
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.9, No.7 (2016), pp.341-350 

http://dx.doi.org/10.14257/ijsip.2016.9.7.30 

 

 

ISSN: 2005-4254 IJSIP  

Copyright ⓒ 2016 SERSC 

Multi-Task Support Vector Machine for Data Classification 
 

 

Yunyan Song
1 

and Wenxin Zhu
2
 

1
College of Science, Tianjin University of Technology, Tianjin, 300384, China 

2
College of Basic Science, Tianjin Agricultural University, Tianjin, 300384, China 

songyunyanlg@163.com
1
, zhuwenxinyan@163.com

2 

Abstract 

Multi-task Learning (MTL) algorithms aim to improve the performance of several 

learning methods through shared information among all tasks.  One particularly 

successful instance of multi-task learning is its adaptation to support vector machine 

(SVM). Recently advances in large-margin learning have shown that their solutions may 

be misled by the spread of data and preferentially separate classes along large spread 

directions. In this paper, we propose a novel formulation for multi-task learning by 

extending the recently published relative margin machine algorithm to the multi-task 

learning paradigm. The new method is an extension of support vector machine for single 

task learning. The objective of our algorithm is to obtain a different predictor for each 

task while taking into account the fact that the tasks are related as well as the spread of 

the data.  We test the proposed method experimentally using real data. The experiments 

show that the proposed method performs better than existing multi-task leaning with SVM 

and single-task leaning with SVM. 

 

Keywords: Support vector machine, Multi-task learning, Kernel methods, Relative 

margin  

 

1. Introduction 

The aim of classification problems is to learn a classifier that generalizes well on future 

or testing data from a finite training data set. SVM and maximum margin classifiers [1-3] 

have been a particularly successful approach both in theory and in practice [4-6]. In many 

practical problems a number of prediction models need to be estimated from data. Multi-

task Learning (MTL) algorithms [7] aim to improve the performance of several learning 

methods through shared information among all tasks.  The objective of MTL is to obtain a 

different predictor for each task while taking into account the fact that the tasks are 

related. If the different problems are sufficiently related, MTL can lead to better 

generalization and benefit all of the tasks. Note that tasks can be considered as mutually 

related if the data distributions are similar enough and likely refer to the same problem. 

There has been extensive research on MTL in the past decade starting with the early 

works of [7-8]. Multi-task learning has been explored by various authors in different 

frameworks. This has lead to multi-task learning using kernel-methods [9-12], 

probabilistic approaches [13-15], maximum-entropy discrimination [16], large margin 

multi-task metric [17]. One particularly successful instance of multi-task learning is its 

adaptation to support vector machine [11-12] and [18]. As mentioned above, support 

vector machines are arguably amongst the most successful classification algorithms of 

all times. These multi- task learning formulations based on support vector machines 

aim to deal with the problem of considering different task relations.  However, the 

multi-task learning adaptation of support vector machine regardless of how spread of 

the data. Their solutions may be  
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misled by the spread of data and preferentially separate classes along large spread 

directions. This is a serious limitation when looking the different predictor for each 

task. 

Recently advances in large-margin learning have shown that the generalization 

ability of these learners can be improved by utilizing second order information, such as 

second order perceptron [19], Gaussian margin machines [20], confidence weighted 

learning [21], and adaptive regularization of weights (AROW) [22-23]. Recently, 

Shivaswamy and Jebara [24] proposed an effective and less computationally expensive 

way to incorporate the spread of the data-second order information about the distance 

between hypotheses when projected onto the line defined by the weight vector w. The 

method is called Relative Margin Machine (RMM). RMM which can deal with the 

presence of arbitrary affine transformations was introduced in [25]. In that work, the 

distance of the data from the separating hyperplane is bounded from above by a scalar 

R. RMM maximizes in this way the relative margin (relative to that upper bound) of 

the data from the separating hyperplane. The motivation behind this line of research is 

the fact that large margin on its own is not a meaningful quantity, a better way to 

measure margin is in relation to the spread of the data. RMM has shown significant 

improvements over the large margin counterparts on real-world problems. Recently, 

Zhu and Zhong proposed an improved RMM based on additional information hidden in 

the data [26], and obtained surprising results. V. Eidelman presented an online 

gradient-based algorithm for relative margin maximization, which bounds the spread of 

the projected data while maximizing the margin [27]. Some other extensions to RMM 

include structured RMM [28], and so on. All of these suggest that the RMM and 

maximum relative margin approach obtained significant improvements in 

classification accuracy. 

In this paper, we propose a novel formulation for multi-task learning by extending the 

recently published relative margin machine algorithm to the multi-task learning paradigm. 

The new method is an extension of support vector machine for single task learning. The 

objective of our algorithm is to obtain a different predictor for each task while taking into 

account the fact that the tasks are related as well as the spread of the data. We test the 

proposed method experimentally using real data. The experiments show that the proposed 

method perform better than existing multi- task leaning with SVM and single-task leaning 

with SVM. 

The paper is organized as follows. Section 2 briefly focuses on the relative margin 

support vector machine. We propose a novel multi-task learning approach (relative 

margin multitask learning, RMMTL) in Section 3. The exper- iments of the RMMTL on 

benchmark datasets are described in Section 4. Moreover, we compare it with the single 

SVM (sSVM), multiple SVM (mSVM) and multi-task learning (MTL). Section 5 

concludes this paper. 

 

2. Relative Margin Machine 

In [25], the SVM was modified such that the projections on the training examples 

remain bounded.  The new method was called Relative Margin Machine (RMM). RMM 

was introduced to deal with a possible bad scaling of the data across the different 

dimensions within the large margin classification framework. The method proposes 

finding the large margin separating hyperplane such that the distance of the data from it is 

bounded from above by a scalar R . In this way, a large relative margin, rather than the 

absolute (classic) large margin solution is reached. One important aspect is that RMM 

might be advantageous in comparison to SVM in cases of drifts in particular directions in 

feature space. Data drifts in applications are quite common, e.g., drifts in sensor data due 

to noise or spatial shifts.  The optimization problem in RMM is defined as 
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This formulation is similar to the SVM primal except for the additional constraints 
2

21

2 2
i

R
w x b  ( ( ) ) .The formulation has one extra parameter R  in addition to the 

SVM parameter C. When R  is large enough, the above RMM gives the same solution 

as the SVM. Also note that only settings of R  > 1 are meaningful since a value of R  

less than one would prevent any training examples from clearing the margin. As R is 

decreased, the RMM solution increasingly differs from the SVM solution. Specifically, 

with a smaller R , the RMM still finds a large margin solution but with a smaller 

projection of the training examples. Relative margin machine was shown to outperform 

the support vector machine on several datasets (both synthetic and real world) [25]. 
 

3. Relative Margin Multi-Task Learning (RMMTL) 

This section introduces the proposed formulations for multi-task SVM data 

classification. The proposed formulations combine relative margin SVM 

classification with the multi-task learning paradigm. Suppose we have t learning 

tasks. Let us denote the indices from task r  by  
1

1
rr n n

T i i r t , ..., , , ...,  . Then all 

training samples can be represented as: 

         1 1
1

n nr r
r r r r r r r r

X Y r t X Y x y x y , , , ..., , , , , ..., , .  

We follow the intuition of Hierarchical Bates [29, 30, 31]. In particular we assume that 

all rw can be written, for every  1r t , ..., , as 
r r

w w v  , where the vectors 
r

v are 

”small” when the different tasks are similar to each other. We then estimate all 
r

v  as well 

as the w  simultaneously. 

 

3.1. Linear Relative Margin Multi-Task Learning 

Formally, the proposed linear RMMTL method needs to solve the following 

optimization problem: 
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In this problem,   is positive regularization parameters and  
r
i are slack variables 

measuring the error that each of the final models rw  makes on the data. The last two 

linear constraints were added such that the projections on the training examples remain 

bounded. When R  is large enough, the above model gives the similar solution as the 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 7 (2016) 

 

 

344                                                                                                     Copyright ⓒ 2016 SERSC 

MTL.  In order to solve this problem, we construct the Lagrangian function for problem 

(2)-(3) 
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Let the solution of (10)-(11) be b     , , , and  rd 
.Then the corresponding decision 

function for task r  is 
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3.2. Nonlinear Relative Margin Multi-Task Learning 

We generalize the linear multi-task learning method outlined above to non-linear case 

using kernels as is done for SVM. 
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In this problem   r r
i i i iz x z x  ( ), ( ) , where 

i j i j
k x x x x ( , ) ( ( ), ( )) is kernel 

function, and X F : is a nonlinear mapping transforming the examples in the input 

space into the feature space. It is not hard to derive the separating hyperplane of nonlinear 

RMMTL: 
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4. Experiments 

In order to examine the generalization performance of the proposed RMMTL, we 

conduct experiments on several datasets, including Dermatology dataset  

(http://www.ics.uci.edu/ mlearn/MLRespository.html), Isolet spoken alphabet recognition 

and Monk taken from the UCI Machine Learning Repository 

(http://archive.ics.uci.edu/ml/) , and Radar Landmine detection data 

(http://www.ee.duke.edu/ lcarin/LandmineData.zip) . For Dermatology dataset, isolet 

spoken alphabet recognition dataset and Monk dataset, we compare RMMTL with the 

single SVM (sSVM), multiple SVM (mSVM) and multi-task learning (MTL). In addition, 

in order to explore the effect of the R parameter, the average test error rate were computed 

across different R . For radar landmine detection dataset, we compare RMMTL with 

sSVM, mSVM and MTL. The linear kernel and Gaussian kernel functions are adopted in 

the experiments. 

 

4.1. Dermatology Dataset 

This data set consists of 366 differential diagnosis of erythemato squamous  in 

dermatology. The goal is to diagnose one of six dermatological diseases (psoriasis, 

seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra 

pilaris) based on 33 clinical and histopathological attributes. That is to say, this is a multi-

class (6-class) problem. As in [10], we convert this problem to 6 binary one-versus-rest 

classification problems, each of which is considered to be ”one task”. Hence we have six 

tasks in total. This dataset is divided into ten random splits of 200 training and 166 testing 

samples. 

http://www.ics.uci.edu/
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4.2. Isolet Dataset 

The Isolet dataset is collected from 150 subjects speaking each letter of the alphabet 

twice. Hence, we have 52 training examples from each speaker.  Due to the lack of three 

examples, there are 7797 examples in total.  These speakers are grouped into five sets of 

30 speakers each. These groups are referred to as isolet1-isolet5. Each of these datasets 

has 26 classes. We treat each of the subsets as its own classification task. Therefore, there 

are five tasks that are highly related with each other because they are taken from the same 

utterances. They are different from each other because they come from different groups 

that vary largely in the way of speaking the English alphabets. The attribute information 

include spectral coefficients, contour features, sonorant features, pre-sonorant features 

and post-sonorant features. To remove low variance noise and to speed up computation 

time we preprocess the Isolet data with PCA and project it onto its leading principal 

components that capture 95% the dimensionality from 617 to 169. 
 

4.3. Monk Dataset 

The Monk dataset is the basis of a first international comparison of learning 

algorithms. There are a total of three problems corresponding to three tasks. There are 432 

instances, each of which has 7 attributes. 
 

4.4. Radar Landmine Detection Dataset 

In this set of experiments, we evaluate the performance of the proposed method in a 

landmine detection problem. This dataset is collected from 29 different landmine fields 

(groups). Each sample in each of the groups consists of a 9 dimensional vector extracted 

from airborne radar images. A binary label is assigned to each sample, indicating 

landmine presence or clutter. We note that groups are not uniformly related. Actually, 

groups 1 to 15 correspond to regions highly foliated, whilst the ones from 16 to 29 

correspond to deserted areas [18]. 

Data from 4 different groups (tasks 1, 15, 20, 25) are selected and number of samples 

in each group is varied from 40 to 120. For each group, one quarter of training samples 

correspond to presence, and the rest to clutters. For estimating the prediction error of a 

learning method, we use fivefold cross validation. In the experiment, samples from one 

landmine field are considered one task. 

Tables 1-3 report the testing results of sSVM, mSVM, MTL and the proposed RMMTL 

on dermatology dataset, isolet dataset and monk dataset. We observe that the results of 

RMMTL under linear and gaussian kernels are obvi- ously better than sSVM, mSVM and 

MTL on all datasets, which show that the proposed algorithm achieves better 

generalization performance. Moreover, to explore the effect of the R parameter, the test 

error rate were computed. Figures 1-3 report the results on all datasets. For Dermatology 

dataset, the error rate decreases as R decreseases from the right. For isolet dataset and 

monk dataset, As the R value is decreased, the error rate decreases to a reasonably wide 

minimum before starting to increase. 

Figure.4 reports the average test error rate of sSVM, mSVM, MTL and RMMTL with 

linear kernel and gaussian kernel. Because this is an unbalanced dataset, we measured the 

performance of the different methods as a function of the percentage of samples from the 

minority class in the training set. Hence, we have considered a fixed training size of 200 

samples and 10, 15, 20 and 25% of samples from the positive class. We can find that the 

proposed RMMTL has advantages over these three methods both in the linear and 

nonlinear case. 
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Table 1. Dermatology Dataset 

Method sSVM mSVM MTL RMMTL 

Accuracy (linear) 0.8167 ± 0.054 0.8275± 0.054 0.8563 ± 0.054 0.9367± 0.046 

Accuracy 

(nonlinear) 

0.8250± 0.054 0.8275 ± 0.054 0.8668 ± 0.054 0.9600 ± 0.034 

Table 2. ISOLET Dataset 

Method sSVM mSVM MTL RMMTL 

Accuracy 

(linear) 
0.9575 ± 0.026 0.9425± 0.024 0.7550 ± 0.069 0.9750 ± 0.015 

Accuracy 

(nonlinear) 
0.8800 ± 0.207 0.8350 ± 0.078 0.8475 ± 0.027 0.9175 ± 0.02 

Table 3. MONK Dataset 

Method sSVM mSVM MTL RMMTL 

Accuracy (linear) 0.6317 ± 0.054 0.7417± 0.048 0.5850 ± 0.045 0.7967 ± 0.027 

Accuracy 

(nonlinear) 
0.5517± 0.014 0.5717 ±0.052 0.6017 ± 0.039 0.7733 ± 0.016 

 

 

Figure 1. Behavior on the Dermatology Dataset: Linear Case and Nonlinear 
Case 
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Figure 2. Performance on the Isolet Spoken Alphabet Recognition Dataset: 
Linear Case and Nonlinear Case 

 

Figure 3. Performance on the Monk Dataset: Linear Case and Nonlinear 
Case 

 

Figure 4. Radar Landmine Dataset. Results of Methods Under Linear Kernel 
(Left) and Nonlinear Case (Right) 
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5. Conclusions and Discussion 

In this paper, we propose a novel formulation for multi-task learning by extending the 

recently published relative margin machine algorithm to the multi-task learning paradigm. 

The new method is an extension of support vector machine for single task learning. The 

objective of our algorithm is to obtain a different predictor for each task while taking into 

account the fact that the tasks are related as well as the spread of the data. We test the 

proposed method experimentally using real data. The experiments show that the proposed 

method performs better than the existing multi- task leaning with SVM, relative margin 

support vector machine and single-task leaning with SVM. 
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