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Abstract 

This paper makes full use of the characteristics of acoustic vector sensor (AVS), which 

can simultaneously measure both acoustic pressure scalar and particle velocity vector at 

single point in acoustic field. A new method is introduced by extending modified multiple 

signal classification (MMUSIC) to AVS, named as V-MMUSIC, which can be used to 

bearing estimation for coherent signals. Simulation results show that this method can 

achieve bearing estimation of coherent or unrelated signals and remove the 

port/starboard indistinct phenomenon. The proposed method can accomplish full spatial, 

unambiguous and small error bearing estimation in the low SNR. 
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1. Introduction 

Acoustic signal processing of sensor array is an important part, which has been utilized 

in many applications, such as sonar, electromagnetic, navigation and positioning of 

underwater device, distributed sensor networks, and so on. Bearing estimation is one of 

the primary problems in acoustic signal processing by using scalar acoustic pressure 

sensors (APSs) or acoustic vector sensors (AVSs). The output of each APS is a scalar 

relating to the acoustic pressure. Each AVS is composed of velocity sensors and pressure 

sensor, which can simultaneously measure both the acoustic pressure and two or three 

orthogonal components of the acoustic particle velocity. Hence, AVSs completely 

characterize the acoustic field at a point in space, which should outperform the scalar 

APSs in accuracy of bearing estimation [1].  

Many traditional bearing estimation algorithm, such as minimum variance 

distortion-less response (MVDR), Capon, multiple signal classification (MUSIC), 

root-MUSIC and estimation signal parameter via rotational invariance techniques 

(ESPRIT) have been extensively investigated for AVS arrays [2-8]. However, these 

algorithms fail to estimate the bearing of coherent or highly correlated signals. Based on 

AVS,  abundant research have been developed to solve this issue, such as polarization 

smoothing algorithm (PSA) [9], signal subspace processing [10], particle velocity field 

smoothing (PVFS) [11-13], propagator method [14] and sparsely spatial smoothing [15]. 

The PVFS method eliminates relevance of coherent signals by putting the different 

elements covariance matrices in together. In [15], One-dimensional sparsely spatial 

smoothing is applied to estimate the two-dimensional bearing of the coherent sources 

based on a sparsely-distributed AVS array. The weighed Toeplitz matrix (WTM) and 

improved WTM methods have been implemented as a preprocessing stage of MUSIC to 
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locate coherent signals without port/starboard indistinct phenomenon by using AVS array 

[16]. 

In this paper, a new method, named as V-MMUSIC, is proposed to estimate the bearing 

of coherent signals by using AVS array. Simulation results demonstrate that the proposed 

approach has good bearing estimation performance without the port/starboard ambiguous 

phenomenon by comparing to MMUSIC [17] based on APS array (P-MMUSIC). The root 

mean square error (RMSE) and bias of V-MMUSIC are similar to that of MUSIC based 

on AVS array (V-MUSIC) [8] for unrelated signals in the low SNR. V-MMUSIC can 

resolve the bearing estimation of the coherent signals but V-MUSIC cannot. 

The organization of the paper is as follow. Section 2 illustrates the bearing estimation 

theory of P-MMUSIC method. Section 3 proposes the V-MMUSIC approach for bearing 

estimation. Simulation results are displayed in section 4, and conclusions are drawn in 

section 5. 

 

2. P-MMUSIC Method 

Suppose that K narrow-band far-field acoustic signals of wavelength   with azimuth 

angle 1 2, , ,  K  ( (0, ]k  ) are impinging on an uniform linear APS array of D  

( D K ) sensors whose distance d of adjacent two sensors is half wavelength. The array 

output ( )tX  can be written as  

( ) ( ) ( )t t t X AS N                                                    (1) 

where 1 2( ) [ ( ), ( ), , ( )]T

Dt x t x t x tX  is the 1D  received signals matrix, 

1 2( ) [ ( ), ( ), , ( )]T

Kt s t s t s tS  represents the 1K   acoustic signal matrix, 

1 2( ) [ ( ), ( ), , ( )]T

Dt n t n t n tN  is the 1D  additive white Gaussian noise signal with 

zero means and variance 2 I. 1 2[ ( ), ( ), , ( )]K  A a a a  is the D K  steering 

matrix. The k-th column of A  is denoted by 

( ) [1,exp( ), ,exp( j( 1) )]      T

k j Da                                 (2) 

2π sin( ) /   kd                                                      (3) 

The covariance matrix of ( )tX  can be described as [ ( ) ( )]HE t t D D  R x x , 

where superscript H represents conjugate transpose. 

In order to estimate bearing of coherent signals, R  can be reconstructed as  

*'  R R JR J                                                        (4) 

where J is the D D  exchange matrix whose entries are all zero except the one on the 

vice diagonal, superscript   represents conjugate . 

By carrying out eigenvalue decomposition, 'R  can be written as 

' H H

s s s n n n R U ΛU U ΛU                                                 (5) 

where sU  is the signal subspace spanned by the eigenvector sΛ  corresponding to the 

K  larger eigenvalue. nU  is the noise subspace spanned by the eigenvector nΛ  

corresponding to the D K  smaller eigenvalue.  

According to the column vector of steering matrix A  and noise subspace nU  are 

orthogonal in the ideal condition, the P-MMUSIC spatial spectrum is given by  

H H 1

P-MMUSIC( ) [ ( ) ( )]n nP     a U U a                                         (6) 
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The bearing estimation of the coherent or uncorrelated signals is obtained by searching 

for the maximum 
P-MMUSIC( )P  in potential angle space. 

 

3. V-MMUSIC Method 

Consider that K narrow-band far-field acoustic signals with center frequency 
0f  and 

bearing anglek , 1, ,k K  ( (0,2 ]k  ) are impinging on a uniform linear AVS 

array of D  ( D K ) sensors. The distance d of adjacent two sensors is half wavelength. 

Here, an AVS is composed of one pressure sensor and two collocated orthogonal velocity 

sensors. Thus, each AVS outputs acoustic pressure ( )p t  and two orthogonal components 

of particle velocity ( xv , yv ).  It can be shown that  

0

( )
( ) ( )


 k

p t
t

c
v h                                                          (7) 

where 0  is the ambient density and c is the sound velocity in the medium. The constant 

0c  is defined as acoustic impedance, which do not affect the relationship between 

particle velocity and acoustic pressure. In order to simplify representation, let 0 1c  . 

Bearing vector of two-dimensional AVS is denoted as ( ) [1,cos ,sin ]   T

k k kh . 

The output of AVS array, which is associated with one vector and one signal, can be 

denoted by 

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

 
   
      
   
   

p p

vx vx

vy vy

y t e t

t p t t
t t

y a h e
y e

                                    (8) 

where ( )py t , ( )vx ty  and ( )vy ty  are the array output vector of acoustic pressure and 

particle velocity of  x and y direction, respectively. ( )pe t ,  ( )vx te  and ( )vy te  are 

corresponding components to noise. ( )a  is steering vector and ( )p t  is measured 

acoustic pressure. 

Then, the output of AVS array, which is connected with D  vector sensors and K 

signals, can be written as 

( ) ( ) ( ) ( )t t t y B p e                                                   (9) 

where 
(1) (1) (1)( ) [ ( ), ( ), ( ),p vx vyt y t t ty y y

( ), ( ),D

py t  
( ) ( ),D

vx ty
( ) ( )]D T

vy ty 3 1 D  is the 

observed sensor outputs vector, 1 2( ) [ ( ) ( )   ， ，B b b  ,  ( )]Kb 3D K   is 

steering matrix, ( ) ( ) ( )   k k kb a h 3 1 D ,   denotes Kronecker product, 

( )ka  is equal to equation (2), ( )tp  includes the acoustic pressure of K signals, 

(1) (1) (1) ( ) ( )( ) [ ( ), ( ), ( ), , ( ), ( ),D D

p vx vy p vxt e t t t e t te e e e
( ) ( )]D T

vy te  3 1D  is the additive white 

Gaussian noise. 

The covariance matrix of ( )ty  can be described as 3 [ ( ) ( )] H

D E t tR y y 3 3D D . 

In practical, for the received data is finite, 3DR  can be replaced by sampling covariance 

matrix 3
ˆ

DR , that is  
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3

1

1ˆ ( ) ( )


 
L

H

D

t

t t
L

R y y                                                  (10) 

where L is the number of snapshots. 

3
ˆ

DR  can be reconstructed as 

' *

3 3 3 3 3
ˆ ˆ ˆ D D D D DJ JR R R                                                 (11) 

where 
*

3
ˆ

DR  is the conjugate of 
3

ˆ
DR , 3DJ  is the  3 3D D  exchange matrix.  

3D eigenvalues are obtained by making eigenvalue decomposition of 
'

3
ˆ

DR , which are 

arranged in order   

1 2 1 3 0K K D                                               (12) 

Let sV  denotes the signal subspace composed of the eigenvectors sΓ  relating to the K 

larger eigenvalues, and let nV  symbolizes the noise subspace composed of the 

eigenvectors nΓ  relating to the remaining 3D K  eigenvalues: 

'

3
ˆ  H H

D s s s n n nR V Γ V V Γ V                                                (13) 

The proposed method, i.e. V-MMUSIC spatial spectrum is given by  

H H 1

V-MMUSIC( ) [ ( ) ( )]n nP     b V V b                                         (14) 

The bearing estimation of the coherent or uncorrelated signals is acquired by searching 

for potential angle of the maximum response in the V-MMUSIC( )P . 

 

4. Simulation Results 
 

4.1. Acoustic Signals 

In the simulations, acoustic signals are two simulated ship-radiated noise, which are 

nonstationary random process. Ship-radiated noise spectrum is comprised of a continuous 

wideband spectrum and a narrowband line spectrum. 

The mathematical model of ship-radiated noise can be described as 

( ) [1 ( )] ( ) ( )  c ls t a t s t s t                                              (15) 

where ( )a t  is the periodic modulation waveform,  ( )cs t  is the time-domain waveform 

of continuous spectrum,  ( )ls t  is the time-domain waveform of line spectrum. 

The amplitude spectrum of ( )s t  is given by 

( )

1020log
a t

sP                                                         (16) 

According to modeling and simulation of ship-radiated noise in [18], the amplitude 

spectrum of acoustic signal s1 and s2 are obtained and presented in Figure 1. 
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(b) 

Figure 1. Amplitude Spectrum of Ship-Radiated Noise. 

(a) acoustic signal s1. (b) acoustic signal s2. 

The propeller speed of signal s1 and s2 are 180r/min and 360r/min, respectively. The 

propeller leaf number of signal s1 and s2 are five and four, respectively. Source s1 and s2 

are regarded as the uncorrelated signal whose correlation coefficient is 0.0085. Ocean 

ambient noise is assumed to be independent from each other. 

 

4.2. Simulation of Bearing Estimation 

The elements number of APSs array and AVSs array are all 8, and 100 the number of 

snapshots is 100. 

Firstly, the performance of V-MMUSIC is demonstrated by comparing with 

P-MMUSIC and V-MUSIC in resolving the bearing estimation of unrelated signals. 

We consider acoustic signal s1 and s2 at the azimuth [-20º, 50º] with -10dB signal 

noise ratio (SNR). The angular spectrum of P-MMUSIC, V-MMUSIC and V-MUSIC 

method are shown in the Figure 2. In this figure, it is observed that: (1) V-MMUSIC can 

efficiently estimate the bearing of two unrelated signals corresponding to two peaks of 

angular spectrum; (2) V-MMUSIC and V-MUSIC have similar estimation ability, 

maintain sharp spectrum peak without the port/starboard indistinct phenomenon in low 

SNR; (3) P-MMUSIC produces two wrong angles except for two right angles, whose 

sidelobe is far greater than V-MMUSIC’s. Thus, P-MMUSIC cannot provide bearing 

estimation in total space, which has port/starboard indistinct occurrence.  

Secondly, the effectiveness of V-MMUSIC is verified by comparing with P-MMUSIC 

and V-MUSIC in resolving the bearing estimation of coherent signals. 
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We consider acoustic signal s1, s1, and s2 at the azimuth [-20º, 10º, 40º] with -10dB 

signal noise ratio (SNR). Two signals arriving at -20º and 10º are coherent. The angular 

spectrum of three methods are presented in the Figure 3. Figure 3 shows that: (1) 

V-MMUSIC has ability to estimate bearing of coherent sources in low SNR without the 

port/starboard ambiguous phenomenon; (2) V-MUSIC fails to estimate the azimuth of 

coherent signals; (3) P-MMUSIC cannot accomplish a good bearing estimation, which 

produces three wrong angles except for three right angles.  

Thirdly, the estimated bias and RMSE of V-MMUSIC and V-MUSIC for two unrelated 

signals are investigated in different SNR. 
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Figure 2. Bearing Estimation of Unrelated Signals by Using P-MMUSIC, 
V-MMUSIC and V-MUSIC Method 
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Figure 3. Bearing Estimation of Coherent Signals by Using P-MMUSIC, 
V-MMUSIC and V-MUSIC Method 

The bias is defined as 

1 1

1 ˆ( ) 
 

 
K N

ni i

i n

Bias
NK

                                             (17) 

The RMSE is defined as 

2

1 1

1 ˆ( ) 
 

 
K N

ni i

i n

RMSE
NK

                                         (18) 
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where K is the number of acoustic signals, N is number of Monte Carlo simulations, ̂ni
 

is estimated bearing angle and i
 is reality bearing angle. 

Here, K=2, N=100, [ 20 ,50 ]   , bias vs. SNR and RMSE vs. SNR of two 

methods are displayed in Figure 4 and Figure 5, respectively. 

It is concluded from Figure 4 and Figure 5 that the bias and RMSE of bearing 

estimation of V-MMUSIC and V-MUSIC are approaching equality when the SNR is less 

than -15dB. The difference between two methods for bias and RMSE is not exceeding 

0.1º when SNR increases from -15dB to 10dB. Therefore, the proposed V-MMUSIC 

method has small bias and RMSE when SNR is greater than -15dB.  

-25 -20 -15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SNR/dB

b
ia

s
/d

e
g

 

 
V-MMUSIC

V-MUSIC

 

Figure 4. Estimation Bias of Two Methods in Different SNR 
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Figure 5. Estimation RMSE of Two Methods in Different SNR 

 

5. Conclusions  

In this paper, a modified MUSIC method based on AVS, named as V-MMUSIC, is 

proposed and applied to bearing estimation. According to the corresponding simulations, 

the following conclusions are drawn that: (1) the V-MMUSIC method can achieve bearing 

estimation of coherent or unrelated signals; (2) V-MMUSIC has not the port/starboard 

ambiguous phenomenon, and achieves bearing estimation in whole space; (3) 

V-MMUSIC has small the estimation bias and RMSE for unrelated signals when SNR is 

greater than -15dB. 
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