
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.9, No.8 (2016), pp.295-310

http://dx.doi.org/10.14257/ijsip.2016.9.8.26

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2016 SERSC

Digital Contour Segmentation Based on Statistical Straightness

Liang Jia and Jiuzhen Liang


School of Information Science & Engineering, Chang Zhou University, China
*
jzliang@cczu.edu.cn

Abstract

A novel algorithm for segmenting digital contours in edge images to digital straight

segments (DSS) is proposed in this paper. While exploring contours, the algorithm

maintains a dynamically-updated histogram of directions between every two adjacent

contour pixels which are considered connected with respect to a generalized concept of

connectedness. Directions of pixels are compared with the direction of the greatest value in

histogram, and the ones of differences less than a given threshold are collected as the

candidates of DSS. Finally, DSS is split and merged based on the analyses of the properties

associated with the histogram such as balance and modality. Implementation of the

proposed algorithm is visually introduced by using UML activity diagrams, and the

experimental results of the artificial and real-life images are illustrated and discussed.

Analyses of the experiments showed the validity of the segmentations and the bottleneck of

the proposed algorithm.

Keywords: Digital straight segment; Line segment; Feature extraction; Digital image

processing

1. Introduction

Digital straight segment is a fundamental geometrical descriptor for digital image

processing. Due to its multifarious applications as fingerprint recognition [1], Shape

classification [2], aerial stereo images analysis [3], geometric estimators [4], etc., plentiful

algorithms have been developed for tackling identifying DSS in digital images during past

several decades. The essential issues of segmenting DSS from the given images mainly

involve how to estimate directions and endpoints of DSS. Commonly, rectangular

coordinate system is introduced for representing DSS analytically and directions are

estimated by computing the slopes. The slope calculations are based on various means

such as arithmetic approaches [5-7], convex hull [8-12] and dual-space [9-12]. According

to DSS definitions, i.e., whether DSS is assumed to be 4 or 8-connected, these algorithms

may be coarsely classified to two categories: algorithms of tight connectedness [5-10] and

loose connectedness [11-12].

Conventionally, DSL is defined as {(x, y) ∈ ℤ2|μ ≤ ax − by < 𝜇 + |a| + |b|} with

the common assumption that 0 < 𝑎 < 𝑏 and gcd(a, b) = 1. DSS is a segment of DSL

with respect to two endpoints. For a DSS, there are two leaning lines ax − by = μ and

ax − by = μ + |a| + |b| − 1which in combination determine the borders of DSS. Points

of DSS on leaning lines are called leaning points. Weakly exterior points lie on lines

ax − by = μ − 1 and ax − by = μ + |a| + |b| and both lines are outside of DSS and

next to its leaning lines.

For algorithms of tight connectedness, DSL is commonly assumed to be 8-connected

[5-10] and DSS is assumed to be either 8-connected [7-10] or 4-connected [6]. One

emblematic algorithm named DR95 [5] inspires many algorithm designs of tight


Corresponding Author

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

296 Copyright ⓒ 2016 SERSC

connectedness including the recent work [6]. DR95 incrementally updates the slope of

DSS based on arithmetical relationship between its leaning points and weakly exterior

points found by traversing along a given 8-connected digital contour. Like DR95,

algorithms proposed by Lachaud and Said [6], Ouattara et. al., [7] and Debled-Rennesson

et. al., [9] also depend on arithmetic means but they focus on some special cases, i.e.,

segmenting DSS of minimal parameters or characteristics with respect to the known

endpoints of a digital straight line of known parameters. These additional conditions lead

to elaborately-designed algorithms of high efficiency. Although, algorithms of tight

connectedness are highly efficient, additional conditions and requirements like noiseless

digital contour, their applications in practice are limited [8-12].

Oppositely, algorithms of loose connectedness take into account that noise, geometrical

width or thickness, disconnectedness presented in segmentation. Commonly,

connectedness is mainly reflected by thickness. Thickness of DSS in growing is

dynamically measured by using convex hull and compared with a given threshold for

controlling thickness [11-12]. Buzer [11] proposed a greedy algorithm which may lead to

incorrect segmentations. This deficiency is remedied by Faure et. al., [12] by using

tangential cover which generates strip-like polygons based on segmented DSS. Because

the tangential cover is originally designed for one-pixel-width contour, boundaries of

thick contour have to be extracted and combined to a chain of boundary points. This

extraction is error-prone and sometimes may be impracticable for real-life images.

This paper proposed an algorithm of loose connectedness to identify DSS statistically

for given digital contours in edge images. The statistical approach is completely different

from the conventional DSS segmentation algorithms as the ones discussed above. No

additional information or preprocessing is required and no assumption of 4 or

8-connectedness is assumed. DSS growing is controlled by dynamical estimations of the

direction and width by using statistically-designed measurement named statistical

straightness and linear regression. The experiments yielded positive results for real-life

images.

This paper is organized as follows. Section 2, introduces the schemas of classical

algorithms and common concepts employed in the proposed algorithm. Section 3,

mathematically describes the concept of statistical straightness and the relevant

definitions for identifying DSS statistically. Section 4 visually illustrates the algorithm

implementation by using UML activity diagrams [13], and experimental results are

analyzed in Section 5. Section 6 draws the conclusions.

2. Related Works and Basic Concepts

This section introduces algorithms proposed by Lachaud and Said [6], Ouattara et. al.,

[7], Debled-Rennesson et. al., [8-9], Sivignon [10], Buzer [11] and Faure et. al., [12]

sequentially, and illustrates two common concepts about directions and their differences

in digital images.

Said [6] and Ouattara et. al., [7] both employed arithmetic approaches. Said [6]

designed two algorithms named SmartDSS and ReverseSmartDSS based on the patterns

calculated by using Berstel formulae. SmartDSS predicts weakly exterior points

arithmetically and updates the slope by extending partial quotients of current DSS.

According to the types of weakly exterior points, updating is determined by the number of

patterns. ReverseSmartDSS additionally requires two upper leaning points closest to

endpoints are given and starts by predicting an upper leaning point between two given

points. It recursively estimates slopes associated with the greatest, smallest and reverse

subpatterns until one of the estimated slope agrees with the deepest slope. The slopes

estimated by two algorithms are represented by Stern–Brocot tree, a visual representation

of partial quotients. The estimation order of slopes can be visualized as traveling between

top and bottom of Stern–Brocot tree. Ouattara et. al., [7] converted the estimation of

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 297

minimal DSS to estimating coordinates of the two upper or lower leaning points based on

the maximal or minimal remainders defined as ℛ(x) = (ax − c) mod b for a point of

abscissa x.

Debled-Rennesson et. al., [8], Sivignon [10] and Buzer [11] all focused on the thick

digital contours by using convex hull. Debled-Rennesson et. al., [8] conceptualized the

thickness by arithmetic property (|a| + |b|) max(a, b)⁄ called order and the

segmentation is controlled by dynamically estimating the order of current DSS and the

comparison with a pre-defined threshold. If the order exceeds threshold then the growing

of current DSS stops and a new DSS starts. Although 8-connectedness is still required, the

concept of dynamic thickness is first introduced. Sivignon [10] refined this algorithm

through adopting convex hull to guarantee each segmented DSS is as long as possible and

of minimized order with respect to the threshold. Buzer [11] developed an algorithm

capable of segmenting disconnected DSS of thickness restricted by a threshold α. This

algorithm is similar with the one designed by Debled-Rennesson et. al., [9], i.e., it also

employs convex hull cooperated with the α-thickness defined as α ∙ max(a, b) to control

the DSS thickness.

Debled-Rennesson et. al., [9] and Faure et. al., [12] both combined convex hull and

dual space in their researches. Debled-Rennesson et. al., [9] proposed two algorithms to

estimate the minimal DSS. Both algorithms adapts the separating lines ax − by + ρ = 0

where μ ≤ ρ < 𝜇 + 1 and ρ ∈ ℝ. The first computes the upper convex hull of points X

in DSL and the lower convex hull of points X + (0,1). The minimal parameters are

determined by convex hull edge of the maximal denominator associated with its slope.

The second maps the separating lines 0 ≤ αx − y + β < 1 to a dual space (α, β) and the

minimal characteristics are represented by a point Λ = (a b⁄ , μ b⁄) in Farey Fan, i.e., a

set of rays R(x, y) = {(a, b)|b = −ax + y} where 0 ≤ y ≤ x ≤ n, 0 ≤ α, β ≤ 1 and n

is the length of DSS. In Farey Fan, the algorithm investigates the intersections between

the highest ray through or below Λ, and the minimal characteristics are determined by

two vertical lines of abscissae with the denominators smaller than n and closest to a b⁄ .

Faure et. al., [12] employed tangential cover for mapping DSS to arcs defined in a dual

space, and the arcs are adapted to generate polygons overlapping DSS. The inner and

outer borders of thick digital contour are extracted and combined to a single chain based

on both the border growing ratio and the visibility between points joined by chain. The

chain is segmented to DSS’s by using convex hull with respect to threshold α defined by

Buzer [11]. Finally, DSS’s are mapped through tangential cover and the polygons of the

least vertices overlapping DSS are generated.

The basic and common concepts are introduced in the rest of this section. Let IF

denotes the foreground of an edge image. Digital contours are represented by connected

pixels in IF. For any two pixels Pk1, Pk2 ∈ IF, k1, k2 ∈ ℤ+, 1 ≤ k1, k2 ≤ |IF|, k1 ≠ k2,

vector Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ reflects not only the Euclidean distance between Pk1 and Pk2

 by its

magnitude |Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |, but also an unique direction θk2 whose definition is given below.

Definition 1. Direction 0 ≤ θk2 < 2𝜋 of vector Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is the angle formed by

anticlockwise rotating the positive x-axis (denoted by 𝕆) originated at Pk1 until

overlapping Pk1Pk2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . This process is formulated as θk2 = Rac(𝕆, Pk1Pk2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗), e.g., θ of

P1P2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ shown in Figure 1. Conversely, any given direction 0 ≤ θ < 2𝜋 is considered as

the angle formed by continuously rotating 𝕆 originated at arbitrary pixel Pk1 until the

radius scanned by 𝕆 equals θ.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

298 Copyright ⓒ 2016 SERSC

X

θ

R

θΔ3

θΔ4

P1

P2

P3

P5

P4

θΔ5

Figure 1. Proposed Algorithm Explores Foreground Pixels

There is no requirement about 4 or 8-connectedness for Pk1 and Pk2 . The

connectedness of Pk1 and Pk2 is determined by a given parameter ℛ, i.e., Pk1 and

Pk2 are connected iff |Pk1 − Pk2| ≤ ℛ. Hence, any pixel within the circle of radius ℛ

expanded at Pk1 will be considered as connected to Pk1. However, for a Pk1comprised

by a DSS, not every pixel Pk2 connected with Pk1 can become a member of the DSS.

Their memberships are determined by differences between θk2 and direction θ of DSS

which is statistically estimated and dynamically updated.

For two given direction θ1 and θ2, 0 ≤ θ1, θ2 < 2𝜋, set their initial points of vectors

coincide, then the difference θ∆2 between θ1 and θ2 is the smaller angle formed by

clockwise or anticlockwise rotating vector of θ1 until overlapping vector of θ2 .

Formally, let Rc(θ1, θ2) , Rac(θ1, θ2) respectively denotes the angles formed by

clockwise and anticlockwise rotating vector of θ1, and sgn(a − b) is 1 when a ≥ b

and −1 when a < 𝑏, then definition of direction difference is given below.

Definition 2. For any two direction θn1 and θn2, 0 ≤ θn1, θn2 < 2𝜋, n1, n2 ∈ ℤ, the

direction difference between θn1 and θn2 denoted by θ∆n2 = ∆(θn1, θn2) is defined as

followings.

𝜃∆𝑛2
= sgn (𝑅𝑐(𝜃𝑛1

, 𝜃𝑛2
) − 𝑅𝑎𝑐(𝜃𝑛1

, 𝜃𝑛2
))min(𝑅𝑐(𝜃𝑛1

, 𝜃𝑛2
), 𝑅𝑎𝑐(𝜃𝑛1

, 𝜃𝑛2
)) (1)

For a given direction θ2 of P1P2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ shown in Figure 1, difference θ∆3 for P2P3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is the

angle formed by rotating vector of θ2 clockwise, and the difference θ∆4 for P2P4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is

angle formed by rotating vector of θ2 anticlockwise. θ∆3 < 0 because Rc(θ2, θ3) <

Rac(θ2, θ3) and θ∆4 > 0 comes from Rc(θ2, θ4) > Rac(θ2, θ4).

3. Statistical Straightness

This section mathematically illustrates the ideas of segmenting arbitrary digital contour

to DSS with respect to the statistical straightness and the generalized connectedness

described by the previous sections. It consists of three subsections. Section 3.1, introduces

the statistical straightness and how to obtain DSS through segmentations based on it.

Section 3.2, describes analyzing statistical straightness of a given DSS for enhancing its

straightness. Section 3.3, supplements Section 3.2, for merging DSS.

3.1. DSS Based on Statistical Straightness

Suppose an arbitrary pixel P1 ∈ IF is given, a circle of radius ℛ can be expanded at

P1 and S1 = {P ∈ IF ∖ {P1} ||P1P⃗⃗⃗⃗⃗⃗ | ≤ ℛ} represents foreground pixels found in circle. If

|S1| ≠ 0 , then θ1 = ∑ θi1
|S1|
i1=1 |S1|⁄ where θi1 = Rac(𝕆,P1Pi1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , Pi1 ∈ S1 and i1 ∈ ℤ+

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 299

is the average direction of DSS consisting of accepted pixels {P ∈ S1 ||∆ (θ1, Rac(𝕆,

P1P⃗⃗⃗⃗⃗⃗))| ≤ Θ} and not-rejected pixels {P ∈ S1 ||∆ (θ1, Rac(𝕆,P1P⃗⃗⃗⃗⃗⃗))| > 𝛩} with respect to

a given direction difference threshold Θ < π 2⁄ .

Afterwards, a semicircle is expanded at the first pixel of {p ∈ S1 |minp |∆ (θ1, Rac(𝕆,

P1P⃗⃗⃗⃗⃗⃗))|} denoted by P2 and its diameter is perpendicular to θ1 . Let S2 = {P ∈ IF ∖

{S1⋃{P1, P2}} ||P2P⃗⃗⃗⃗ ⃗⃗ | ≤ ℛ} denote pixels found in semicircle. Suppose |S2| ≠ 0 , let

f: 𝔏 → ℤ denotes the map between interval 𝔏(θi2) = (θi2 − σ, θi2 + σ) where σ ∈ ℝ,

θi2 = Rac(𝕆,P2Pi2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), Pi2 ∈ S2, and number of vectors whose directions lying in 𝔏, then

there is an inverse function f−1: ℤ → 𝔏 maps f(𝔏(θi2)) back to θi2 or the median of

the ordered set comprising directions mapped to the same value of f . Then θ2 =

f−1(maxθi2
f(𝔏(θi2))), i.e., θ2 is the direction determined by 𝔏 of maximum value in a

histogram of axes 𝔏 and f.

Generally, let 𝓉 ∈ ℤ+ denotes the times of expanding circle or semicircle of radius

ℛ ≥ 2 at pixels P𝓉 ∈ IF accepted by a DSS, then the set of foreground pixels detected by

the 𝓉th circle expansion can be defined as below.

S𝓉 = {
{P ∈ IF ∖ {P1} ||P1P⃗⃗⃗⃗⃗⃗ | ≤ ℛ} 𝓉 = 1

{P ∈ IF ∖ {S𝓉−1⋃{P𝓉−1}} ||P𝓉P⃗⃗⃗⃗⃗⃗ | ≤ ℛ ∪ ∆(θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)) <
π

2
} 𝓉 > 1

 (2)

Where θt−1 denotes the direction of DSS at the (t − 1)th circle expansion and its

definition is given by Definition 3 in the followings. If DSS(𝓉) denotes the set of points

contained by a DSS at the 𝓉th circle expansion, 𝓌𝓉 denotes the geometrical thickness

or width of DSS(𝓉) and α ∈ ℝ, then set of accepted pixels denoted by S𝓉
1 for S𝓉, is

defined as below.

S𝓉
1 = {P ∈ S𝓉 |∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)) ≤ Θ ∪𝓌𝓉 ≤ αℛ} (3)

Definition for set of not-rejected pixels S𝓉
0 is similar with S𝓉

1 except ∆ (θt−1, Rac(𝕆,

Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)) ≤ Θ is replaced by ∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)) > 𝛩 . Let P1 ∈ IF denotes an

arbitrary given pixel, then pixel P𝓉 ∈ IF which is chosen as the center for expanding

circle or semicircle can be defined as following.

P𝓉 ∈ {
{P1} 𝓉 = 1

{P ∈ S𝓉
1 |minp |∆ (θt−1, Rac(𝕆,Pt−1P⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗))|} 𝓉 > 1, |S𝓉

1| ≠ 0
 (4)

Definition 3. If Θ denotes the threshold of direction difference, σ ∈ ℝ and

𝔄θ = {θij = Rac (𝕆,PjPij
⃗⃗ ⃗⃗ ⃗⃗ ⃗) |Pij ∈ Sj

1, i, j ∈ ℤ+, 1 ≤ i ≤ |Sj
1|, 1 ≤ j ≤ 𝓉} denotes the

directions of all accepted pixels, statistical straightness or direction of DSS is defined as

below.

θ𝓉 = {
∑ θi1

|S1|
i=1 |S1|⁄ 𝓉 = 1, |S1| ≠ 0

f−1 (maxθij
∈𝔄θ

f (𝔏 (θij))) 𝓉 > 1, |S𝓉
1| ≠ 0

 (5)

Definition 4. If |Si
1| ≠ 0, i ∈ ℤ+, 1 ≤ i ≤ 𝓉, then definition of generalized DSS

without requirement of 4 or 8-connectedness at the 𝓉th circle expansion is given as

following.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

300 Copyright ⓒ 2016 SERSC

DSS(𝓉) = ⋃ (Si
1 ∪ Si

0)𝓉
i=1 (6)

⋃ Si
1𝓉

i=1 and ⋃ Si
0𝓉

i=1 respectively represent sets of accepted pixels and not-rejected

pixels for DSS(𝓉). If |S𝓉+1
1 | = 0, then DSS = DSS(𝓉) which means there will be no

more circle expansion for segmentation of DSS and it will be analyzed for guaranteeing a

strong statistic straightness.

A simple example may illustrate definitions mentioned above. Suppose Θ = 15°,

α = 2 and R = 1.5 pixel, for a given digital contour of eight pixels shown by squares of

red centers in Figure 2, DSS is segmented by following steps.

For 𝓉 = 1, P1 in Figure 2, is initially given, then P2 and Q are found in a full circle

(not shown) expanded at P1. At this moment, there are two possible directions: θ2 of

P1P2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ and θQ of P1Q⃗⃗ ⃗⃗ ⃗⃗ . However, θ2 and θQ are equally close to average direction,

hence both P2 and Q are accepted and chosen as centers for expanding next circle,

meanwhile they are erased in IF. DSS1 denotes DSS containing three pixels.

For 𝓉 = 2, two semicircles (not shown) are simultaneously expanded at P2 and Q. In

either semicircles, P3 is found and θDSS1 is estimated based on (5). θ∆3 is found to be

0 with respect to θDSS1 and 𝓌DSS1 < 2ℛ, hence P3 is accepted and chosen for the

center of the next circle expansion. P3 is erased.

For 𝓉 = 3 , P4 is found in range, θDSS1 remains same based on (5) and and

𝓌DSS1 < 2ℛ. P4 is not-rejected because θ∆4 > 𝛩 and no pixel can be chosen as center

for next expansion.

For 𝓉 = 4, |𝑆4
1| = 0 because no semicircle can be expanded and segmentation of

𝐷𝑆𝑆1 terminates. Finally, 𝐷𝑆𝑆1 = {𝑃1, 𝑃2, 𝑃3, 𝑄} ∪ {𝑃4}. Since 𝑃4 is not erased, 𝑃4 is

the initial pixel for 𝐷𝑆𝑆2 shown in Fig.2. 𝐷𝑆𝑆2 and 𝐷𝑆𝑆3 are segmented in similar

procedures.

P1

θΔ4

P2 Q

P3

P4

P5

P6

4

1DSS

θΔ6

2DSS

DSS1

DSS2

DSS3

3DSS

P7

Figure 2. Not-Rejected Pixels

3.2. Analyzing Statistic Straightness of DSS

For any DSS(𝓉) of |S𝓉+1
1 | = 0, its statistical straightness or direction should be

analyzed because the segmentation based on Section 3.1 never takes into account the

cases that the initial direction θ1 may be an incorrect assumption of θ𝓉 and the

direction distribution of DSS(𝓉) may be multimodal.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 301

Incorrect assumption of θ1 leads to misclassifications of the accepted and not-rejected

pixels, and thus resulting in unbalanced values of |⋃ Si
1𝓉

i=1 | and |⋃ Si
0𝓉

i=1 |. The balance

is simply estimated by the following criterion.

|⋃ Si
0𝓉

i=1 |

|⋃ Si
1𝓉

i=1 |
> 𝑏 ⟺ DSS(𝓉) is unbalanced (7)

Where 𝒷 ∈ ℝ+ is a given balance threshold. If (7) is met, then pixels in ⋃ Si
1𝓉

i=1 and

⋃ Si
0𝓉

i=1 are interchanged. Multimodal direction distribution leads to weak statistical

straightness i.e., the DSS is geometrically curvaceous. Multimodal distribution can be

detected by investigating histogram 𝒽𝓉 of axes 𝔏(θij) and f where 𝔏 = (θij −

σ, θij + σ), θij ∈ 𝔄θ, σ and 𝔄θ are defined in Definition 3. For a given multimodal

threshold 𝓂 ∈ ℝ+ and θmax = f−1 (maxθij
∈𝔄θ

f (𝔏 (θij))) which is a fixed value on

account of |S𝓉+1
1 | = 0, 𝒽𝓉 is considered multimodal if following condition is met.

|ℑ| = |{𝔏 (θij) ∈ 𝒽𝓉 |
maxθij

∈𝔄θ\{θmax} f(𝔏(θij
))

maxθij
∈𝔄θ

f(𝔏(θij
))

> 𝑚}| > 1 ⟺ 𝒽𝓉 is multimodal (8)

If (8) is met and ∆(θn1, θn2) > 𝛩 where θn1 and θn2 are consecutive elements in

ordered set {θij|𝔏(θij) ∈ ℑ}, then directions like θn1 and θn2 are collected in set 𝔖θ

and DSS(𝓉) should be further segmented based on 𝔖θ. According to (4), there are

P1, P2, … , P𝓉 pixels as the centers of circles corresponding to resulting S1
1, S2

1, …, S𝓉
1.

Suppose 𝓉 > 1, 𝓃 ∈ ℤ+ denotes a given parameter and arg minθ𝔖
∆(θj, θ𝔖) represents

direction value θ𝔖 ∈ 𝔖θ minimizing ∆(θj, θ𝔖), then DSS(𝓉) is split at positions of

pixels defined below.

𝔖p = {Pj |minθ𝔖∈𝔖θ
(∆(θj, θ𝔖))

−1
≠ minθ𝔖∈𝔖θ

(∆(θj−n′ , θ𝔖))
−1

, n′ = 1,2,… ,𝓃} (9)

Where n′ = 1,2,… , 𝓃. Namely, θ𝔖 ∈ 𝔖θ differing minimally from θj is found for

arbitrary Pj and compared with the last 𝓃 consecutive directions in 𝔖θ . If all 𝓃

comparisons fail, then Pj is envisaged as a split position for DSS(𝓉). For all Pj ∈ 𝔖p,

DSS(𝓉) is thus split to DSSn3
s , n3 = 1,2,… , |𝔖p| + 1 and the direction of each DSSn3

s ,

is updated by using linear regression. Suppose (xi′ , yi′) ∈ ℤ2 where 1 ≤ i′ ≤ n =
|DSSn3

s , | denotes coordinates of pixels contained by DSSn3
s ,, then its direction is

estimated by the following formula.

θDSSn3
s = tan−1 (

∑ (x
i′
−x)(y

i′
−y)n

i′=1

∑ (xi′−x)2n
i′=1

) where x =
∑ x

i′
n
i′=1

n
, y =

∑ y
i′

n
i′=1

n
 (10)

Once θDSSn3
s is obtained, 𝓌DSSn3

s can be approximated by difference of maximal and

minimal ordinates in the coordinate system whose origin is (x, y) and positive x-axis

coincides with θDSSn3
s . Pixels of maximal or minimal coordinates in rotated coordinate

system are named marginal points and denoted by set 𝔈DSSn3
s . Any pixel causing

𝓌DSSn3
s > 𝛼ℛ will be removed from DSSn3

s which guarantees DSSn3
s is compatible

with (6).

Figure 3 depicts a simple case of splitting a given DSS: DSS1. Suppose Θ = 15°,
𝓂 = 0.7 , 𝓃 = 2 and a digital contour consisting of seven pixels in Figure 3 is

segmented to DSS1,then 𝒽𝓉 of DSS1 comprises two peaks: θDSS2
= 0 of times 2 and

θDSS3
= 45° of times 2, i.e., |ℑ| = |{θDSS2

, θDSS3
}| = 1 > 𝓂 based on (8) and 𝒽𝓉 is

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

302 Copyright ⓒ 2016 SERSC

multimodal. Because ∆(θDSS2
, θDSS3

) > 𝛩 , 𝔖θ = ℑ . According to (9), 𝔖p = {P4} .

Namely, follow the pixels defined by (4) for DSS1, the direction of minimal difference to

Rac(𝕆, P1P2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) is θDSS2

, for Rac(𝕆, P2P3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) it also is θDSS2

, for Rac(𝕆, P3P4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) it changes

to θDSS3
. However, θDSS2

 consecutively occurs 2 times which equals 𝓃, this causes P4

is labeled as a split position.

DSS2

P1

Q

P3P2

P4

P5

P6

DSS3

DSS1

P

X D
S

S
3

X D
S

S
2

X D
S

S
3

X D
S

S
2

Figure 3. Split or Merge DSS

3.3. Merging DSS

Split discussed in Section 3.2, implies possibility of merging the split DSS with ones

not from the same source. The merging is based on the differences between the directions

of two compared DSS and their relative positions. For DSS1, DSS2, …DSS|𝔇| in 𝔇

containing all DSS found in IF, they are categorized to collections 𝔇M defined below.

{𝐷𝑆𝑆𝑘1
, 𝐷𝑆𝑆𝑘2

∈ 𝔇 ||∆(𝜃𝑘1
, 𝜃𝑘2

)| ≤ Θ, |𝑥𝑘1
− 𝑥𝑘2

| ≤ 𝛼ℛ 2⁄ } (11)

Where k1, k2 ∈ ℤ+, k1 ≠ k2, 1 ≤ k1, k2 ≤ |𝔇M|, θki and xki respectively denote

direction and mean abscissa of DSSki, i = 1,2 in a coordinate system of positive x-axis

pointing to ∑ θki
|𝔇M|
ki=1 |𝔇M|⁄ . 𝔇M is then further split to subgroups 𝔇Mk

, k = 1,2,…

defined as following for merging.

{𝐷𝑆𝑆𝑘3
∈ 𝔇𝑀 ||𝑥𝑃𝑛4

− 𝑥𝑃𝑛5
| ≤ 𝛼ℛ, 𝑃𝑛4

∈ 𝔈𝐷𝑆𝑆𝑘3
, 𝑃𝑛5

∈ 𝔈𝐷𝑆𝑆Max
} (12)

Where k3, n4, n5 ∈ ℤ+ , 1 ≤ k3 ≤ |𝔇M| , 1 ≤ n4 ≤ |𝔈DSSk3
| , 1 ≤ n5 ≤ |𝔈DSSMax

| ,

DSSMax = arg maxDSSki
|SDSSki

1 |, DSSki ∈ 𝔇Mk
∖ 𝔇M

k′ , Mk ≠ Mk′ and DSSMax is the

member of the maximal number of accepted points SDSSki

1 in 𝔇Mk
. Real values xPn4

and xPn5
 respectively denote the abscissae of points Pn4 and Pn5.

Once 𝔇Mk
 is obtained, all members in each 𝔇Mk

 are removed from 𝔇 and their

accepted points and not-rejected points are assigned to DSSMax. The direction of DSSMax

is finally updated by using linear regression of (10).

If DSS2 and DSS3 in Figure 3 are given for merging and suppose Θ = 45°, α = 1.6,

ℛ = √5 pixel, then DSS2 and DSS3 will be merged as DSS1 . Because

|∆(θDSS2
, θDSS3

)| = 45° ≤ Θ and |xDSS2
− xDSS3

| ≈ 0.75√2 ≤ αℛ 2⁄ , i.e., 𝔇M =
{DSS2, DSS3} based on (11), and DSSMax = DSS2. In Figure 3, the mean of DSS2 is a

black point labeled by P̅ and P5 is the mean of DSS3. The largest difference between all

marginal points of DSS2 and DSS3 is denoted by |xDSS2
− xDSS3

| and shown in Figure

3. Since |xDSS2
− xDSS3

| ≈ 3 √2⁄ ≤ αℛ holds, DSS2 and DSS3 are confirmed to be

merged by (12). The resulting DSS is DSS1 of direction computed based on (10).

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 303

4. Algorithm Implementation

This section introduces the implementation of ideas proposed in previous sections. The

whole procedure consisting of two main subroutines: Subroutine 1: find DSS; Subroutine

2: merge DSS. The procedure is shown in Figure 4. Subroutine 1 reflects the

segmentation and split discussed in Section 3.1, and 3.2, respectively. Subroutine 2,

provides functionality of merging DSS described in Section 3.3.

Detect Edge

Proposed Algorithm

Subroutine 1: find DSS

Subroutine 2: merge DSS

DSS collection

[rendering DSS is required]

Render DSS tangential cover Return DSS collection

[else]

detection radius,
direction difference threshold

binary edge image,

Figure 4. General Design of the Proposed Algorithm

4.1. General Schema of DES

Three classes are employed by the proposed algorithm, i.e., DSSGroup, DSS and

DSSPoint depicted by Figure 5. Names of these classes and their properties are

self-introductory and they are discussed in the reverse order of their dependencies shown

in Figure 5, in followings.

DSSPoint preserves the deviations of the current pixel and the previous pixel. The

deviations determine the direction computed according to Definition 1. It also retains

coordinates with respect to different coordinate systems for finding marginal points and

estimating DSS direction by using (10). DSS Class holds points defined by (6). The

marginal points are referenced by properties of type DSSPoint. DSSGroup maps to 𝔇M

of (11) and its property DSSForMerging reflects 𝔇Mk
 defined by (12). Its class diagram

also depicts a constructor accepting two parameters DSS1 and DSS2. The rest properties

of DSSGroup serve the computations required by (11).

DSSGroup(DSS1: DSS, DSS2: DSS)

AverageDirection: Double
DSSCollection: List<DSS>
DSSDistances: Dictionary<DSS,
double>
DSSForMerging: Dictionary<DSS,
List<DSS>>

DSSGroup
Direction: double
XmeanToImageCenter:double
YmeanToImageCenter:double
XmaxPoint: DSSPoint
YmaxPoint: DSSPoint
XminPoint: DSSPoint
YminPoint: DSSPoint
AcceptedPoints: List<DSSPoint>
NotRejectedPoints: List<DSSPoint>

DSS

Deviation: integer
PreviousDeviation: integer
DirectionToPrevious: double
XtoImageCenter: double
YtoImageCenter: double
XtoDSSCenter:double
YtoDSSCenter:double

DSSPoint

Figure 5. Class Diagram for the Proposed Algorithm

Based on the classes depicted in Figure 5, the schema of the proposed algorithm is

shown in form of UML activity diagram of Figure 6. Subroutine 1 and 2 respectively

contains 5 and 3 subroutines. Subroutine 1.1 and 1.2 implement segmentation described

by Section 3.1. Subroutine 1.3, to 1.5 split DSS based on criterions discussed in Section

3.2. Packing these subroutines into a single unit Subroutine 1 avoids the redundancy of

two separate loops respectively for the segmentation and splitting. Subroutine 2 merges

DSS according to the logic presented in Section 3.3.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

304 Copyright ⓒ 2016 SERSC

Subroutine 1

detection radius,
direction difference threshold

binary edge image,

Try to read an unvisited pixel just adjacent to a visited one from

left to right in a row and from top to bottom in image space

[an unvisited foreground pixel is found]

Subroutine 1.1: Find first two points of DSS

[else]

Subroutine 1.2: Continue search until no pixel is found compatible with DSS

Subroutine 1.3: Estimate accepted and not-rejected points of DSS

Subroutine 1.4: Build direction distribution histogram and split DSS if necessary

Subroutine 1.5: Estimate DSS width and shrink it if necessary

[fail] [sucess]

DSS collection

Subroutine 2

Initialize a DSSGroup object

Subroutine 2.2: divide groups to subgroups based on DSS distances

Subroutine 2.3: Merge DSS contained by subgroups

Subroutine 2.1:Group DSS in collection with respect to their directions

[at least 1 group is preserved in DSSGroup] [else]

[Merging occured] [else]

DSS collection

Figure 6. General Schema of the Proposed Algorithm

4.2. Algorithms for Identifying and Splitting DSS

This section sequentially introduces subroutines comprised by Subroutine 1 in order of

the logic flow shown in Figure 6. The proposed algorithm begins with Subroutine 1.1

which assumes the input pixel is the first point of an unknown DSS and expands a full

circle at the point which corresponds to P1 of (4). All foreground pixels lying in circle

are envisaged as potential points of DSS, i.e., S1 from (2), and their directions

corresponding to input pixel are computed based on Definition 1. The average of the

computed directions, i.e., θ1 of (5), is in turn compared with these directions and

employed for categorizing pixels as accepted or not-rejected corresponding to S1
1 and S1

0

from (3). The point with the direction closest to the average is chosen as the center of

the initial semicircle expansion in Subroutine 1.2, i.e., P2 of (4).

Subroutine 1.2 assumes α in (3) is set to 2, namely, the maximal value of 𝓌𝓉 for any

DSS is the diameter of semicircle. Subroutine 1.2 repeatedly expands semicircle whose

diameter perpendicular with the DSS direction computed in previous search, i.e., θ𝓉−1

from (5) at pixel P𝓉 given by (4). It then collects pixels within the semicircle as S𝓉

defined by (2) and statistically updates DSS direction as θ𝓉 based on S𝓉−1
1 of (3). For

θij ∈ 𝔄θ, 𝔏(θij) = (θij − σ, θij + σ) is obtained by using ⌊θij⌋, i.e., value of σ varies

with θij . Collected pixels are finally categorized to S𝓉
1 and S𝓉

0 based on (3). This

procedure repeats until no further pixel can be found within semicircle.

Subroutine 1.3 is the first step to split a given DSS. It simply computes the ratio

defined by (7) with assumption that 𝒷 is set to 1.5 for estimating whether the numbers of

accepted and not-rejected pixels of a given DSS are unbalanced.

Subroutine 1.4 attempts to check whether 𝒽𝓉 of a given DSS is multimodal and

estimate split positions if so. The multimodal threshold 𝓂 adapted in (8) is set to 0.7 and

𝓃 employed in (9) is set to 4. When a DSS is given, its histogram of axes 𝔏 (θij),

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 305

θij ∈ 𝔄θ and f is built and ratio of maximal and submaximal values of f in 𝒽𝓉 is

computed. Value of 𝔏 (θij) is obtained by using ⌊θij⌋ just as Subroutine 1.2 and the

ratio is compared with 𝓂. The values of θij meeting criterion (8) are recorded and

removed from 𝒽𝓉. The comparison of maximal and submaximal values of altered 𝒽𝓉

continues until (8) is not met and all values of θij causing (8) met are preserved in ℑ. If

there is at least one pair of such values retained in ℑ, i.e., |ℑ| > 1, then Subroutine 1.4

tries to find the split positions based on 𝔄θ and (9). (9) is implemented by sequentially

visiting pixels in their collective order and check whether the value in 𝔄θ closest to

direction of current pixel is different from the previous closest value in 𝔄θ. If the time of

closest value changes 𝓃 = 4 times, then the current visited pixel is marked as a split

position. Then DSS is split at these pixels and directions of all new DSS are updated by

using (10). Subroutine 1.5 simply removes any pixels causing geometrical thickness of

DSS exceeding diameter of semicircle.

4.3. Algorithms for Merging DSS

This section introduces Subroutine 2.1, to 2.3 comprised by Subroutine 2 serving for

merging DSS. Subroutine 2.1 attempts to categorize DSS based on their direction

similarities estimated by (11). Since the coordinate computation is relatively coasty, the

distance estimation associated with (11) is integrated with Subroutine 2.2.

Subroutine 2.2, is critical for merging DSS. It finds DSS of maximal number of

accepted pixels then estimates the distances involved in (11) between the found DSS and

all other DSS in the group, then it estimates the distances of marginal points associated

with (12) to categorize DSS to different merging groups.

Subroutine 2.3 completes merging phrase by simply assigning all points of DSS for

merging to the DSS of maximal number of accepted points for each merging group. Then

the collection of merged DSS is returned as the final result of the proposed algorithm.

5. Experimental Results

This section illustrates the experimental results of adopting the proposed algorithm for

ideal image Ellipse and six real-life images respectively named Cameraman, House, Lena,

Pepper, Puzzle and Tower. Visual segmentation results are shown in Figure 7, and

Figure 8. Time consumed by eight subroutines of the proposed algorithm is shown

through Figure 9, to Figure 13. Except radius ℛ and difference threshold Θ given by

user input, the rest parameters are empirically set, i.e., α in (3) is set to 2, 𝒷 of (7) is set

to 1.5, 𝓂 adopted in (8) is set to 0.7 and 𝓃 employed in (9) is set to 4.

In Figure 7, contour of an ideal ellipse is segmented by using the proposed algorithm

with respect to different values of ℛ and Θ respectively reflected by the letter R and D

of labels, e.g., label R5D5 denotes ℛ = 5 and Θ = 5. The rows of Figure 7, show visual

results when one of ℛ and Θ is fixed and the other increases. Apparently, the proposed

algorithm is somehow more sensitive to ℛ than Θ, e.g., the differences among results

listed in upper row are relatively small than lower row. This is also reflected by columns,

especially the middle one.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

306 Copyright ⓒ 2016 SERSC

Figure 7. Segmentation of Ellipse Contour

In Figure 8, visual results of six real-life images of resolution 256-by-256 processed by

the proposed algorithm are labeled by their names. Since their original images can be

easily found in internet, they are not shown here. Because of the low resolution, value of

ℛ is limited to 3 which reduces the detection range of the proposed algorithm and

number of sampled pixels. Although insufficient range guarantees the fine contour can be

segmented reasonably, it leads to discontinuous segmentations of long edges as presented

in bottoms of House and Tower, or top of Puzzle.

Discontinuous segmentations can be eliminated at cost of increasing resolutions. Figure

9 illustrates partial segmentation results of image House and Puzzle at resolution

1280-by-1280 and it also depicts Canny edge images, i.e., inputs of the proposed

algorithm. There are mainly two lines in edge image of House, the upper one is fully

identified by the proposed algorithm and the lower one is partially recognized due to the

noise. Edge image of Puzzle contains discontinuous edges and most of them are identified

and connected by the proposed algorithm.

Figure 8. Segmentation Results of Real-Life Images

Figure 10, depicts the general time of processing six images whose resolutions vary

within range 128-by-128 to 1280-by-1280 by steps of 32-by-32. The abscissa only shows

one dimension of resolution. As shown in Figure 10, the most computationally expansive

processing is adopted by Lena. Puzzle requires the least computational time. This is

mainly because there are a large number of edges tangled in lower-left area of Lena while

edges in Puzzle mostly are isolated.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 307

Figure 9. Segmentation Results of Real-Life Images

Figure 10. General Time of Processing Images

Figure 11, illustrates the time consumed for processing six images at resolutions

128-by-128, 640-by-640 and 1280-by1280 from left to right for each image. Each bar in

Figure 11 consists of eight blocks distinguished by colors. From bottom to up, these

blocks sequentially represent the time consumed by Subroutine 1.1 to Subroutine 2.3.

Obviously, processing of Lena and Puzzle consume the most and the least time

respectively. From the perspective of subroutines, Subroutine 2.1, i.e., the orange block,

makes the most contribution for increasing processing time, especially for cases of Lena

and Tower. Oppositely, when Subroutine 2.1 remains stable just like in case of Puzzle, it

results in a general low processing time.

Figure 11. Time Consumed By Subroutines

Figure 12, to Figure 14, sequentially show the detailed distributions of the time

consumed by subroutines for processing Lena, Tower and Puzzle at resolutions varying

from 128-by-128 to 1280-by-1280. As indicated in Figure 11, most subroutines except

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

308 Copyright ⓒ 2016 SERSC

Subroutine 2.1 approximately consume similar time for different resolutions in Figure 12,

to Figure 14. Subroutine 2.1, i.e., the upper most polygonal line in all three figures, varies

drastically in Figure 12, and the left half part of Figure 13. This maps to sever drops for

three bars of Lena and the first two bars of Tower in Figure 11, and the shape of

polygonal line of Lena in Figure 10, approximately resembles the one of Subroutine 2.1

shown in Figure 12. Mild changes of Subroutine 2.1 in Figure 14, lead to small drops

among bars of Puzzle in Figure 11, and a low increasing rate of general time shown in

Figure 10.

Figure 12. Time Consumed for Processing Image Lena

Figure 13. Time Consumed for Processing Image Tower

Figure 14. Time Consumed for Processing Image Puzzle

6. Conclusion

This paper proposed a DSS identifying algorithm based on a statistical strategy. The

strategy depends on the dynamic estimating of the direction between two foreground

pixels bound by the generalized connectedness, and it infers DSS direction through

investigating the distribution of the estimated directions in the exploration. After the

exploration, all found DSS are further analyzed based on the modality of histograms;

splitting and merging are performed when the histograms are found multimodal.

Conceptual implementation of the proposed algorithm is introduced graphically by using

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

Copyright ⓒ 2016 SERSC 309

UML activity diagrams. The experimental results of the artificial and real-life images are

illustrated and discussed. The bottleneck of the proposed algorithm is found to be

Subroutine 2.1 and the optimization of this subroutine will be focused in our future work.

References

[1] X. Jiang, X. You, Y. Yuan and M. G. Gong, "A method using long digital straight segments for

fingerprint recognition", Neurocomputing, vol. 77, no. 1, (2012) Feb., pp. 28-35.

[2] J. Junior and A. R. Backes, "Shape classification using line segment statistics", Inform. Sci., vol. 305,

(2015) Jun., pp. 349-356.

[3] A. O. Ok, J. D. Wegner, C. Heipke, F. Rottensteiner, U. Soergel and V. Toprak, "Matching of straight

line segments from aerial stereo images of urban areas", Journal of Photogrammetry and Remote

Sensing, vol. 74, (2012) Nov., pp. 133-152.

[4] B. Kerautret and J. O. Lachaud, "Meaningful scales detection along digital contours for unsupervised

local noise estimation ", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, (2012), pp. 2379-2392.

[5] I. Debled-Rennesson, "A linear algorithm for segmentation of digital curves", Int. J. of Pattern

Recognition and Artificial Intell., vol. 9, no. 4, (1995), pp. 635-662,

[6] J.-O. Lachaud and M. Said, "Two efficient algorithms for computing the characteristics of a subsegment

of a digital straight line", Discrete Appl. Math., vol. 161, no. 15, (2013) Oct., pp.2293-2315.

[7] J. S. D. Ouattara, E. C. Andres, G. L. S. R. Zrour and T. M. Y. Tapsoba, "Remainder approach for the

computation of digital straight line subsegment characteristics", Discrete Appl. Math., vol. 183, (2015),

Mar., pp. 90-101.

[8] I. D. Rennesson, R. Je. Luc, J. R. vDegli, "Segmentation of discrete curves into fuzzy segments",

Electron. Notes in Discrete Math., vol. 12, (2003) Mar., pp. 372-383.

[9] I. D. Rennesson, F. Feschet and J. R. Degli, "Optimal blurred segments decomposition of noisy shapes

in linear time", Comput. & Graph., vol 30, no 1, (2006) Feb., pp. 30-36.

[10] I. Sivignon, "Fast recognition of a Digital Straight Line subsegment: Two algorithms of logarithmic time

complexity", Discrete Appl. Math., vol. 183, (2015) Mar., pp. 130-146.

[11] L. Buzer, "A simple algorithm for digital line recognition in the general case", Pattern Recognition, vol.

40, no. 6, (2007) Jun., pp. 1675-1684.

[12] A. Faure, L. Buzer and F. Feschet, "Tangential cover for thick digital curves", Pattern Recognition, vol.

42, no. 10, (2009) Oct., pp. 2279-2287.

[13] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language Reference Manual, 2nd ed. MA,

USA: Addison-Wesley, (2010).

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 8 (2016)

310 Copyright ⓒ 2016 SERSC

