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Abstract 

This paper addresses the estimation of carrier frequency for cyclostationary AM, 

BPSK, and QPSK signals in the presence of interfering signals and α-stable impulsive 

noise. The performance of conventional DFT algorithms suffers from severe degradation 

in impulsive noise environments. By fusing cyclostationarity and fractional lower-order 

statistics, we introduce a signal selective carrier frequency estimation algorithm for AM, 

BPSK, and QPSK signals. The new method exploits p th-order cyclostationarity property 

of signals in impulsive noise. Compared with the existing DFT algorithm, the new method 

is highly tolerant to interference, Gaussian and non-Gaussian impulsive noises. The 

performance of the new algorithm is studied using simulations in a variety of interference 

and noise conditions. Simulation results indicate that the proposed algorithm outperforms 

the conventional DFT method in impulsive noise. 

 

Keywords: Carrier frequency estimation, impulsive noise, fractional lower-order 

statistics, cyclostationarity 

 

1. Introduction 

In dealing with channel estimation, most investigators assume zero frequency 

offset between the carrier and the local reference at the receiver. In practice, this 

means that the offset is so small that the demodulated signal incurs only negligible 

phase rotations during the preamble duration [1]. Nevertheless,  in broadband 

wireless communication systems, it is highly possible to receive a signal with a 

large frequency offset, which caused the traditional carrier recovery loop invalid 

because of its limited frequency acquisition range [2-3]. In such conditions, a 

critical operation in the receiver is the estimation of the carrier frequency in order to 

perform accurate compensation in the demodulation process. This estimation 

process is generally performed directly on the received bandpass modulated signals.  

One of the widely used large carrier frequency offset estimation methods is DFT 

algorithm, which is commonly employed in digital signal analysis instrumentation 

to guarantee that the residue carrier frequency offset within the capture bandwidth 

of the following carrier synchronization loop. A fast Fourier transform (FFT) 

algorithm to estimate carrier frequency deviation based on the maximum likelihood 

parameter estimation approach for QPSK was proposed in [4]. Although this method 

can estimate the carrier frequency directly, its estimation accuracy is low. In order 

to improve the frequency and phase resolution capabilities, an interpolation 

algorithm for carrier frequency estimation based on FFT in burst M-PSK 

communication system was presented in [5]. The problem over frequency flat fading 

channels has been investigated in [6], a feed-forward technique exploiting the 
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sample correlation function of the received signal was proposed. A class of 

frequency estimation algorithms intended for filter bank burst -mode multi-carrier 

transmission over time-frequency selectively fading channels was introduced in [7]. 

The Cramer-Rao lower bound (CRB) for the joint estimation of the carrier phase and 

frequency offset from a noisy linearly modulated burst signal containing random 

data symbols as well as known pilot symbols was presented in [8]. 

Many frequency estimation schemes have been proposed for the additive white 

Gaussian noise and frequency selective and flat fading channels. However, the 

assumption of Gaussian noise is often unrealistic. Studies and experimental 

measurements have shown that a broad and increasingly important class of noises 

such as underwater acoustic, atmospheric noise, multi-user interference and radar 

clutters in real world applications are non-Gaussian processes due mostly to 

impulsive phenomena [9]. It has been shown that α-stable distributions are more 

appropriate for modeling impulsive noise than Gaussian distribution in signal 

processing applications [10], which include the Gaussian process as a special case 

( 2  ). This type of distribution provides attractive theoretical and applicable tools 

for many fields including communication, radar, sonar, etc [11]. The problem of 

parameter estimation in heavy-tailed noise coming from a symmetric α-stable 

( S S ) distribution have been studied in [12], and several robust fractional lower-

order statistics (FLOS) based methods have been developed. Although the FLOS 

based estimators are robust to both Gaussian and impulsive noise, the interferences 

which occupy the same spectral band as the SOI can severely degrade the 

performance of these methods. Looking toward real world applications, we are 

interested in developing carrier frequency estimation algorithms accounting for 

interference, Gaussian and non-Gaussian random processes. 

Many man-made signals arising in communications, telemetry, radar and sonar 

applications exhibit cyclostationarity [13-14]. By exploiting this cyclostationarity 

property of such signals, several parameter estimation methods was introduced in 

[15].The signal-selective methods exploited the unique second-order 

cyclostationarity of the signal of interest (SOI), are inherent immune to interference 

and Gaussian noise. Most of the proposed cyclostationary methods assume that the 

noise is additive Gaussian noise. However, the assumption of Gaussian noise is 

often unrealistic. In this paper, we address the problem of carrier frequency 

estimation for cyclostationary signals in the presence of interference and impulsive 

noise. In order to alleviate the problems of impulsive noise and interference, we 

introduce an approach to exploit cyclostationarity of signals with fractional lower-

order cyclic statistics. We then propose a robust signal-selective algorithm for AM, 

BPSK, and QPSK signals. The proposed algorithm takes advantages of signal-

selective methods and FLOS based methods, is robust against Gaussian noise, 

impulsive noise and interfering signals. 

 

2. Problem Formulation 

The signal model considered in this paper can be modeled as 

2
( ) ( ) ( )c

j f t
x t s t e n t


                                                                                                         (1) 

where ( )x t  is the signal at the receiver antenna, ( )s t  is an equivalent lowpass signal 

of the receiver signal, and ( )n t  is signal not of interest (SNOI) including interfering 

signals and independent receiver noise. For AM signal the ( )s t  is a stationary 

random process. For linear modulation (PSK) signal the ( )s t  is given by 

( ) ( ) ,     1, 2 , .. . ,
m

s t A g t m M                                                                                           (2) 
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where 
m

A  is complex and equal to 
2

( 1 )j m
Me




. 

The definition of cyclic autocorrelation function at certain cycle frequency   is 

defined as 

2
( ) ( / 2 ) ( / 2 )

j t

x
R x t x t e

  
  

 
                                                                               (3) 

where    is time-averaging operation 
/ 2

/ 2

lim (1 / ) ( ) ,
T

TT

T d t
 

  and   denotes the 

conjugate [13]. The cyclic spectrum ( )
x

S f
 is defined to be the Fourier transform of 

the cyclic autocorrelation 

2
( ) ( )

j f

x x
S f R e d

   
 



                                                                                                  (4) 

However, the stable distribution variables possess finite pth-order moments only 

for p   while [ ]  
p

E X for all p  . When the received noises in ( )n t  contains 

α-stable impulsive components in real world applications, the second-order 

correlation function  ( ) ( )E x t x t will become infinite. As a result of this effect, 

cyclic autocorrelation and spectral correlation function will become unbounded. 

 
/ 2

2

/ 2

1
( ) lim ( ) ( )

T
j t

x
TT

R E x t x t e d t
T

  
 



 

                                                                   (5) 

2
( ) ( )

j f

x x
S f R e d

   
 


                                                                                             (6) 

 

(a) Gaussian Noise ( 2  )                   (b) Impulsive Noise ( 1 .8  ) 

Figure 1. Calculated Spectral Correlation Magnitudes for QPSK Signal 
in Gaussian and Impulsive Noises ( 1 .8  ) 

Figure 1 shows the effects of S S  noise on the spectral correlation function of 

QPSK signal which has carrier frequency 0 .1
s

f f , and keying rate 0 .0 0 5
s

f  . We 

notice that the spectral correlation function is immune to the Gaussian noise 

( 2  ), but it is completely masked by impulsive noise. Since cyclic correlation 

and spectrum are not defined for 2  , conventional signal-selective and second-

order statistics based DFT estimation methods can no longer be applied when the 

noise is impulsive. 
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3. Robust Carrier Frequency Estimation Algorithm 

The conventional cyclostationarity is useless due to the unboundness of the cyclic 

correlation function and cyclic spectrum in S S impulsive noise environments. By 

utilizing fractional lower-order statistics we introduce a new type cyclic statistics 

for exploiting periodicity in the presence of impulsive noise. Furthermore, we 

propose a signal-selective carrier frequency estimation algorithm for AM, BPSK, 

and QPSK signals.  

It has been shown that PFLOM have been used in the design of signal processing 

algorithms to reduce impulsive effects [17-19]. The pth-order PFLOM is defined as 

1pp
z z z

 
                                                                                                                       (7) 

Equation (7) can be rewritten in a polar form, if  j
z re


 , then it is easy to show 

that p p j
z r e

 
 , so that the PFLOM acts only on the magnitude of its operand and 

preserves its phase. It is indicated that p
z
   has the same period as that of the z . 

We can define a new type of cyclic statistics based on the pth-order PFLOM to 

exploit the periodicity of signals. Consider the random process ( )s t , the pth-order 

cyclic correlation of ( )s t  at cycle frequency   is defined by 

* 1 2

,
( ) ( / 2 )[ ( / 2 )]

p j t

s p
R s t s t e

  
  

   
                                                                      (8) 

where 1 p   . The pth-order cyclic spectrum is defined to be the Fourier 

transform of the pth-order cyclic correlation, 

2

, ,
( ) ( )

j f

s p s p
S f R e d

   
 






                                                                                              (9) 

The pth-order cycostationarity plays a role analogous to second-order cyclic 

statistics, where one of the input signals is 1
( )

p
s t

   . Consequently, pth-order cyclic 

statistics have some effects on suppressing impulsive noise. 

In general, the AM signal can be expressed as 

( ) ( ) c o s ( 2 )
c

x t a t f t                                                                                                   (10) 

where ( )a t  is modeled as a zero-mean Gaussian process. The pth-order 

autocorrelation function of AM signal is given by 

 

   

1

,

1

1

( ) ( / 2 ) ( / 2 )

[ ( / 2 ) c o s ( 2 ( / 2 ) )

                   ( ( / 2 ) c o s ( 2 ( / 2 ) ) ) ]

( ( / 2 )[ ( / 2 )] )

                  c o s 2 ( / 2 ) c o s 2 ( / 2 )

p

x p

c

p

c

p

p

c c

R E x t x t

E a t f t

a t f t

E a t a t

f t f t

  

   

   

 

     




   





   
 

   

   

  

      
 

1

                              (11) 

where 

  

     

1

2

c o s 2 / 2

c o s 2 / 2 c o s 2 / 2

p

c

p

c c

f t

f t f t

  

     





  
 

    

                                                (12) 

It follows from (12) that 
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         

   

       
   

2 1

,
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c o s 2 / 2 c o s 2 / 2

1
c o s 2 / 2 / 2 / 2

4

[ ]
c cc c

p p

x p c

c c

p p

c

j f t j f tj f j f

R f t E a t a t

f t f t

f t E a t a t

e e e e
      

     

     

    

 


 


  

     
 

        
   

     
 

   

                      (13) 

By taking Fourier series transform, the Fourier coefficient is referred to as pth-

order cyclic autocorrelation function, 

    

    

      

      

1
2 2

,

1
2 2

1
2 2

1
2 2

1
( ) / 2 / 2

4

1
/ 2 / 2

4

1
/ 2 / 2

4

1
 / 2 / 2

4

c

c

c

c

p
i f i t

x p p

p
i f i t

p

p
i f ti

p

p
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p

R C e E a t a t e

C e E a t a t e

C e E a t a t e

C e E a t a t e
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   

 

 
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 

 

 


 


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
 


  

   
 

   
 

   
 

   
 

                            (14) 

where   
2

c o s 2 / 2
p

p c

t

C f t  


   is constant. The pth-order cyclic 

correlation of AM signal is expressed as 

 

 

   

2

,

, ,

1
, 2

4

1
c o s 2 , 0

2

0 ,

i

p a p c

x p p c a p

C e R f

R C f R





 

    


 






 








o th ers

                                                             (15) 

Substitution of (15) into (9), the pth-order cyclic spectrum is given by 

 

 

   

2

,

, , ,

1
, 2

4

1
, 0

4

0 ,

i

p a p c

x p p a p c a p c

C e S f f

S f C S f f S f f










 






       







ot her s

                                                 (16) 

In digital phase modulation, the M-PSK signal is represented as 

      0
ex p 2

b b c
x t E V t i f t                                                                                 (17) 

where 
b

E  is the average power,    b n d

n

V t q t n T  , 

 2 1
2

i m

n
e






 ( 1, 2 , ...,m M ), ( )q t  is rectangular pulse shape, and 
d

T  is symbol 

period. We note that the signal  x t  is a BPSK when 1, 2m  , and it becomes to 

QPSK signal when 1, 2 , 3, 4m  . The pth-order cyclic spectrum of BPSK signal is 
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 
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         
    

    
    

       
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










         (18) 

where  
 s in

d
fT

Q f
f




 . And the pth-order cyclic spectrum of QPSK signal is 

 ,

2 2
, 2

4

2 2

0 ,  o th e rs

c cp

q

c

x p d d

c c

Q f f Q f f
E n

f
S f T T

Q f f Q f f



 


 





     
        

        
      
        

    




                                   (19) 

It can be seen from (16) that the pth-order cyclic spectrum of AM signal is not 

equal to zero only if 2
c

f   , thus the cycle frequency of AM is 2
c

f . It indicates 

that the pth-order cyclic spectrum of AM signal in the surface of 0f   is not to 

equal to zero only when 2
c

f   . It follows from (18) and (19), we see that the pth-

order cyclic spectra of BPSK and QPSK signals can reach its maximum value at 

2
c

f    when 0f  . Thus, 2
c

f    is the cycle frequency for AM, BPSK, and 

QPSK signals. Moreover, the pth-order cyclic spectra of AM, BPSK and QPSK 

signals at 2
c

f    are typically stronger than that at other cycle frequencies [5], 

   
2

, ,
0 m a x { 0 }c

f

x p x p
S S


                                                                                                (20) 

Then the value of the carrier frequency can be obtained by 

 ,

1ˆ a rg m a x{ 0 }
2

c x p
f S




                                                                                                    (21) 

An advantage of pth-order cyclic spectrum over the conventional second-order 

cyclostationarity is that it takes PFOM with one received signal. This factor can 

deemphasize the impulsive effects. Since the impulsive noise and interference can 

be removed by the pth-order cyclic statistics, the proposed method is robust and 

performs well for Gaussian, non-Gaussian S S  noise and cyclostationary 

interference. 

 

4. Simulation Results 

In this section, we present the comparative results on the performance of the new 

proposed algorithm in various environments. In our simulations, we consider a AM 

signal, a BPSK signal, and a QPSK signal. Since the α-stable process with infinite 

variance for 2 ,   we use Generalized signal-to-noise ratio (GSNR) measure as the 

ratio of the signal power over the impulsive noise dispersion  , 
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2

1 0
G S N R 1 0 lo g ( { ( ) } / )E s t   [11]. According to this choice of GSNR metric, the 

S S  noise samples are power scaled by the dispersion parameter  . 

 

4.1. The p th-Order Cyclic Spectrum 

In our first simulation, the carrier frequency of the AM signal is 
1

0 .2
c s

f f . The 

carrier frequency of the BPSK signal is 
2

0 .2 ,
c s

f f  keying rate 
1

0 .0 4 /
k s

T  . The 

carrier frequency of the QPSK signal is 
3

0 .1
c s

f f , and keying rate 
2

0 .0 5 /
k s

T  . 

The pth-order cyclic spectra of AM, BPSK, and QPSK signals are shown in Figure 

2, Figure  3 and Figure 4, respectively. Simulation results show that the pth-order 

cyclic statistics has the ability of exploiting the cyclostationarity properties of 

cyclostationary signals. It is easy to see that the pth-order cyclic spectrum surfaces 

contain two peaks in frequency dimension ( 0  ) corresponding to the 

frequency
c

f f  . And it is easy to see that the pth-order cyclic spectrum surfaces 

contain two peaks in cycle frequency dimension ( 0f  ) corresponding to the cycle 

frequency 2
c

f   . 

 
(a) The p th-order Cyclic Spectrum             (b) Contour of p th-order Cyclic Spectrum 

Figure 2. Calculated p th-order Spectral Correlation Magnitudes for  

AM Signal 

4.2. Effects of Impulsive Noise 

In this experiment, we study the effects of impulsive noise on the performance of 

the conventional and proposed algorithms. The discrete time sampling increment is 
6

1 0
s

T s


 . The carrier frequency of the AM, BPSK, and QPSK is
1

2 0 0 0 0 0  H z
c

f  , 

2
2 0 0 0 0 0  H z

c
f  , and 

3
1 0 0 0 0 0 H z

c
f  , respectively. The characteristic exponent of 

stable impulsive noise is 1 .5  , the G S N R 3 dB  , and 1 .2p  . The cross-

sections plots through conventional second-order cyclic spectrum surface in the 

cycle frequency dimension ( 0f  ) under impulsive noise are shown in Figure 5. 

Figure 6 shows the cross-sections plots through p th-order cyclic spectrum surface 

in the cycle frequency dimension ( 0f  ) under impulsive noise. 
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    (a) The p th-order Cyclic Spectrum         (b) Contour of p th-order Cyclic Spectrum 

Figure 3. Calculated p th-Order Spectral Correlation Magnitudes for 

BPSK Signal 

 (a) The p th-order cyclic spectrum   (b) Contour of p th-order cyclic spectrum 

Figure 4. Calculated p th-Order Spectral Correlation Magnitudes for 

QPSK Signal 

The behaviors of the conventional cyclic spectrum degrade severely in stable 

impulsive noise. We see from Figure 6 that the peak of interest is only one of many 

peaks, any one of which might be taken as the carrier frequency estimate.  In contrast 

to this, the proposed p th-order cyclic method place clearly distinguished peaks to 

the carrier frequency in heavy tailed noise, it is more robust than the second-order 

statistics based algorithm. 

 

4.3. Effects of Impulsive Noise 

In this case, the signal is a AM signal with carrier frequency of 0 .2 /
c s

f T , the 

interfering signal is a QPSK signal with carrier frequency of
1

0 .1 /
s

f T , keying rate 

of
1

0 . 0 4 /
s

T  . The discrete time sampling increment is 6
1 0

s
T s


 . The signal to 

interference ratio (SIR) is 3 dB. Figure 7 demonstrates the conventional method 

based on the DFT and the new proposed method in the presence of interference. 
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(a) AM Signal                                   (b) BPSK Signal 

 

(c) QPSK Signal 

Figure 5. Cross-Section Plots through Cyclic Spectrum Surface in the 
Cycle Frequency Dimension in Impulsive Noise 

(a) AM Signal                                     (b) BPSK Signal 
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(c) QPSK Signal 

Figure 6. Cross-Section Plots through Cyclic Spectrum Surface in the 
Cycle Frequency Dimension in Impulsive Noise 

 

 

 

 

 

 

 

 

(a) DFT Method                              (b) Proposed Method 

Figure 7. Cross-Section Plots of Conventional DFT Method and the 
Proposed Method 

It can be seen from Figure 7(a) that four peaks occur at the carrier frequency of 

AM signal (
c

f f  ) and the carrier frequency of interfering QPSK signal (
1

f f  ) 

for the DFT method. However, the dominant peaks occur at 
1

f f   which 

corresponding to the carrier frequency of interfering QPSK signal. Although the 

DFT method is robust to Gaussian noise, it cannot provide correct estimation results 

in this case where the interfering signal is present. However, from Figure 7(b) we 

observe that four peaks occur at 2
c

f    and 
1

2 f   , the dominant peaks occur at 

2
c

f    which corresponding to the carrier frequency of the AM signal. Therefore, 

the proposed p th-order cyclic spectrum based algorithm is not only robust to 

impulsive, also immune to the interfering signal. 

 

4.4. Carrier Frequency Estimation 

In this section, performance of the proposed method for AM, BPSK, and QPSK 

signals in Gaussian noise and impulsive noise are analyzed by computer 

simulations. The discrete time sampling increment is 7
1 0

s
T s


 . The carrier 

frequency of AM signal is 
1

0 .2 /
s

f T . The carrier frequency of BPSK signal is 
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2
0 .0 2 /

s
f T , and the keying rate 

1
0 .0 0 5 /

s
T  . The carrier frequency of QPSK 

signal is 
3

0 .0 2 /
s

f T , and the keying rate 
2

0 .0 0 5 /
s

T  . 

In this experiment, the normalized mean square error (NMSE) is used to evaluate 

the performance of the algorithm. The NMSE is defined as 

 
2

2

1

ˆN M S E ( )

N

i c c

i

f f N f



                                                                                           (22) 

where 
c

f  is the carrier frequency of the signal, ˆ
i

f  is carrier frequency estimate, and 

N  is Monte Carlo simulation iterations. 

 

 

 

 

 

 

 

 
(a) AM Signal                                        (b) BPSK Signal 

 

 

 

 

 

 

 

 

(c) QPSK Signal 

Figure 8. Estimation Accuracy of the Proposed Method in Gaussian 
Noise 

The carrier frequency estimation Normalized mean-squared errors (NMSE) in 

Gaussian and impulsive noise ( 1 .7  ) are shown in Figure 8 and Figure 9, 

respectively. It can be seen that the proposed p th-order cyclostationarity based 

method is insensitive to Gaussian and impulsive noises. We can see from Figure 8 

that when the SNR is close to -3 dB the algorithm achieves a steady state. In 

impulsive noise, the algorithm achieves a steady state when the GSNR is close to 0 

dB. Figure 10 shows the estimation results of BPSK signal for the scenarios where 

slightly ( 1 .9  ) and fairly ( 1 .5  ) impulsive noise are present. Simulation results 

indicate that the impulsive noise has a more severe impact than the Gaussian noise 

for the proposed carrier frequency estimation algorithm. Because of the tails of the 

S S  distribution with 1 .5   is thicker than that of 1 .9  , we see from Figure 10 

that the overall performance of the proposed method is improved as 1 .9  . 
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(a) AM Signal                                      (b) BPSK Signal 

 

 

 

 

 

 

 

 

(a) QPSK Signal 

Figure 9. Estimation Accuracy of the Proposed Method in Impulsive 
Noise 

(a) 1 .9                                                 (b) 1 .5   

Figure 10. Estimation Accuracy of the Proposed Method for BPSK 
Signal in Impulsive Noise 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 6 (2016) 

 

 

Copyright ⓒ 2016 SERSC  101 

5. Conclussions 

In this paper, we study carrier frequency estimation method for AM, BPSK, and 

QPSK cyclostationary signals in the presence of interfering signals and heavy-tailed 

α-stable impulsive noise. Since the conventional DFT method is degraded in the 

presence of impulsive noise and interference, the carrier frequency estimation 

method for AM, BPSK, and QPSK signals is analyzed in this paper. First, a type of 

representation for revealing the cyclostationarity property of signals using PFLOM 

operation is developed. Then, a new carrier frequency estimation algorithm based on 

the p th-order cyclostationarity is proposed. The new method makes better use of 

the cyclostationarity property and FLOS and is tolerant to interference and 

impulsive noise. The performance of the proposed method is examined in 

simulations. Simulation results demonstrate the effectiveness and robustness of the 

new algorithm. It is shown that the performance of the proposed algorithms is 

significantly better compared with the conventional estimators in a wide range of 

interference and noise environments. 
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