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Abstract 

Because of gait sequences are naturally three-dimensional data, there have been 

several tensorial feature extraction methods to deal with tensors while there are effective 

tensorial classifiers. In this work, by using a linear tensor projection, a new classifier 

based on neural networks with random weights is introduced. Due to the proposed 

algorithm can classify gait samples directly without vectorizing them, the intrinsic 

structure information of the input data can be reserved. In addition, discriminative 

features sets are generated using MPCA to ascertain classification accuracy. Finally, 

Extensive experiments are carried out on two gait databases and results are compared 

against state-of-the-art techniques. It is demonstrated that the proposed algorithm MPCA 

plus TNNRE achieves better recognition performance. 

 

Keywords: Gait recognition, Multilinear principal component analysis (MPCA), 
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1. Introduction 

During the past decades, there is an increasing demand for automated person 

identification at a distance in controlled environments such as banks, parking lots, airports, 

car parks and large civic structures. Different from the traditional biometrics that to be 

required in close distance, such as iris, face, fingerprint, and palm print, gait information 

can be available at high enough resolution for recognition. As the style of walking of a 

person, gait recognition focus on the identification of individuals in video sequences by 

the way they walk [1-2]. In gait recognition systems, binary gait silhouettes are always 

taken as the input source data. The sequences can be regard as three-order tensors with the 

spatial row, column and the temporal modes for the three dimensions [3]. In order to deal 

with these tensor objects directly, the traditional vector based linear subspace learning 

method such as Principal Component Analysis (PCA) [4] and Linear Discriminant 

Analysis (LDA) [5] should be modified. Since PCA and LDA should firstly reshape these 

tensorial data into vectors in a very high dimensional space. It is generally accepted that 

this reshaping breaks the potential spatial structure of the original data and leads high 

computational burden. To address these issues, the development of multilinear subspace 

learning approaches operating directly on the gait sequences has been motived. For 

example, Multilinear principal component analysis (MPCA) [6], a tensor version of PCA, 

applies PCA transformation on each mode of tensors while multilinear discriminant 

analysis (MDA) [7] applies LDA to transform each dimensionality of tensors. Hence, the 

natural structure of the gait sequences will be reserved and a better performance will be 

achieved. 
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Nevertheless, for the classification step, the classical image classifiers with good 

generalization include nearest neighbor (NN), artificial neural network (ANN) [8], 

support vector machine (SVM) [9], and so on. With the same limitation, traditional 

classification methods are usually vector-based, such as SVM and ANN. When they are 

employed to classify an input image, we have to transform matrix data into vector data at 

first. Besides, due to the distance between two data with form either tensor or vector is the 

same, NN classifier can be used to classify the feature matrices directly. Therefore, NN 

classifier is usually applied after many multilinear dimension reduction methods just as in 

[10]. However, the structure of NN classifier is too simple to obtain satisfying recognition 

rate. Consequently, it is desirable to propose a novel classifier which can classify matrix 

data directly and to preserve the intrinsic structure effectively. In order to construct the 

classifier, a kind of special feed forward networks be employed that introduced first in 

[11], named neural networks with random weights (NNRW). Because NNRW randomly 

assigns the input weights and the bias of neurons in the hidden layer, these networks have 

fast learning speed and perfect classification performance [12]. As a tensor extension of 

NNRW, we introduce a novel tensor based classification method named as tensorial 

neural networks with random weights (TNNRW) for tensor objects classification. Without 

converting tensor objects into vectors, TNNRW can classify them directly. TNNRW not 

only takes the advantage of NNRW, but also preserves the natural structure of the input 

data. Furthermore, with fewer parameters to be calculated, a faster computing speed can 

be achieved. 

For most practical pattern recognition systems, feature extraction should retain most of 

the useful information in input data while keeping the dimension of the features as low as 

possible. In this paper, MPCA is used for feature extraction from original gait sequences 

with a series of projection matrices to maximize the captured variation. Then the extracted 

features are put into the proposed TNNRW for classify. Several experiments on different 

gait databases are presented for illustration. 

The remainder of the paper is organized as follows. Section 2, introduces some basic 

tensor algebra. Section 3, provides a brief introduction of MPCA, NNRW, and then the 

new classifier TNNRW is summarized in detail. In Section 4, we analyze experiment 

results on gait databases to verify the properties of the proposed method and compares 

performance against the other algorithms. Finally, the major findings and conclusions are 

drawn in Section 5. 

 

2. Tensor Fundamentals 

The elements of a tensor are to be addressed by a number of indices that are used to 

define the order of the tensor object. Notably, each index defines a “mode” [13]. 

Following the notation in [14], we denote vectors by lowercase boldface letters, e.g., x; 

matrices by uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A . 

Tensor is a generalization of vector and matrix as vectors are first-order tensors, and 

matrices are second-order tensors. An Nth-order tensor is denoted as
1 2 N

I I I  
A R . 

Their elements are addressed by N indices n
i

, 
1, ,n N

 , and each n
i

 addresses the 

mode-n of A . 

The mode-n unfolding of A  is defined as the n
I

 dimensional vectors are denoted as 

 

 1 1 1n n n N
I I I I I

n

 
     

A R
                                                                                             (1) 

Where the column vectors of  n
A

 are gained from A  by varying its index n
i

 while 

keeping all the other indices fixed. 
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The mode-n product of a tensor A  by a matrix U n n
J I

 R , denoted by 
U

n
A

, is a 

tensor defined as 

       1 1 1 1 2
U , , , , , , , , , U ,

n

n n n n N N n n

i

i i j i i i i i j i
 

  A A

                            (2) 

One of the most commonly used tensor decompositions is Tucker, which can be 

regarded as higher-order generalization of the matrix Singular Value Decomposition 

(SVD). Let 
1 2 N

I I I  
A R  denotes a Nth-order tensor, then the Tucker decomposition is 

defined as follows 

     1 2

1 2
U U U

N

N
   A = S

                                                                                      (3) 

Where
1 2 N

P P P  
S R with n n

P I
, denotes the core tensor and

       

1 2
U u u u

n

n n n n

P
 
   

is an n n
I P

 matrix. The scalar product of two tensors
1 2, N

I I I  
A B R is defined as 

   
1

1 2 1 2
, , , , , , ,

N
N Ni i

i i i i i i  A B A B
                                                   (4) 

The Frobenius norm of  is defined as 

 

1 2

1 2

1 2

2

1 1 1

,

N

N

N

II I

i i in
F

i i i

a

  

     A A A A

                                                         (5) 

 

3. Multilinear PCA and Tensorial NNRW 
 

3.1. Multilinear Principal Component Analysis 

As a multilinear extension of PCA, MPCA algorithm which is firstly introduced in [6] 

seeks a multilinear projection that transform the input data from a tensor space to another 

(low-dimensional) tensor space. A set of M tensor object samples 
 1 2

, , ,
M

X X X
 are 

available for training and each tensor sample 
1 2 N

I I I

m

  
X R

. The aim of MPCA is to 

determine the N projection matrices 

 
 U , 1, ,n n

n I P
n N


 R

 to maximize the total 

tensor scatter 


Y  of the extracted low-dimensional features: 

 
 

     

2

U U 1

U a rg m a x a rg m a x
n n

M

n

m
F

m 

   Y
Y Y

                                                              (6) 

Where 

  
1

T
N

n

m m

n 

  UY X

, 1

1
M

m

mM 

 Y Y

. 

The N optimization subproblems are solved by finding the mode-n projection matrix 
 n

U  that maximizes the mode-n total scatter conditioned on the projection matrices in all 

the other modes. The n
P

 eigenvectors reside in the matrix 
 n

U  corresponding to the 

largest n
P

eigenvalues of the matrix 
 n

 : 
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     

 
1

T
M

n n n

m m

m 

  C C

                                                                                                       (7) 

 

    
     1 1 1

1 1 1

T T T T
n n n N

m n n Nm n n

 

 
       C X X U U U U

                          (8) 

Where  m n
X

 is the mode-n unfolding of m
X

,  n
X

is the mode-n mean matrix. 

 

3.2. A Brief Review of NNRW 

Feed-forward neural networks are ideal classifiers for approximating complex 

nonlinear mappings directly from the input data. Among them, Single-hidden Layer 

Feed-forward Neural Network （SLFNN）[15] has very strong learning ability and 

has been applied in many fields. However, due to the hidden layer parameters and 

the output weights need to be trained and tuned properly based on the input samples, 

the learning speed of SLFNN is too slow to meet the demand in actual situations. As 

a kind of special learning method for SLFNN, NNRW can randomly set the input 

weights, hidden layer biases, and the whole process of NNRW does not need 

iteration and can obviously improve the neural network learning speed. 

Suppose a set of N arbitrary distinct samples  , t
j j

x , where 

1 2
, , ,

T
n

j j j jn
x x x  

 
x R and 

1 2
, , ,

T
m

j j j jm
t t t  
 

t R . 
j

t  is the class label of 

the input data, if 
j

x  belong to the class m, then 1
jm

t   while other parameters in 
j

t  is 0. 

A typical FNN with single hidden layer can be commonly modeled as: 

   
1 1

y x x b

L L

T

j i j i i j i

i i

g g

 

    β β w ,    1, ,j N                                              (9) 

Where L is the number of hidden nodes,  g   is the active function, 

 1 2
, , ,

i i i in
w w ww  is the weight vector connecting the i-th hidden node and the input 

nodes,  1 2
, , ,

T

i i i im
  β  is the weight vector connecting the i-th hidden node and 

the output nodes, and b
i

 is the bias of the i-th hidden node. Figure 1, shows the 

architecture of a complete NNRW process. 
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Figure 1. Architecture of a Complete NNRW Classifier 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 8 (2016) 

 

 

Copyright ⓒ 2016 SERSC   279 

Considering 
j

t  is the corresponding observation value. The NNRW reliably 

approximates N samples with minimum error: 

 
1

x b

L

T

i i j i j

i

g



   β w t , 1, ,j N                                                                         (10) 

According to NNRW proposed in [16], each element of the input weights and biases is 

selected randomly, then the output weights can be calculated by using Moore-Penrose 

generalized inverse.  

 
1 1

ˆ a rg m in x b a rg m in

N L

T

i i j i j

j i

g

 

     β w - t H
 

                                      (11) 

Where  

   

   

1 1 1 1

1 1

G x b G x b

G x b G x b

T T

L L

T T

N L N L

    
 

  

 
     

w w

H

w w

                                                         (12) 

is called the hidden layer output matrix of the neural network. Equation (11) can be 

reformulated as 
†ˆ T   , where 

†
 is the MP generalized inverse of H. 

 

3.3. Theoretical Foundation of the Proposed TNNRW 

In order to deal with tensorial data directly, for a set of N tensor data   
1

,
N

j j
j 

tX , 

with  
C

j
t R , Formula (9) can be reformulated as follows: 

     

 
1 2

1 2

1

y x u u u b
T T T

L

M

j i j i i M i i

i

g



     β                                                         (13) 

where 1 2 M
I I I

j

  
X R is a Mth-order tensor, 

 
m

m I

i
u R  are corresponding 

transformation vectors for 1, ,m M , b
i
 R , and 

C

i
 R , 1, ,i L  and L is the 

number of hidden nodes. 

As the derivation in [17], the corresponding w is determined by only 

 1 2 M
I I I    variables through TNNRW while there is   1 2 M

I I I  elements to 

be calculated for NNRW. In a word, utilizing the tensor based conversion in Equation  

(13), the input tensor data sets can be calculated directly without vectoring them. Not only 

the inner structural information among the elements of the data can be preserved, but also 

fewer parameters need to be computed. All the weights and bias will be determined 

randomly. After confirming the projecting vectors and biases, the output weights  can be 

determined by solving Equation (10) while the matrix H should be changed as follows 

   

   

1 1 1 1

1 1

1 1

1 1

G b G b

G b G b

T T

T T

M M

m m

m m L L

m m

M M

m m

N m N m L L

m m

 

 

 

 

    
     

    

 
 

    
     

    

 

 

u u

u u

X X

X X

                                 (1) 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 8 (2016) 

 

 

280                                                                                                          Copyright ⓒ 2016 SERSC 

  is the hidden output matrix for TNNRW, then the output weights can be solved by the 

following optimal: 

  †

1 1 1

ˆ a rg m in b a rg m in
T

MN L

m

i j m i i j

j i m

g


  

 
    

 
  β u - tX

 

                (15) 

Where  

1

L

L

L

 

 
  

 
 







，   

1
t

t

L

L

L

 

 
  

 
 

T                                                                                                  (2) 

With the above description, this algorithm is called tensorial neural networks with random 

weights for tensorial data classification.  

Applying the proposed TNNRW method for face recognition, for a new tensor 

input , where  is the dimension of each face image, and  is the 

amount of the input images. The output of the proposed TNNRW can be computed 

in Equation (13), and the obtained  should be compared with the real 

corresponding class label value  to check the effectiveness of the learning 

algorithm. 

 

4. Performance Evaluation 

In this section, the proposed solution of MPCA plus TNNRW is evaluated in two 

gait databases. The University of South Florida (USF) [18] gait database that has 

1870 gait sequences from 122 individuals is the largest publicly available human 

gait database. These gait sequences were captured under different conditions (shoe 

types, walking surfaces and viewing angles). Another database is Gallery set that 

contains 725 sequences (subjects) and seven experiments (probe sets) are designed 

for human identification [19]. There are 731 samples in the Gallery set and an 

average of roughly 10 samples available in each subject. MPCA is used for feature 

extraction, TNNRW is used for classification, and the correct classification rate 

(CCR) is used for preliminary testing [20-21]. 

The first test is conducted in USF database. The first four samples from each 

subject (284 in total ) are used for training and the rest 447 samples are used for 

testing. With the same feature extraction method MPCA, Figure 2 shows the CCRs 

comparison of three different classifiers. The three-order tensor features can be input 

directly for the proposed TNNRW and NN while for SVM, they need to be 

vectorized first. In this test, we use the first P numbers of extracted features from 

each mode of the training samples to calculate the performance of each classifier and 

the scale of P is from 1 to 10. Furthermore, both of TNNRW and NNRW set the 

number of hidden nodes with 1000. As seen from Figure 2, that MPCA+TNNRW 

achieves the highest accuracies in all cases and the advantage is obvious. This is 

benefit by the reservation of the inner structure of the original data for TNNRW and 

the classification superiority for NNRW. 
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Figure 2. Recognition Rate Comparison of the Classifiers with MPCA as 
the Feature Extraction Tool 

In the second experiment, the first five samples of each sequences (355 in total) 

from the gallery set are used for training and the rest used as the test data. The result 

captured with the MPCA+TNNRW on the training samples and test samples are 

shown in Figure 3. From the Figure 3, MPCA+TNNRW algorithm provides the best 

recognition accuracy among all other algorithms. 
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Figure 3. The Recognition Rate over Dimensions of Feature 
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5. Conclusions 

In this paper, a new TNNRW classification is designed to classify tensorial data 

directly for gait recognition. For the proposed algorithm, instead of using the high 

dimensional input weight vector in hidden layer, a set of projecting vectors with 

random values are applied to preserve the natural structure information of the input 

sample. In addition, MPCA is used to extract features to reduce the dimension of the 

input data. There are two advantages of using TNNRW for gait classification, one is 

higher recognition rate can be obtained by classifying tensorial data directly, the 

other is faster computing speed can be achieved benefits by much less parameters to 

be calculated with TNNRW than the traditional NNRW. 
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