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Abstract 

Aiming at complicated characteristic analysis and implementation of the 

randomization space vector pulse width modulation (SVPWM) scheme, a new random 

zero-vector SVPWM scheme with a fixed randomization range is proposed. The fixed 

range is a linear function of the modulation index. Firstly, the principle of the new scheme 

is given. In addition, the implicit modulating voltages, the derivation procedure of the 

micro and macro harmonic distortion factor (HDF) are presented in detail, and the 

Monte Carlo method is proposed to efficiently analyze the HDF. Finally, the harmonic 

spectrum of the new scheme is analyzed compared with the commonly used symmetrical 

7-segment SVPWM scheme through an example, and the result verifies its excellent 

performance on suppressing the cluster harmonic magnitude around the integer multiple 

switching frequency. 

 

Keywords: Space vector pulse width modulation, Random zero-vector distribution, 

Harmonic distortion factor, Random variable 

 

1. Introduction 

Pulse width modulation (PWM) has been widely used in all kinds of fields that require 

the power conversion, for example, between the alternating current (AC) power source 

and the direct current (DC) source. The space vector PWM (SVPWM) strategy is one of 

the key modulation strategies to control the two-level three-phase inverter. Because 

SVPWM is based on the volt-second balance principle, the harmonic is inevitable besides 

the required fundamental or first harmonic [1-4]. The harmonic has serious effects on 

performance of the application, such as the losses in the load motor [2], the dynamic 

operational characteristics of the closed-loop system [5], EMI (Electromagnetic 

Interference)[6] and audible noise [7]. The SVPWM strategy can be classified into the 

deterministic strategy and the random strategy. The deterministic strategy presents cluster 

harmonics with large magnitudes around the multiples of the switching frequency, 

especially for the fixed switching frequency SVPWM strategy. In order to suppress the 

peak harmonics and reduce the serious undesirable effects, randomization has been used 

to spread the harmonics continuously to a wideband area, so the cluster peak harmonics 

can be reduced greatly [8-14]. Almost every parameter in SVPWM can be randomized in 

theory, so there are lots of randomization or chaos schemes. The most intuitional 

randomization scheme includes random zero-vector distribution SVPWM 

(RZDSVPWM), random switching frequency SVPWM (RSFSVPWM) and random pulse 

position SVPWM (RPPSVPWM). Hybrid SVPWM (HSVPWM) includes more than two 

randomization factors, such as the zero-vector distribution ratio, the switching frequency 

and the pulse position. Characteristic analysis and implementation of the randomization 

SVPWM scheme is always complicated, so too many randomization schemes have not 

been used in reality until now. Although the implementation problem can be solved with 

the development of the micro controller unit chips in the future, the new randomization 
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SVPWM scheme is therefore needed of which the scheme can be easily implemented in 

the up-to-date control unit and the characteristic can be easily analyzed[15]. In this paper, 

a new RZDSVPWM scheme is proposed and harmonic characteristic is presented and 

discussed. 

 

2. Principle of SVPWM 

The topology of the classic three-phase two-level inverter is shown in Figure 1[1-

4]. The DC link voltage is 
D C

U .The inverter gives two voltage levels (0 and
D C

U ) with 

respect to the negative rail N or (
D C

2U  and 
D C

2U ) with respect to the neutral point 

O. The inverter has 8 permissible states that are corresponding to the 8 basic space 

vectors as shown in Figure 2. An arbitrary command/reference voltage vector 
s

U  

with the vector amplitude 
o

U  and the phase angle   inside the hexagon region 

shown in Figure 2 can be generated by two adjacent active vectors (for example 

1
U and 

2
U  in the first sextant) and the zero vectors. The on-state duration time 

1
T , 

2
T  

and 
0

T  of the three vectors are determined by the identical volt-second balance at the 

periodical time interval
s

T  using Equation (1). There are large numbers of vector 

operation modes that satisfy this equation. 
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Figure 1. The Topology of the Two-Level Three-Phase Inverter 
The notations P, O and N Refer to That the Three Phase Output Terminals are 

Positive, Zero and Negative, Respectively 

For the commonly used 7-segment SVPWM scheme operation of the inverter, the 

switching pulse waveforms for the upper arms in the 6 sextants are shown in Figure 

2. The vector sequences in the 6 sextants are 
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Figure 2. The Vector Diagram and the Vector Summation Method. The Pulse 
Waveforms Following the Notations A, B and C Refer to the Upper Arm 

Control Signals for the Three Phases. 
0

(0 0 0 )U , 
1
(1 0 0 )U , 

2
(1 1 0 )U , 

3
(0 1 0 )U , 

4
(0 1 1)U , 

5
(0 0 1)U ,

6
(1 0 1)U  and 

7
(1 1 1)U  Refer to the 8 Basic Voltage Vectors 

3. New RZDSVPWM Scheme 

The duration time for the two basic active space vectors in the first sextant is 

 1 s

2 s

3
s in π 3

2

3
s in

2

T M T

T M T






 









                                                                                               (3) 

where   is the phase angle of the command/reference voltage vector, 
s

T  is the switching 

period, and M  is the modulation index corresponding to the command/reference voltage 

vector.  

With the vector amplitude 
o

U , the modulation index M is always given by 

o

D C
2

U
M

U
                                                                                                                        (4) 

The total duration time of the two zero vectors (
0 0

T  for 
0

U  and 
0 7

T  for
7

U ) is 

 

0 s 1 2 0 0 0 7

s

3
1 s in π 3

2

T T T T T T

T M 

    

 
   

 
 

   0 π 3                                                                   (5) 

When π 6   the duration time reaches the minimum value 
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0 m in s

3
1

2
T T M

 
  

 
 

                                                                                                         (6) 

The randomization range of the zero-vectors 
0

U  and 
7

U  is set as 
0 m in

T . If the zero 

vector duration time distribution ratio is R , the duration time 
0 0

T  for 
0

U  and 
0 7

T  for 
7

U  is 

0 0 0 m in 0 0 m in

0 7 0 m in 0 0 m in

1
( )

2

1
(1 ) ( )

2

T R T T T

T R T T T


  




    


    ( 0 1R  )                                                                  (7) 

The duration time of the zero vectors and the randomization range is shown in Figure 

3. The duration time of the zero vectors is periodic with the period 
s

6T , which is 

consistent with each sextant in Figure 2. It can be found that the  total duration time of the 

two zero vectors reaches the minimum values at the center of each sextant, as shown in 

Figure 3(a). The total duration time increases with the decreasing of the modulation index. 

In the traditional RZDSVPWM scheme, all the total duration time of the zero vectors is 

randomized, so the randomization range changes with the phase angle. As shown in 

Figure 3(b), only a part of the  total duration time is randomized and the randomization 

range is a linear function of the modulation index. 
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(a)The Duration Time of the Zero Vectors of the Deterministic SVPWM 

 

 

(b) The Randomization Range of the New RZDSVPWM 

Figure 3. The Duration Time of The Zero Vectors and the Randomization 
Range 
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4. Harmonic Distortion Factor 
 

4.1. Theoretical Derivation 

The harmonic distortion factor (HDF) is an important figure of the harmonic distortion 

and the micro HDF is defined as[2] 

 
s 2 2 2

A B A C B C
0

s

2
2

D C s

1
d

( , )

3
2 4 8

T

i i i t
T

f M

U T

L




    



 

 
 


                                                                            (8) 

where L


 is the equivalent line-line inductance for the delta connection with a prominent 

inductance load, and 
A B A C B C

, ,i i i    are the current ripples of line AB, AC and BC, 

respectively. 

The macro HDF is defined as  

2 π

0

1
( ) ( , )d

2 π
F M f M                                                                                                      (9) 

According to the result given by D.G. Holmes and T. A. Lipo [2], the average squared 

value of the current ripple of the line voltage over the switching interval/period is 

        
2

2

2 32 3 3D C s

1 2 2 1 2 1 2 1 2 1

2 4 8

U T
i u u u u u u u u

L


 
        

 

                                     (10) 

where 
1

u  and 
2

u  are the per-unit voltages of two phases with the defined base unit 

quantity 
D C

2U , and 
1 2

u u .  

For example, 

 

 

1 A D C

2 B D C

2

2

u U U

u U U






                                                                                                              (11) 

where 
A

U  and 
B

U  are the phase leg references/implicit modulating voltages for Phase A 

and Phase B shown in Figure 1. 

In the traditional SVPWM scheme the duration time in Equation (2) is 

symmetrical with respect to the midpoint of the switching period. From Figure 2, the 

reference average values of the three-phase voltages in the first sextant, expressed in 

terms of the neutral point O of the DC link, are 

       

       

       

D C D C D C
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s s s

D C D C D C
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s s s
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s s s

1 2
2 2 2

1 2
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1 2
2 2 2
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U T T T T T T R T

T T T

U U U
U T T T T T T R T

T T T

U U U
U T T T T T T R T

T T T


           




             





             


                        (12) 

The per-unit voltages of three phases with the base unit quantity 
D C

2U can be 

expressed as 
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                                                                         (13) 

where  

   0 0

s

1 3
1 2 1 2 1

2
K R T R M

T

 
     

 
 

. 

Using Equations (8), (10) and (13) the micro HDF of the new RZDSVPWM can be 

computed with complex derivation as follows. 

4

2

3

2

9 c o s 4 7 2 3 c o s 3 3 6 3 c o s 3 1 8 c o s 2

( , ) 7 2 3 c o s 3 6 3 c o s 9 3 s in 4 1 8 3 s in 2
3 2

2 1 6 s in 1 0 8 s in 4 3 2 4 3 2 1 6 2

1 8 c o s 3 9 c o s 3 1 8 c o s 1 8 c o s 3 s in 3

4 1 8 3 s in 6 3 s in 7 2 3 7 2 3 1 8 3

R

M
f M R

R R R

R RM

R R R

   
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 

    

 

    
 

      

 
     
 

     
 

    

 
2 2

1 8 1 8 6R R M




 



  

                      (14) 

Using Equations (9) and (14) the macro HDF can be computed in the first sextant as 

follows.  

 

π 3

0

2 4 2 3

2 2

1
( ) ( , )d

π 3

2 7 3 3 3 9 3 4 3
1 8 3 1 8 3

2 3 2 8 2 π

1 8 1 8 6

F M f M

R R M R R M

R R M

 

   
           

   
   

  



               (15) 

The macro HDF can also be expressed as  

4 3 2 2 4 3 2

4 3 2

2 7 2 7
( ) 1 8 3 1 8 1 8 3 1 8

2 2

2 7 3 3 3 9 3 4 3
6

2 3 2 8 2 π

F M M M M R M M M R

M M M

   
        
   

    
          

   
     

                      (16) 

 

4.2. Characteristic Analysis 

The Macro HDF is a random function of the random variable R . When R  is 0.5 the 

macro HDF ( )F M  reaches the minimum value that is consistent with the traditional 

SVPWM scheme[2], which is expressed as Equation (17).  

4 3 2

M in

9 3 9 3 4 3 3
( )

8 2 8 π π 2
F M M M M

 
    

 
 

                                                              (17) 
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When R is 0 or 1, the macro HDF ( )F M  reaches the maximum value, and the 

corresponding value is expressed as  

4 3 2

M ax

8 1 1 3 9 4
( ) 1 3 6

1 6 4 π 2 π
F M M M M

   
        

  

                                                     (18) 

As to the typical discontinuous SVPWM schemes DPWMMIN,DPWMM, DPWM0, 

DPWM1, DPWM2,and DPWM3 discussed in [2], the DPWM3 has the minimum macro 

HDF that is expressed as 

4 3 2

D P W M 3

2 7 1 3 4 5 3 1 3
( ) 1 6

8 2 π 2 π π
F M M M M

   
       

   
   

                                            (19) 

The difference between Equations (18) and (19) is  

D P W M 3 M a x

4 3

( ) ( )

2 7 3 3 3 3 3 5
3 1 9 0

1 6 4 π 2 π 2 π

F F M F M

M M

  

   
         

   
   

                                            (20) 

This shows that the proposed new RZDSVPWM scheme has more excellent harmonic 

performance than the 6 typical discontinuous schemes discussed in [2] in the respect of 

harmonic distortion. 

If the expected value (or mathematical expectation, or mean) of 2
R  and R  are 

expressed as  
2

E R  and  E R , respectively, the mean value of the macro HDF can be 

computed using Equation (21). 

   
4 3 2 2 4 3 2

M e a n

4 3 2

2 7 2 7
( ) 1 8 3 1 8 1 8 3 1 8

2 2

2 7 3 3 3 9 3 4 3
6

2 3 2 8 2 π

F M M M M E R M M M E R

M M M

   
        
   

    
          

   
     

    (21) 

If the random variable R obeys a uniform distribution in the interval [0, 1],  
2

E R  is 

1/3 and  E R  is 0.5. The maximum, minimum and mean values of the macro HDF can be 

computed using the Equations (17) ,(18) and (21), as shown in Figure 4. 

Since the uniform distribution is very simple, it is very easy to compute the mean value 

and the standard deviation. The closed-form expressions for the mean values  
2

E R  and 

 E R are not always possible or simple if the probability distribution law of the random 

variable R is very complex. Therefore, the numerical method is preferable.  
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Figure 4. Maximum, Minimum and Mean Values of the Macro Harmonic 
Distortion Factor(HDF) 

The Monte Carlo method is most effective in handling the random sampling simulation 

problem, making it by far the most widely-used method. By regarding the concerned 

random variables as pseudorandom numbers, the sampling pseudorandom numbers can be 

generated using the pseudorandom generating algorithm. The values of the random 

function, for example 2
R , are then computed at each pseudorandom sampling number. 

The numerical character of the random function, for example 2
R , is finally computed. 

The theoretical mean value and standard deviation of the random function 2
R  can be 

computed as 

 

    

1
2 2

0

2
21 1

2 2 2 2

0 0

1
d 0 .3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

1 2 5
d d 0 .2 9 8 1 4 2 3 9 6 9 9 9 9 7 2

3 1 5

E R R R

R R E R R R R


  





 
      

 



 

      (22) 

MATLAB provides many functions to generate  pseudorandom numbers that obey the 

specified distributions. For example, rand returns a matrix containing pseudorandom 

values drawn  from the standard uniform distribution in the open interval(0,1), and randn 

generates values from the standard normal distribution. To compute the mean value and 

the standard deviation of 2
R  is very simple and convenient in the Matlab environment, 

and the codes are as follows for that the random variable R obeys a uniform distribution 

in the interval (0, 1). The computation result is shown in Table 1 for three running times. 

N=100000;myRandVariable=rand(1,N); 

myRandFunction=myRandVariable.*myRandVariable; 

myMean=mean(myRandFunction);myStd=std(myRandFunction) 
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Table 1. Mean Value and Standard Deviation Using Monte Carlo Method 

No. 1 2 3 

Mean value 0.3351106777453 0.3345565272980 0.3341411457469 

Standard deviation 0.2988918603275 0.2986761953746 0.2984279266023 
 

It can be found that there are errors between the values in theory computation and the 

Monte Carlo method. It should be pointed out that the sampling number, the variable N in 

the above Matlab codes, has significant influence on the computation errors. The 

sampling number should be large enough if a high computation precision is required. The 

distribution of the HDF can also be computed using the Monte Carlo method. The 

frequency histograms (or the distributions) of the macro HDF are shown in Figure 5 for 

that the modulation index is 0.6 and the sampling number is 10000000. Figure 5(a) shows 

the distribution if  R obeys the uniform distribution in the interval (0,1), while Figure 5(b) 

shows the distribution if  R obeys the symmetrical triangle distribution in the interval 

(0,1). The probability density function of the symmetrical triangle distribution is 

expressed as  
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R R

 
 

   

                                                                     (23) 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

5

10

15
x 10

5

Macro HDF  

(a) R Obeys the Uniform Distribution in the Interval (0,1) 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.5

1

1.5

2

2.5

3
x 10

6

Macro HDF  

(b) R Obeys the Symmetrical Triangle Distribution in the Interval (0,1) 

Figure 5. The Macro HDF Distributions of the New RZDSVPWM Scheme for 
That The Modulation Index is 0.6 and the Sampling Number is 10000000 

From the concerned theorem in probability theory and mathematical statistics, it is 

well known that the sum of two independent and identical random variables obeys the 
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symmetrical triangle distribution. The pseudorandom values drawn  from the triangle 

distribution in MATLAB can be generated using the uniform distribution generation 

function rand. Te codes are as follows. 

N=10000000;M=60;myRand1=rand(N,1);myRand2=rand(N,1); 

myRand3=(myRand1+myRand2)/2;hist(myRand1,M);h= findobj(gca,'Type','patch'); 

set(h,'FaceColor','b','EdgeColor','w');figure;hist(myRand3,M); 

h = findobj(gca,'Type','patch');set(h,'FaceColor','b','EdgeColor','w') 

The function of the codes is to generate two series of random numbers (that represent 

the two random variables obeying the uniform distribution), compute the summation 

series of the two series(that represent the random variable obeying the triangle 

distribution) and plot the frequency histograms. The running result is shown in Figure 6. 

Likewise, the random variables that obeys the other distribution can also be gotten from 

the standard uniform distribution random variable. 
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(a)The Uniform Distribution                     (b)The Triangle Distribution 

Figure 6. The Frequency Histograms Generated using the Monte Carlo 
Method for That the Sampling Number is 10000000 

5. Simulation and Spectrum Analysis 

A model was built in the engineering software package to analyze and demonstrate the 

characteristic of the new RZDSVPWM scheme. For the commonly used symmetrical 7-

segment SVPWM scheme, the partitioning ratio of the two zero vectors is 0.5. For 

example, the DC bus voltage is 100V, the fundamental wave frequency is 60Hz and the 

switching frequency is 1800Hz. The harmonic spectrum of the line voltage between Phase 

A and Phase B is shown in Figure 7 given that the modulation index is 0.7. For the 

RZDSVPWM scheme, the duration time distribution ratio of the two zero-vectors 

described in Equation (7) is random. If the random variable R obeys a uniform 

distribution in the interval [0, 1], the computation result is shown in Figure 8. 

The remarkable harmonic spectrum difference between the deterministic SVPWM 

scheme and the proposed RZDSVPWM scheme can be found and compared easily. The 

random SVPWM scheme can significantly suppress the cluster harmonic magnitudes 

around the integer multiple switching frequency. The peak magnitude around the 60th 

harmonic is more than 60% of that of the fundamental in the deterministic SVPWM 

scheme shown in Figure 7, while it is only about 40% for the RZDSVPWM scheme 

shown in Figure 8. The proposed scheme of random zero vector partitioning has better 

effect on reducing the cluster harmonic magnitudes. 
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(a) Harmonic Spectra of the Line Voltage between Phase A and B Plotted using the 
Linear Scale for both Axes 
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(b) Harmonic Spectra of the Line Voltage between Phase A and B Plotted using a Base 
10 Logarithmic Scale for the Magnitude-axis and a Linear Scale for the Harmonic 

Number-axis 

Figure 7. The Computation Result for The Deterministic Symmetrical 7-
Segment SVPWM Scheme 
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(a) Harmonic Spectra of the Line Voltage between Phase A and B Plotted using the linear 
Scale for Both Axes 
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(b) Harmonic Spectra of the Line Voltage between Phase A and B Plotted using a Base 
10 Logarithmic Scale for the Magnitude-axis and a Linear Scale for the Harmonic 

Number-axis 

Figure 8. The Computation Result for the Proposed RZDSVPWM Scheme 

6. Conclusion 

A new RZDSVPWM scheme with a fixed randomization range is proposed. The 

implicit modulating voltages, the derivation procedure of the micro and macro HDF are 

given in detail. The analysis and computation results show that the proposed 

randomization scheme has several advantages. Firstly, the range of the randomization 

duration time of the zero vectors is fixed, and the fixed range is a linear function of the 

modulation index and the function expression is very compact and simple, which makes 

the scheme easily implemented in the digital control system. In addition, if the 

distribution law of the random variable is symmetrical with respect to 0.5, the mean of the 

random part in the implicit modulating voltage wave is zero. The standard deviation can 

be made constant if the distribution of the random variable in all switching period is 

identical. The random part of the implicit modulating voltage wave can be regarded as 

stationary random process, so it can be conveniently analyzed using the corresponding 

tool and theory. Finally, the proposed scheme has excellent performance on suppressing 

the cluster harmonic magnitudes around the integer multiple switching frequency. If the 

scheme is combined with other random schemes, more excellent performance can be 

gotten. However, it should be noticed that the spectrum of the inverter output waveform 

depends not only on the harmonic in the modulation voltage wave, but also on the PWM 

strategy, and the theoretical expression is very complicated. To get the theoretical 

expression is our future work. 
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