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Abstract 

Under mild conditions, it can be induced from the Karush–Kuhn–Tucker condition that 

the Pareto set, in the decision space, of a continuous Multiobjective Optimization 

Problems(MOPs) is a piecewise continuous ( 1)m D   manifold(where m is the number 

of objectives). One hand, the traditional Multiobjective Optimization Algorithms(EMOAs) 

cannot utilize this regularity property; on the other hand, the Regular Model-Based 

Multiobjective Estimation of Distribution Algorithm(RM-MEDA) only able to build the 

linear model of decision space using linear modelling algorithm, such as: the local 

principal component analysis algorithm(Local PCA).Aim at the shortcomings of EMOAs 

and RM-MEDA, the Manifold-Learning-Based Multiobjective Evolutionary Algorithm Via 

Self-Organizing Maps(ML-MOEA/SOM) is proposed for continuous multiobjective 

optimization problems. At each generation, first, via Self-Organizing Maps, the proposed 

algorithm learns such a nonlinear manifold in the decision space; then, new trial 

solutions is built through expanding the neurons of SOM with random noise; at the end, a 

nondominated sorting-based selection is used for choosing solutions for the next 

generation. Systematic experiments have shown that, overall, ML-MOEA/SOM 

outperforms NSGA-II, and is competitive with RM-MEDA in terms of convergence and 

diversity, on a set of test instances with variable linkages. We have demonstrated that, 

compared with NSGA-II and RM-MEDA, via self-Organizing maps, ML-MOEA/SOM can 

dig nonlinear manifold hidden in the decision space of multiobjective optimization 

problems. 

 

Keywords: Manifold Learning; Multiobjective Optimizing; Evolutionary Algorithm; 

Self-organizing Feature Maps 

 

1. Introduction 

In scientific research and engineering areas, many optimization problems belong to 

multiobjective optimization problems (MOPs). Very often, the objectives in a MOP 

conflict with each other and no single solution can optimize all the objectives at the same 

time. The solutions of a MOP are a set which called Pareto set/front in the 

decision/objective space.  

During the past two decades, many evolutionary algorithms (EAs) have been 

successfully employed to tackle MOPs. The major advantage of these multiobjective 

evolutionary algorithms (MOEAs) over other methods is that they work with a population 
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of candidate solutions and thus can produce a set to approximate the Pareto Set/Pareto 

Front (PS/PF) in a single run. Since the first multiobjective evolutionary algorithm VEGA 

[1]was proposed by Schaffer in 1985, more and more different MOEAs/MOGAs have 

been proposed, such as NSGA [2], NSGA-II [3], PAES [4], SPEA [5] and SPEA2 [ 6]. 

Among these MOEAs, most of them directly adopt traditional genetic recombination 

operators such as crossover and mutation and ignore the characteristics of MOPs. Very 

recently, Deb et. al. suggested that variable linkages of MOPs could cause difficulties for 

MOEAs and recombination operators are crucial to the performance of a MOEA [7]. 

Estimation of distribution algorithms (EDAs) are a new computing paradigm in 

evolutionary computation community. Unlike traditional MOEAs, there is no crossover or 

mutation in EDAs. Instead, they explicitly extract globally statistical information from the 

selected solutions, and build a probabilistic distribution model of promising solutions 

based on the extracted information. Then new solutions are generated by sampling from 

the probabilistic model thus built. Several EDAs have been developed for MOPs 
[9-12]

. 

However, these EDAs do not take the distribution regularity of Pareto set into 

consideration in building probability models. 

The Pareto optimal solutions to a MOP often distribute very regularly in both the 

decision space and the objective space. It has been observed that under mild smoothness 

conditions, the Pareto set, in the decision space, of a continuous MOP is a piecewise 

continuous (m-1)-dimensional manifold, where m is the number of the objectives. 

 In order to capture and utilize this regularity of the Pareto set explicitly, Qingfu Zhang 

and Aimin Zhou et. al. proposed a regularity model-based multiobjective estimation of 

distribution algorithm (RM-MEDA) [13]. RM-MEDA uses local principal component 

analysis algorithm to build the probability model. Compared with three other state-of-the 

art algorithms on a set of biobjective or triobjective test instances with linear or nonlinear 

variable linkages, RM-MEDA performs well. Based on the research on RM-MEDA, 

Dongdong Yang et. al. develop a hybrid multiobjective estimation of distribution 

algorithm by local linear embedding and an immune inspired algorithm (HMEDA) [14]. 

Local linear embedding (LLE) is a manifold learning algorithm and is used to build the 

statistical model in the manifold space by global statistical information. Later, some of 

solutions are generated by the model, and the rest solutions are produced by an immune 

inspired sparse individual clone algorithm (SICA). Experiments show that hybridization 

of LLE and immune inspired algorithm is beneficial to the optimization process. 

In this paper, the Manifold-Learning-Based Multiobjective Evolutionary Algorithm 

Via Self-Organizing Maps(ML-MOEA/SOM) is proposed for continuous multiobjective 

optimization problems.Self-organizing map (SOM) [15], based on a class of artificial 

neural networks , a valuable tool in analysis and visualization of high-dimensional data 

has been proposed [16]. Based on unsupervised learning the SOM performs a non-linear 

mapping from a high dimensional input space onto a low dimensional grid of neurons. 

This projection is both topology and distribution preserving. Topology preservation refers 

to the fact that similar data in the high dimensional space are mapped onto nearby neurons. 

The distribution preservation property makes that more neurons are allocated to patterns 

that appear more frequently in the input space. In our algorithm, SOM is used to capture 

and utilize the manifold structure of the Pareto set. After that, some of solutions are 

sampled from the SOM grid, and the rest of solutions are generated from crossover and 

mutation operators. In this way, our hybrid algorithm utilizes both the global statistical 

information of current population and the location information of the solutions. 

The rest of this paper is organized as follows. Section II introduces the continuous 

MOPs and the regularity property of continuous MOPs. Section III describes the details of 

the proposed algorithm. Section IV compares the proposed algorithm with NSGA-II and 

RM-MEDA on a set of test problems with or without variable linkages. Section V outlines 

the conclusions and future work. 
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2. Problem Definition 

The following continuous multiobjective optimization problem is considered in this 

paper: 

( ) ( ( ), ( ), ..., ( ))
1 2

T
min F x f x f x f x

m
x




                                                                                      (1) 

Where ( , , ..., )
1 2

T
x x x x

n
    is the decision variable vector, 

n
R  is the decision 

space. ( ), 1, 2, ...,f x i m
i

 are the continuous objective functions to be minimized, 
mR is the 

objective space. Let ( , ,..., )1 2
Tu u u um , ( , ,..., )1 2

Tv v v vm be two objective vectors, u is said to 

dominate v (denoted by u v ) if u vi i for all 1,2,...,i m , and u v . A solution x is called 

Pareto optimal or nondominated solution if there is no x such that ( ) ( )F x F x . All the 

Pareto optimal solutions in the decision space are made up of the Pareto optimal set, 

denoted by PS . The corresponding image of the Pareto optimal set in the objective space 

is called the Pareto optimal front, denoted by { ( ), }PF y F x x PS   . 

The distribution of the Pareto optimal set of a continuous MOP often shows a high 

degree of regularity. It can be induced from the Karush-Kuhn-Tucker condition that the 

PS of a continuous MOP is a piecewise continuous ( 1)m D   manifold in the decision 

space, where m  is the number of the objectives [13]. Therefore, the PS of a continuous 

biobjective optimization problem is a piecewise continuous curve in 
nR [17]

, while the PS 

of a continuous triobjective MOP is a piecewise continuous surface, and so on. 

 

3. The Alogorithm Framwork 
 

3.1. Basic Idea 

In order to capture and utilize the regularity of the PS, ML-MOEA/SOM uses SOM to 

learn the manifold structure. SOM is topology and distribution preserving. Compared with 

ISOMAP [18], LLE [19]and other manifold learning algorithms, it is much less sensitive 

to the noise of the data and is a robust unsupervised algorithm. Because SOM is a kind of 

artificial neural network algorithm, its learning effect depends on the input data set. 

Therefore, when the population is converged and submits to manifold distribution, the 

model which SOM built will be more accurate.  

In this paper, we combine the SOM-based and genetics-based methods to generate 

offspring. That is to say, early in the algorithm, genetic operators are used to generate 

most solutions, while in the latter most solutions are sampled from the model SOM built. 

 

3.2.The Algorithm Framework 

ML-MOEA/SOM maintains a population of N solutions at each generation t , denoted 

by 1 2( ) { , , ... , }NPop t x x x . The corresponding objective vector is defined as        

( ) ( ( ), ( ), ... , ( ))1 2
TF x f x f x f xm  , where m is the number of the objectives. The algorithm 

works as follows.  

 

3.3. Framework of ML-MOEA/SOM: 

1Step Initialization: Set 0t , Randomly generate initial population (0)Pop  and compute 

the corresponding objective values of each solution. Randomly initialize the neuron’s 

weights of SOM. 
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2Step Modelling via SOM: Set the current population ( )Pop t  as the training data of the 

SOM, and train the SOM to learn the manifold distribution of the solutions through 

iterations. As described in the following 1.Algorithm  

3Step Extend and Reproduction: Set the number of generation is N , one hand, 

generate 
1

N individual of offspring via uniformly extending neuron of SOM with noise 

vector by preforming  2;Algorithm  
On the other hand, generate 2N  individual of offspring 

via genetic operation, obviously, 1 2N N N  and generation of offspring is denoted by 

Q (| | )
1 2

Q N N  , then, compute fitness( F ) of  Q . Combine Q  and ( )Pop t  , which is 

denote it by ( )Q Pop t .  

4Step Elite Selection: Select out N solutions from ( )Q Pop t  with elite selecting 

strategy which was proposed in NSGA-II. 

5Step Stopping Condition: If the stopping condition is met, stop and return the 

nodominated solutions in ( )Pop t ; otherwise, set 1t t  and go to 2Step
 

3.3Modeling 

The SOM is employed in ML-MOEA/SOM to estimate the distribution of the solutions 

in the current population. The self-organizing map is a feed-forward network, and consists 

of an input and an output layer. Output layer consists of M  units or neurons arranged on 

a regular grid, and each output neuron is connected to input vector. Fig.1 illustrates a 

typically two-dimensional SOM grid.  

Each neuron in SOM gird has a specific topological position (an x, y coordinate in the 

lattice) and contains a vector of weights of the same dimension as the input vectors. That 

is to say, if the training data consists of vectors ( , , ..., ) , 1,2, ...,1 2
i i i i Tv v v v i Tn  , n is the 

dimension andT is the number of vectors. Then each neuron will contain a corresponding 

weight vector ( , , ..., )
1 2
j j jj Tw w w wn , 1, 2, ...,j M . 

The SOM training procedure can be summarized into the following framework and 

more details can be found in (T. Kohonen et. al., 2001). 

1Algorithm : SOM Training  

1Step Initialization: For each neuron j , initialize randomly its weight vector
jw . 

Set 0t  . 

2Step Input Vector: A vector
iv , 1, 2, ...,i T is chosen at random from the set of 

training data and presented to the lattice. 

3Step Find the BMU: For each neuron j , calculate the Euclid distance between its 

weight vector
jw and

iv . 
2

0

( , ) ( )
k n

i j i j

k k

k

dist v w v w




  , the best match unit (BMU)
*

j can 

be defined as 
* *

( ) min ( , )
j i j

BMU w dist v w . That is to say, the neuron
*j ’s weights are 

most like the input vector. 

4Step  Calculate The Radius of Neighborhood: The radius of the neighborhood of the 

BMU is now calculated. This is a value that starts large, typically set to the radius of the 

lattice, but diminishes each training step. Any neurons found within this radius are 

deemed to be inside the BMU’s neighborhood. 
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5Step  Update Weight Vector: Each neighboring neuron j ’s weight vector
jw is 

adjusted to  

make it more like the input vector. The weight vector is updated by 

*
( 1) ( ) ( ) ( )( ( ) ( ))

j j i j

j j
w t w t L t t v t w t     , where ( )L t is learning rate, it diminishes as well 

as neighborhood radius. 

*

*

2

2
( )

2 ( )

j j

j j

r r
t exp

t


  

 
 
 
 

is called as neighborhood function, 

where
*jr and

jr denote the topological position vectors of the neuron 
*j and j , 

respectively. 
*

j j
r r is the Euclid distance between

*jr and 
jr . From the definition, we 

can see that the closer a neuron is to the BMU, the more its weights get. altered; the 

training step t is increasing, the alteration is decreasing. 

5Step  Stopping Condition: If the stopping condition is met, stop and return; otherwise, 

set 1t t  and go to 2Step . 

 

Figure 1. The Architecture of a Self-Organizing Maps. It is Consists of an 
Input and an Output Layer 

3.4. Extend and Reproduction 

In our algorithm, the SOM training algorithm is used to capture the distribution 

regularity of the solutions. After training, 1N new solutions will be sampled from the 

SOM neurons. The reproduction procedure can be described as follows. 

 

Figure 2. Sample New Solutions by Adjacent Neurons. Along the Two 
Directions (Blue Lines) a Uniformly Distributed Random Point is Generated 

2Algorithm : 1Generate N Solutions From SOM  

1Step Performing SOM Training: Set the current population ( )Pop t as the set of 

training data of the SOM. The number of neurons of SOM is M and the number of 
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iterations is N . The initial learning rate is denoted by
0L and learning rate is defined 

by 0( )
t

L t L exp
N

 
  

 
，  1,2, ..., .t N The radius of neighborhood is defined 

by 0( )
t

t exp 


 
  

 
， 1,2, ...,t N , where

0
 is the initial neighboring radius which 

typically set to the radius of the lattice,
0/ ( )N lg  is a constant. Then, perform 

1Algorithm  to train the SOM. 

2Step Modeling: After the training, the neurons of SOM will distribute in an ordered 

fashion on the manifold. Figure2 shows a 2-D SOM lattice for a triobjective MOP, and 

each neuron could be considered as a center point on the manifold. We generate new 

solutions in the quadrangle of adjacent neurons in the lattice. Taking the red neuron
kw as 

a center point, 
1k mw w、 are neighborhoods of

kw .we compute the two unit vector
1

kU 、

2

kU and the Euclid distances 1

ka and 2

ka between neighboring neurons in the lattice. Here, 

1

1

k k ka w w  ,
2

k m ka w w   

1 1

1 ( ) /k k k k kU w w w w   
2 ( ) /k m k m kU w w w w   . 

Notice that the
kw 、 1k mw w、 are all weight vectors of its corresponding neurons. 

3Step Reproduction: The set of the points covered by SOM lattice can be defined as 

1

1

/

{ |

(0, ), 0 },

{1, 2, ..., },

1

n k

m
k k

i i i i

i

t T

x R x w

U N I a

k M

e
n



  









  

   






                                                                   (2) 

where (0, )N I is a n-dimensional zero-mean Gaussian vector, I is the n n  identity 

matrix, n is the dimension of decision variable vector x and m is the number of the 

objectives. t is the current generation of algorithm, T is the max generation of algorithm. 

Therefore, the noise vector is adaptive and decreasing over the optimization. In this paper, 

in order to generate points outside the area covered by the SOM, we also extend the 

boundary of the SOM lattice as Figure2 shows. 

4Step : 1N
 
new solutions are sampled from the model built in 3Step . As described 

above, we employ genetic operators to generate most solutions early in the algorithm, and 

use the model (2) to sample most solutions when the population is converged. The 

numbers of solutions generated by these two methods are controlled by an adaptive 

strategy. It works as follows. 

3Algorithm : Adaptive GA Operation 

1Step Adaptive Strategy: 2N new solutions are generated by genetic operators. Here, 

2N is defined as
/

2 0.7 t TN Ne , where N is the population size, t is the current 

generation of algorithm, T is the max generation of algorithm. Obviously, 2 0.7N N at 
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the beginning of algorithm and 2N is decreasing as t is increasing and
1

2 0.7N Ne finally. 

2Step Crossover and Mutation: Perform crossover and mutation on ( )Pop t to 

create 2N new solutions. The crossover and mutation operators used in our algorithm are 

multi-parent crossover and polynomial mutation [3], respectively. 
3.5 Selection 

The selection operator is the same as in NSGA-II. The details of the selection operator 

can be found in [3]. 

 

4. Experimental Studies 
 

4.1. Test Instances 

In this paper, we compare the performances of ML-MOEA/SOM, RM-MEDA and 

NSGA-II experimentally on a set of test problems. These test instances are ZDT1, 

ZDT1.1, ZDT1.2, ZDT2, ZDT2.1, ZDT2.2, DTLZ2, DTLZ2.1, DTLZ2.2, DTLZ7. 

 

4.2. Performance Metric 

Three performance metrics are used to compare the performance of the different 

algorithms in our experimental studies. 

(1) metric
[3]

 measures the convergence (closeness of the non-dominated solutions to 

the Pareto front) of a population. It is defined as follows. 

*

* *

2*

1
( , ) ( , )

( , ) ( ) ( )

x S

y S

S S d x S
S

d x S min F x F y





 

 


                                                                                               (3) 

Where S is the set of the non-dominated solutions and
*S is a set uniformly sampled 

from the true Pareto front. The smaller *( , )S S is, the closer S to *S and 
*( , ) 0S S  once *S S . 

(2) metric
[3]

measures the diversity of a population. The original metric in works only 

for 2-objectives problems. In this paper, we adopt the extension version in [20]. It 

calculates the distance from a point to its nearest neighbor: 

* 1

1

2

,

( , ) ( , )

( , )

( , )

( , ) ( ) ( )

1
( , )

m

i

i x S

m

i

i

y S y x

y S

d e S d x S d

S S

d e S S d

d x S min F x F y

d d y S
S

 



 



 

 



 



 





                                                                                 (4) 

Where S and
*S are the same as in metric. 1 2, , ..., me e e

 
are m extreme solutions in

*S .  

If the achieved solutions are well distributed and include those extreme solutions, 
*( , ) 0S S  . 
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(3) IGD (Inverted Generational Distance) metric 
[13]

 could measure both the diversity 

and convergence of a population. Let
*P be a set of uniformly distributed points along the 

PF. Let P be an approximation to the PF, the IGD from
*P to P is defined as 

**

*

( , )

( , ) v P

d v P

IGD P P
P




                                                                                                     (5) 

Where ( , )d v P is the minimum Euclid distance between v and the points in P .To have a 

low value of *( , )IGD P P , P must be very close to the PF and can’t miss any part of the PF. 

 

4.3. Experimental Setting 

The experimental settings are as follows: 

(1)Public parameters: real code, randomly initialization, the population size in 2 and 3 

objective problems is 100 and 200 respectively.The number of decision variables is 30 for 

all the test problems. The generation of algorithm is 200. 

(2) NSGA-II: The distribution indexes for the simulated binary crossover and 

polynomial mutation are 15 and 20, and the crossover and mutation probabilities are 1.0 

and 0.5 respectively. In ML-MOEA/SOM, the number of parents of the multi-parent 

crossover is set to be 4, and the crossover and mutation probabilities are the same as in 

NSGA-II. For all 2-objectives problems, the SOM lattice is set to be 110, and 45 for 

all 3-objectives problems. The training steps are 1000 and initial learning rate is 0.1 for 

SOM. The number of clusters in RM-MEDA is set to be 5. 

(3)Number of the algorithm runs and stopping condition: 10 independent runs are 

performed on each test problems. The algorithms stop after a given number of function 

evaluations. The maximal number of function evaluations in each algorithm is 20000 for 

2-objective test problems and 40000 for 3-objective test problems. 

 

4.4. Experimental Results 

The convergence metric and IGD metric results are shown in Table 1-10. From the 

tables, we can see that: (1) ML-MOEA/SOM shows the best performance on ZDT1, 

ZDT1.1, ZDT2, ZDT2.1, DTLZ2, DTLZ2.1, while on ZDT1.2, ZDT2.2 and DTLZ2.2, 

RM-MEDA performs better. ZDT1, ZDT2 and DTLZ2 are MOPs without variable 

linkage. Therefore, the Local PCA model of RM-MEDA is hard to discover the variable 

relations since there are no variable linkages at all; (2) NSGA-II performs best on DTLZ7. 

DTLZ7 has discontinuous PS and could make some difficulties for ML-MOEA/SOM and 

RM-MEDA. In contrast, conventional genetic operators are good at solving discontinuous 

problems; (3) especially on ZDT1.1, ZDT1.2, ZDT2.1, ZDT2.2, DTLZ2.1 and DTLZ2.2, 

which are introduced by the linear or nonlinear variable linkages, ML- MOEA/SOM and 

RM-MEDA are much better than NSGA-II on IGD metric, since NSGA-II has no 

efficient mechanism for using the regularity of the PS. 

javascript:void(0);
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Table 1. The Mean and Variance of Performance Metric on ZDT1  

Algorithm 
ZDT1 

Convergence   Diversity   IGD 

NSGA-II 
0.040709±0.008

069 

0.376196±0.068

360 

0.038647±0.006

809 

RM-

MEDA 

  

0.042218±0.008282 
0.210959±0.022

507 

0.041582±0.000

116 

MOEA/S

OM 
0.035758±0.006

963 

0.255311±0.031

633 
0.034987±0.006

821 

Table 2. The Mean and Variance of Performance Metric on ZDT2 

Algorithm 
ZDT2 

Convergence   Diversity   IGD 

NSGA-II 0.072239±0.007

518 

0.557177±0.071

762 

0.065155±0.006

842 

RM-

MEDA 

0.050285±0.022

078 
0.300842±0.096

472 

0.050220±0.022

120 

MOEA/S

OM 
0.043578±0.000

597 

0.415434±0.062

008 
0.042545±0.005

954 

Table 3. The Mean and Variance of Performance Metric on dtlz2 

Algorit

hm 

DTLZ2 

Convergence   Diversity   IGD 

NSGA-

II 

0.082040±0.013

245 

0.451950±0.035

201 

0.091724±0.009

653 
RM-

MEDA 

0.084612±0.012

321 
0.346967±0.068

888 

0.082729±0.008

819 

OM-

MOEA 
0.038201±0.002

244 

0.383479±0.026

420 
0.062213±0.002

229 

Table 4. The Mean and Variance of Performance Metric on dtlz7 

Algorithm 
DTLZ7 

Convergence   Diversity   IGD 

NSGA-II 0.023332±0.001

186 

0.536266±0.039

985 
0.048576±0.002

192 

RM-MEDA 0.028198±0.001

456 

0.496164±0.025

794 

0.054868±0.002

482 

ML_MOEA/S

OM 

0.026114±0.000

949 
0.485186±0.025

878 

0.060510±0.003

920 
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Table 5.The Mean and Variance of Performance Metric on ZDT1.1 

Algorithm 
ZDT1.1 

Convergence   Diversity   IGD 

NSGA-II 0.021230±0.003

292 

0.724661±0.050

664 

0.111683±0.036

066 
RM-

MEDA 
0.001429±0.000

161 

0.141164±0.013

741 

0.003938±0.000

076 

MOEA/S

OM 

0.001694±0.000

153 

0.147793±0.010

920 

0.004150±0.000

096 

Table 6. The Mean and Variance of Performance Metric on ZDT2.1 

Algorithm 
ZDT2.1 

Convergence   Diversity   IGD 

NSGA-II 0.028407±0.013

604 

1.002302±0.063

827 

0.277415±0.077

414 

RM-

MEDA 
0.001429±0.000

161 

0.160962±0.018

670 
0.004058±0.000

080 

MOEA/S

OM 

0.001442±0.000

900 
0.125449±0.015

950 

0.004195±0.000

072 
Table 7. The Mean and Variance of Performance Metric on DTLZ2.1 

Algorithm 
DTLZ2.1 

Convergence   Diversity   IGD 

NSGA-II 
0.279189±0.117

000 

1.215399±0.285

118 

0.284848±0.026

751 

RM-

MEDA 

0.019445±0.008

185 

0.391852±0.060

346 

0.047088±0.001

748 

MOEA/S

OM 
0.012411±0.000

905 

0.390347±0.017

838 

0.046295±0.000

865 
Table 8. The Mean and Variance of Performance Metric on ZDT1.2 

Algorithm 
ZDT1.2 

Convergence   Diversity   IGD 

NSGA-II 
0.010132±0.001

184 

0.786300±0.026

410 

0.311743±0.047

102 

RM-

MEDA 
0.002592±0.000

248 

0.152935±0.019

939 
0.004624±0.000

180 

MOEA/S

OM 

0.004829±0.000

356 
0.137854±0.018

981 

0.006849±0.000

392 
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Table 9. The Mean and Variance of Performance Metric on ZDT2.2 

Algorithm 
ZDT2.2 

Convergence   Diversity   IGD 

NSGA-II 
0.049310±0.007

405 

0.908554±0.033

490 

0.554455±0.004

525 

RM-

MEDA 
0.002924±0.000

578 

0.146815±0.010

378 
0.005073±0.000

383 

MOEA/S

OM 

0.007336±0.000

641 
0.135108±0.016

147 

0.008296±0.000

511 
Table 10.The Mean and Variance of Performance Metric on DTLZ2.2 

Algorithm 
DTLZ2.2 

Convergence   Diversity   IGD 

NSGA-II 
0.306508±0.0737

15 

1.448311±0.027

336 

0.319979±0.024

331 

RM-

MEDA 

0.0427097±0.007

627 
0.356518±0.035

539 

0.061335±0.003

039 

MOEA/S

OM 
0.036424±0.0026

06 

0.430564±0.040

134 
0.057755±0.002

049 
Figure 3-12 show the evolution of the average IGD metric of the non-dominated 

solutions in the current populations among 10 independent runs with the number of 

function evaluations in three algorithms. From these figures, we can compare the 

convergence rapidity of the algorithms intuitively.  
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Figure 3.The Evolution of the Average IGD metric with the Number of 20000 
Function Evaluations in Three Algorithms for ZDT1 
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Figure 4. The Evolution of the Average IGD Metric with the Number of 20000 
Function Evaluations in Three Algorithms for ZDT1.1 
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Figure 5. The Evolution of the Average IGD Metric with the Number of 20000 
Function Evaluations in Three Algorithms for ZDT1.2 
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Figure 6. The Evolution of the Average IGD Metric with the Number of 20000 
Function Evaluations in Three Algorithms for ZDT2 
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Figure 7.The Evolution of the Average IGD Metric with the Number of 40000 
Function Evaluations in Three Algorithms for ZDT2.1 
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Figure 8. The Evolution of the Average IGD Metric with the Number of 20000 
Function Evaluations in Three Algorithms for ZDT2.2 
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Figure 9.The Evolution of the Average IGD Metric with the Number of 40000 
Function Evaluations in Three Algorithms for DTLZ2. 
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Figure 10. The Evolution of the Average IGD Metric with the Number of 
40000 Function Evaluations in Three Algorithms for DTLZ2.1 
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Figure 11. The Evolution of the Average IGD Metric with the Number of 
40000 Function Evaluations in Three Algorithms for DTLZ2.2 
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Figure 12. The Evolution of the Average IGD Metric with the Number of 
40000 Function Evaluations in Three Algorithms for DTLZ7 

From Figure3 to Figure12, for ZDT1 and ZDT2, the convergence speed of NSGA-II is 

fastest, RM-MEDA and ML-MOEA/SOM is both almost. For ZDT1.1, ZDT1.2, ZDT2.1, 
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ZDT2.2, the convergence speed of ML-MOEA/SOM and RM-MEDA is both almost, 

NSGA-II is lowliest. For DTLZ2, DTLZ2.1, DTLZ2.2, DTLZ7, on the earlier stage of 

algorithm running, the convergence speed of ML-MOEA/SOM is obviously superior to 

the other two, but, on the later stage of algorithm running, the convergence speed of RM-

MEDA and ML-MOEA/SOM is both almost, but the performance of  NSGA-II is worst. 

 

5. Conclusion 

Traditional reproduction operators such as crossover and mutation usually did not 

perform well on MOPs with variable linkages. In this paper, based on the regularity of 

continuous MOPs, we propose a hybrid multiobjective evolutionary algorithm based on 

self-organizing map and genetic operation. The proposed algorithm employs self-

organizing map to capture the manifold distribution of the Pareto set. After that, some of 

new trail solutions are sampled from the SOM grid, and the rest of solutions are generated 

from adaptive genetic operators. In this way, our hybrid algorithm utilizes both the global 

statistical information of current population and the location information of the solutions.  

We compared the proposed algorithm with NSGA-II and RM-MEDA on a set of test 

problems with or without variable linkages. The experimental results show that the 

proposed algorithm performs better than NSGA-II, and is competitive with RM-MEDA. 

The future research may investigate other simple and efficient modeling methods to 

exploit the regularity of the solutions. The better strategy for offspring generation is also a 

research direction.  

 

Acknowledgement 

The authors would like to acknowledge the help of Jiankai Zhu, I am grateful for the 

anonymous reviewers, and the anonymous associate editor for their insightful comments 

and suggestions. 

 

References 

[1] J. D. Schaffer, “Multiple Objective Optimization with Vector Evaluated Genetic Algorithms”, In 

Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence Erlbaum, (1985), pp. 

93-100.  

[2] N. Srinivas and K. Deb, “Multiobjective optimization using non-dominated sorting in genetic 

algorithms. Evolutionary Computation, vol.  2, no. 3, (1994), pp. 221-248.  

[3] K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: 

NSGA-II”, IEEE Transactions on Evolutionary Computation, (2002), pp. 182-197.  

[4] J. Knowles and D. W. Corne, “Local search multiobjective optimization and the Pareto achived 

evolutionary strategy”, In Proceedings of the third Australia-Japan joint workshop on intelligent and 

evolutionary systems, (1999), pp. 209-216.  

[5] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case study and the 

strength Pareto approach”, IEEE Transactions on Evolutionary Computation, vol. 3, (1999), pp. 257-

271. 

[6] E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary 

Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK)”, Swiss 

Federal Institute of Technology (ETH) Zurich, Switzerland, (2001). 

[7] K. Deb, A. Sinha and S. Kukkonen, “Multiobjective test problems, linkages, and evolutionary 

methodologies”, In Proc. Genetic Evol. Comput. Conf. (GECCO 2006), Seattle, Washington, (2006), 

pp.1141-1148.  

[8] D. Thierens and P. A. N. Bosman, “Multiobjective mixture-based iterated density estimation 

evolutionary algorithms”, In Proceedings of the Genetic and Evolutionary Computation Conference. San 

Francisco, California: Morgan Kaufmann, (2001), pp. 663-670.  

[9] M. Costa and E. Minisci, “MOPED: A Multiobjective Parzen-based Estimation of Distribution 

Algorithm for Continuous Problems”, In Fonseca C. M. editors, Proceedings of the Second International 

Conference on Evolutionary Multi-Criterion Optimization. (2003), pp. 282-294.  

[10] K.Sastry, M. Pelikan and D. E. Goldberg, “Decomposable Problems, Niching, and Scalability of 

Multiobjective Estimation of Distribution Algorithms”, IlliGAL Report 2005004, Illinois Genetic 

Algorithms Laboratory, (2005). 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 7 (2016) 

 

 

Copyright ⓒ 2016 SERSC  405 

[11] N. Khan, D. E. Goldberg and M. Pelikan, “Multiobjective Bayesian optimization algorithm”, In 

Proceedings of the Genetic and Evolutionary Computation Conference, (2005), pp. 684-689.  

[12] T. Okabe, Y. Jin and B. Sendhoff, “Voronoi-based Estimation of Distribution Algorithm for 

Multiobjective Optimization”, Evolutionary Computation, (2004), pp.1594-1601.  

[13] Q. Zhang, A. Zhou and Y. Jin, “RM-MEDA: A Regularity Model-based Multiobjective Estimation of 

Distribution Algorithm”,  IEEE Transactions on Evolutionary Computation, vol. 12, (2008), pp. 41-63.  

[14] D. Yang, L. Jiao, M. Gong and X. Feng, “Hybrid Multiobjective Estimation of Distribution Algorithm 

by Local Linear Embedding and an Immune Inspired Algorithm”, In Proceedings of The 2009 IEEE 

Congress on Evolutionary Computation, (2009), pp. 463-470.  

[15] T. Kohonen, M. R. Schroeder and T. S. Huang, “Self-Organizing Maps”, Springer-Verlag New York, 

(2001). 

[16] H. B. Amor and A. Rettinger, “Intelligent Exploration for Genetic Algorithms Using Self-Organizing 

Maps in Evolutionary Computation”, Proceedings of the 2005 conference on Genetic and evolutionary 

computation, (2005), pp. 1531-1538.  

[17] A. Zhou, Q. Zhang and Y. Jin, “A Model-Based Evolutionary Algorithm for Bi-objective 

Optimization”,Congress on Evolutionary Computation, (2005), pp. 2568-2575.  

[18] J. B. Tenenbaum, V. Silva and J. C. Langford, “A Global Geometirc Framework for Nonlinear 

Dimensionality Reduction”, Science,  vol. 290, no. 22, (2000), pp. 2319-2323. 

[19] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding”, 

Science, vol. 290, (2000), pp. 2323-2326.  

[20] A. Zhou, Y. Jin and Q. Zhang, “Combining Model-based and Genetics-based Offspring Generation for 

Multiobjective Optimization Using a Convergence Criterion”, IEEE Congress on Evolutionary 

Computation, (2006), pp. 3234-3241. 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 7 (2016) 

 

 

406                                                                                                          Copyright ⓒ 2016 SERSC 

 


