final result of the proposed algorithm.  

 

5. Experimental Results 

This section illustrates the experimental results of adopting the proposed algorithm for 

ideal image Ellipse and six real-life images respectively named Cameraman, House, Lena, 

Pepper, Puzzle and Tower.  Visual segmentation results are shown in Figure 7, and 

Figure 8. Time consumed by eight subroutines of the proposed algorithm is shown 

through Figure 9, to Figure 13. Except radius ℛ and difference threshold Θ given by 

user input, the rest parameters are empirically set, i.e., α in (3) is set to 2, 𝒷 of (7) is set 

to 1.5, 𝓂 adopted in (8) is set to 0.7 and 𝓃 employed in (9) is set to 4. 

In Figure 7, contour of an ideal ellipse is segmented by using the proposed algorithm 

with respect to different values of ℛ and Θ respectively reflected by the letter R and D 

of labels, e.g., label R5D5 denotes ℛ = 5 and Θ = 5. The rows of Figure 7, show visual 

results when one of ℛ and Θ is fixed and the other increases. Apparently, the proposed 

algorithm is somehow more sensitive to ℛ than Θ, e.g., the differences among results 

listed in upper row are relatively small than lower row. This is also reflected by columns, 

especially the middle one. 
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Figure 7. Segmentation of Ellipse Contour 

In Figure 8, visual results of six real-life images of resolution 256-by-256 processed by 

the proposed algorithm are labeled by their names. Since their original images can be 

easily found in internet, they are not shown here. Because of the low resolution, value of 

ℛ is limited to 3 which reduces the detection range of the proposed algorithm and 

number of sampled pixels. Although insufficient range guarantees the fine contour can be 

segmented reasonably, it leads to discontinuous segmentations of long edges as presented 

in bottoms of House and Tower, or top of Puzzle. 

Discontinuous segmentations can be eliminated at cost of increasing resolutions. Figure 

9 illustrates partial segmentation results of image House and Puzzle at resolution 

1280-by-1280 and it also depicts Canny edge images, i.e., inputs of the proposed 

algorithm. There are mainly two lines in edge image of House, the upper one is fully 

identified by the proposed algorithm and the lower one is partially recognized due to the 

noise. Edge image of Puzzle contains discontinuous edges and most of them are identified 

and connected by the proposed algorithm. 

 

 

Figure 8. Segmentation Results of Real-Life Images 

Figure 10, depicts the general time of processing six images whose resolutions vary 

within range 128-by-128 to 1280-by-1280 by steps of 32-by-32. The abscissa only shows 

one dimension of resolution. As shown in Figure 10, the most computationally expansive 

processing is adopted by Lena. Puzzle requires the least computational time. This is 

mainly because there are a large number of edges tangled in lower-left area of Lena while 

edges in Puzzle mostly are isolated. 
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Figure 9. Segmentation Results of Real-Life Images 

 

Figure 10. General Time of Processing Images 

Figure 11, illustrates the time consumed for processing six images at resolutions 

128-by-128, 640-by-640 and 1280-by1280 from left to right for each image. Each bar in 

Figure 11 consists of eight blocks distinguished by colors. From bottom to up, these 

blocks sequentially represent the time consumed by Subroutine 1.1 to Subroutine 2.3. 

Obviously, processing of Lena and Puzzle consume the most and the least time 

respectively. From  the perspective of subroutines, Subroutine 2.1, i.e., the orange block, 

makes the most contribution for increasing processing time, especially for cases of Lena 

and Tower. Oppositely, when Subroutine 2.1 remains stable just like in case of Puzzle, it 

results in a general low processing time. 

 

 

Figure 11. Time Consumed By Subroutines 

Figure 12, to Figure 14, sequentially show the detailed distributions of the time 

consumed by subroutines for processing Lena, Tower and Puzzle at resolutions varying 

from 128-by-128 to 1280-by-1280. As indicated in Figure 11, most subroutines except 
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Subroutine 2.1 approximately consume similar time for different resolutions in Figure 12, 

to Figure 14. Subroutine 2.1, i.e., the upper most polygonal line in all three figures, varies 

drastically in Figure 12, and the left half part of Figure 13. This maps to sever drops for 

three bars of Lena and the first two bars of Tower in Figure 11, and the shape of 

polygonal line of Lena in Figure 10, approximately resembles the one of Subroutine 2.1 

shown in Figure 12. Mild changes of Subroutine 2.1 in Figure 14, lead to small drops 

among bars of Puzzle in Figure 11, and a low increasing rate of general time shown in 

Figure 10. 

 

 

Figure 12. Time Consumed for Processing Image Lena 

 

Figure 13. Time Consumed for Processing Image Tower 

 

Figure 14. Time Consumed for Processing Image Puzzle 

6. Conclusion 

This paper proposed a DSS identifying algorithm based on a statistical strategy. The 

strategy depends on the dynamic estimating of the direction between two foreground 

pixels bound by the generalized connectedness, and it infers DSS direction through 

investigating the distribution of the estimated directions in the exploration. After the 

exploration, all found DSS are further analyzed based on the modality of histograms; 

splitting and merging are performed when the histograms are found multimodal. 

Conceptual implementation of the proposed algorithm is introduced graphically by using 
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UML activity diagrams. The experimental results of the artificial and real-life images are 

illustrated and discussed. The bottleneck of the proposed algorithm is found to be 

Subroutine 2.1 and the optimization of this subroutine will be focused in our future work.  
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