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Abstract 

Up to now, the non-convex  ℓ
p  (0 < p < 1) norm regularization function has shown 

good performance for sparse signal processing. Indeed, it benefits from a significantly 

heavier-tailed hyper-Laplacian model, which is desirable in the context of image gradient 

distributions. Both  ℓ
1/2  and  ℓ

2/3 regularization methods have been given analytic solutions 

and fast closed-form thresholding formulae in recent image deconvolution methods. 

However, the methods with the other p-value norm penalty term still suffer difficulties in 

getting the analytic solution and fast closed-form thresholding algorithm. In this paper, to 

deal with these issues, we propose an approximation of  ℓ
p  regularization terms with 0.5 

 p < 1 using a linear combination of two  ℓ
p  terms (that is

1
and 

1 / 2
) with closed form 

thresholding formulae. We develop an alternating minimization method to solve the image 

deconvolution problems involving the constructed approximating function. We derive 

theoretical analytic solutions and fast closed-form thresholding formulae. We perform 

extensive numerical experiments to demonstrate the versatility and effectiveness of the 

proposed method, through a comparison with the recent non-convex  ℓ
p  regularization 

dealing with the special p-value term, with an application to image deconvolution. 

 

Keywords: image deconvolution; non-convex regularization; ℓ
p  norm 

 

1. Introduction 

Image deconvolution is an active research topic in image processing and computer 

vision, aimed at yielding high-quality results from degraded images. Mathematically, 

image deconvolution is an ill-posed inverse problem. Regularization is an effective way to 

stabilize the inversion of the ill-posed problem. 

The natural image marginal distribution prior used to be described by a Gaussian or 

Laplacian model, and various convex regularization methods can be deployed, such as 
2
,

1
 and related TV-norm methods [1-4]. They can reconstruct High Resolution (HR) 

images with convex optimization methods, but often generate overly smooth images with 

jagged artifacts caused by the above assumption model. 

Some recent researchers have shown that real-world images’ gradients have the 

significant property of heavier-tailed distributions with the hyper-Laplacian model 
| |

( )
p

k x
P x e


  (0.5  p  0.8) rather than a Gaussian or Laplacian model [5, 20]. Therefore, 

non-convex 
p

 norm regularization algorithms for image deconvolution have attracted 

considerable attention, which continues to increase. Levin, et al., [6-8, 18] used 
p
-norms 

(0.7  p  1), to reflect the statistics of natural images. Their method yields good results 
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[9], but the calculation is complicated. To improve the speed, Krishnan, et al., [5] 

proposed the analytic solution of image deconvolution based on 
p
 (p = 1/2; p = 2/3) 

regularization. Xu, et al., [10-12] deduced the closed-form thresholding formula of the 

 ℓ
1/2  regularization model, and exhibited a fast, iterative, half-thresholding algorithm. Cao, 

et al., [13] presented the closed-form thresholding formula of the  ℓ
2/3  regularization 

model, which not only got better results, but also sped up the algorithm of image 

deconvolution. 

From these existing techniques, for some specific values of p (p = 1/2; p = 2/3) 

researchers have successfully derived analytic solutions and fast closed-form thresholding 

formulae through polynomial root-finding methods [17]. However, in algebra, the Abel–

Ruffini theorem (also known as Abel's impossibility theorem) states that there is no 

general algebraic solution to polynomial equations of degree five or higher with arbitrary 

coefficients[19]. In this way, according to the Abel-Ruffini theorem, a non-convex 

regularization algorithm with the other p-value penalty functions still suffers some 

difficulties in getting a closed-form thresholding formula.  

In this paper, for a non-convex regularization algorithm with the 
p

 norm penalty 

functions, we propose an approximation for general 
p
 (0.5 p<1) norm using a linear 

combination of norms with known analytic solutions. We have developed an alternating 

minimization method to solve the image deconvolution problems involving the 

constructed approximating function. Additionally, we have derived theoretical analytic 

solutions and fast closed-form thresholding formulae.  

The rest of the paper is organized as follows. In Section 2, we show the introduction of 

the theory of non-convex 
p
 regularized image deconvolution. In Section 3, we propose 

our algorithm, the analytic solutions and explore the closed-form thresholding formulae. 

In Section 4, we present the experimental results. Finally, Section 5 provides our 

conclusions. 

 

2. Non-convex  ℓ
p
 Regularization Image Deconvolution 

Image deconvolution based on sparse regularization uses a sparsity prior to recover 

the image. Suppose that x is an original, uncorrupted, gray-scale image with N pixels 

here; y is an image degraded by blur kernel k or noise.  1
1, 1f   ,  2

1, 1
T

f   are two 

first-order derivative filters. The Hyper-Laplacian distribution priors are often utilized as 

non-convex 
p
 regularization. Then the image deconvolution problem is equivalent to the 

following optimization problem [5, 13]: 

                               (2.1) 

where a weighting term  controls the strength of the regularization, and  is the 2-

dimensional convolution operator. 0<p<1, 
1 /

( | z | )
p p

ip i
z   .  

If assume that ( )
j

j
F x x f  for j = 1,2;the problem (2.1) can be represented 

equivalently as:  

       (2.2) 

Using the alternating minimization method and introducing auxiliary variables 
1

w  and 
2

w  (together denoted as w), Krishnan, et al., [5] converted the problem (2.2) to the 

following optimization problem: 

http://en.wikipedia.org/wiki/Abstract_algebra
http://en.wikipedia.org/wiki/Algebraic_solution
http://en.wikipedia.org/wiki/Algebraic_equation
http://en.wikipedia.org/wiki/Coefficients
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        (2.3) 

where   is a control parameter. 

As   tends to infinity, the solution of problem (2.3) converges to that of (2.2). 

Utilizing the alternating minimization approach, Equation (2.3) can be solved by 

alternating between steps: the x sub-problem, to solve x, given w; and the w sub-problem, 

to solve w, given x.  

 

2.1. x Sub-problem 

Given a fixed value of w to solve the x sub-problem. The optimal x is thus: 

1 1 2 2 1 1 2 2
( )

T T T T
T T

F F F F K K x F w F w K y
 

 
                             (2.4) 

1 * 1 2 * 2 *

1 * 1 2 * 2 *

( ) ( ) ( ) ( ) ( / ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( / ) ( ) ( )

F F T F F F T w F F T F F F T w F F T K F F T y
x IF F T

F F T F F F T F F F T F F F T F F F T K F F T K

 

 

 


 

                 (2.5) 

where * denotes the complex conjugate, and  denotes component-wise multiplication. 

 

2.2. w Sub-problem 

Given a fixed value of x to solve w sub-problem, 

 
2*

m in
2w

p

r w w vw a g
 

   
 

                                                                 (2.6) 

where 
j

v F x . 

Krishnan, et al., [5] proposed some discriminant rules to find the global optimal 

solution by comparing and selecting from roots of the first-order derivative of the cost 

function in Equation (2.6) especially for p = 1/2 or 2/3 cases. Although it accelerated the 

optimization procedure without the need of numerous iterations as required by the 

Newton-Raphson method, it still needed to compute and compare multiple roots using 

some discriminant rules. Cao, Xu, et al., [10, 11, 13] deduced the closed-form 

thresholding formulae in Equation (2.6) especially for p = 1/2 or 2/3 cases, which had a 

significant acceleration over Krishnan, et al.’s analytic solution. But if we try the same 

manipulation to p = 4/5, this results in a 6th order polynomial, which can only be solved 

numerically. In some situations such as the case of p = 0.7, it lacks even the polynomial 

and root-finding method. So we need to find a universal method for solving p in the range 

[0.5, 1). To solve this problem, we next propose an image deconvolution algorithm using 

a mixed norm based on the Least-Squares Curve Fitting Method for approximating 
p
 

norm regularization. 

 

3. Our Algorithm 
 

3.1. Approximation of the  ℓ
p
 Regularization Term 

We take p = 4/5 as an example; other p-values are similar. When we use the 
4 / 5

 norm, 

we can not derive the analytic solution and the closed-form thresholding formulae as 

those in previous works [5,13]. But if we can construct an approximation of 
p
 

regularization term using a linear combination of  
1
/

1 / 2
 norms which has the same 

effect as the 
4 / 5

 norm, the problem of solving higher-degree polynomials will be 
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converted to that of solving lower-degree polynomials, and the fast root-finding algorithm 

can be used. 

From Ref. [5, 13], we can derive the analytic solutions and the closed-form 

thresholding formulae of the 
1 / 2

 norm. The solution to the 
1
 norm has been relatively 

simple. So when we solve the complex 
p

 norm function, we can use a linear 

combination of 
1
/

1 / 2
  norms to replace the original 

p
 norm. Then Equation (2.1) can 

be modified to: 

1 1 / 22* 2

1 21 1
a rg m in ( ( ) ( ( ) ( ) ))

2

N

i j i j ii j
x

x y x k k x f k x f


 
                   (3.1) 

where k1 and k2 are weight coefficients (
1

k ,
2

0k  ). When p=4/5, we get 

       
4 / 5 1 1 / 2

1 2
f k f k f   where f  [-255,255]. 

 

3.2. Determining the Weight Coefficients of the Approximation of  ℓ
p
Norm 

We use the Least-Squares Curve Fitting Method to determine the weight coefficients. 

For 8-bit gray-level images, the step length was set to 0.001 when the internal value 

ranged from -255 to 255 to make the fitting error (residual sum of squares) less than 

5x10
5
, which is acceptable. For different p values, we use 

1
/

1 / 2
 (L1+1/2) to 

approximate the 
p
 norm. According to the fitting method and fitting error, we figure out 

the weight coefficients k1, k2, which are used to approximate the p norm, listed in Table 

1. Next, we will show our approximating effect. First, our goal is to approximate 
4 / 5

 

with a linear combination of 
1
/

1 / 2
, so the fitting curve should be closer to p=4/5 rather 

than p = 1, p = 2/3, or p = 1/2. The results shown in Figure 1 clearly demonstrate this. 

Second, we will compare some other p values with their fitting curves to better illustrate 

the effectiveness of the method. The results are shown in Figure 2. 

Table 1 Weight Coefficients and Fitting Error 

p 1/2 0.55 0.6 2/3 3/4 4/5 0.85 0.9 0.95 

k1 0 0.0119 0.0299 0.0682 0.1517 0.2307 0.3414 0.4953 0.7079 

k2 1 1.1357 1.2753 1.4528 1.6146 1.6372 1.5576 1.3183 0.8374 

Fitting 

error 

 

0 

 

1.99x103 

 

9.61x103 

 

3.26x104 

 

8.47x104 

 

1.20x105 

 

1.43x105 

 

1.29x105 

 

6.36x104 

 

 

Figure 1. Prior Function Curves and p=4/5 Fitting Curve 
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a                                                      b                                                   c 

Figure 2. p Norm Curves and their Corresponding Fitting Curves 

a  p=0.55, k1 =0.0119, k2 =1.1357 

b  p=0.85, k1 =0.3414, k2 =1.5576 

c  p=0.9, k1 =0.4953, k2 =1.3183 

 

3.3. Solution to the Algorithm  

By optimizing Equation (3.1), we can get: 

1 1 1 / 2 1 / 22* 1 2 1 2

1 22 1 1 1 / 2 1 / 2

a rg m in ( ( ) ( ))
2x

x y x k k F x F x k F x F x


                 (3.2) 

Using the alternating minimization method, we introduce auxiliary variables, giving a 

new cost function: 

2 2 1 1 1 / 2 1 / 22* 1 1 2 2 1 2 1 2

1 22 2 2 1 1 1 / 2 1 / 2

a rg m in ( ( ) ( ) ( ))
2 2x

x y x k F x w F x w k w w k w w
 

                 (3.3) 

Utilizing the alternating minimization approach, Equation (3.3) can be performed by 

alternating between steps: 

Solving the x sub-problem, to solve x, given w; which is similar to Equation (2.4) and 

Equation (2.5). 

Solving the w sub-problem, to solve w, given x: 

   
1 1 / 2 2*

1 2
m in

2w

w a rg k w k w w v
 

    
 

                                                   (3.4) 

Next we deduce the analytic solutions and the closed-form thresholding formulae of 

Equation (3.4). 

 

3.3.1. Analytic Solution 

The method of solving (3.4) is similar to Krishman’s analytic solution in Ref. [5]. 

For non-zero w, setting the derivative of (3.4) w.r.t w to zero gives the following: 

       
3 2 2 2 2 2

1 1 1 22 2

2 1 1
2 0

4
w k s ig n w v w k v v k s ig n w w k s ig n w  

  
      

    (3.5) 

Numerical root-finding methods can be utilized to solve the w sub-problem 

because its solutions can be characterized as roots of cubic polynomials [6]. 

For w R, we can select the correct roots by picking between w = 0 and a real 

root that is between 0 and v. 
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3.3.2. Closed-form Thresholding Formula  

Cao, Xu, et al., [10-13] deduced the closed-form thresholding formulae to solve 

 and accelerated the algorithm. Based on 

their work, we extend the thresholding representation theory established on 
1 / 2

 

regularization term to the cases with the combination of two norms, and deduce the 

closed-form thresholding formulae of the proposed algorithm in this paper. 

We rewrite Equation (3.4) to the following equivalent expression, 

                               (3.6) 

where 2 /  . 

We can obtain the corresponding closed-form thresholding formula in a similar 

fashion. 

When w  0, we get the first derivative of ( )f w  in Equation (3.6) to find the 

minimum point: 

1 2

( )
( ) ( ) ( ) 0

4 | |

s ig n w
h t w v k k s ig n w

w

                                                                  (3.7) 

Case I: When  w > 0, assuming that | |t w , we can obtain  
2

0w t  . 

So (3.7) can be rearranged as:
 

,                                        

.                      

Case II: When 0w  , let | | 0t w  ,thus we can obtain  
2

0w t   . 

So (3.7) can be rearranged as: 

2 1

2

1
0

4 2

k
t v k

t


     ,                                         

3 1 2
1

(t) ( ( ) ) 0
2 4

k k
f t v t

t

 
     

.                   
 

Assuming that 
1
( )g t 

3 1 2
( )

2 4

k k
t v t

 
                                                         (3.8), 

2
( )g t 

3 1 2
( )

2 4

k k
t v t

 
                                                          (3.9), 

 and , 

thus, (3.8), (3.9) can be rearranged as 

                    1
( )g t 

3 2

1

4

k
t t


                                                                        (3.10), and 

2
( )g t 

3 2

2

4

k
t t


                                                                              (3.11). 

After the variable substitution, according to [11, 12], we can get the solution to (3.6) as 

follows: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 6 (2016) 

 

 

Copyright ⓒ 2016 SERSC  183 

Solution to 3.6: f (w)  in Equation (3.6) has the following closed-form thresholding 

formula when w R: 

 

                               (3.12) 

  where  

3 / 22 1

1

1
a rc c o s ( ( ( )) )

8 3 2

k k
v

 



   

3 / 22 1

2

1
a rc c o s ( ( ( )) )

8 3 2

k k
v

 



   

 

u  is any fixed positive real number that satisfies 
2

0 || ||u K


  (see Ref.[11, 12]). 
 

Proof: More details please refer to the Ref. [11,12]. 

 

4. Experiments and Analysis 

Our experiments were executed using Matlab 7.8 on a computer with an Intel(R) 

Core(TM) i5 CPU 2.60GHz (quad-core). The natural test images are collected from the 

web site of http://www.flickr.com/ and from the Berkeley segmentation database [14,21]. 

All the test images are blurred by real-world camera shake kernels from Ref. [15], 1% 

Gaussian noise is added, followed by quantization to 255 discrete values. We use the 

PSNR defined as PSNR = 10log10

2552

MSE(x)
to evaluate the image deconvolution 

performance, where x is the deconvolution result, and MSE(x) denotes the mean square 

error between x and the real image. For the images in Ref. [14], we use the improved 

signal-to-noise ratio (ISNR) [16], that is ISNR = PSNR (recon)－PSNR (blurry), to 

measure the quality of restoration results. 

The algorithm adopts a linear combination of 
1 1 / 2

/  to approximate these p values 

(1/2, 0.55, 0.6, 2/3, 0.75, 0.8, 0.85, 0.9, 0.95) in image deconvolution. 

After using the approximation of 
p
norm based on the Least-Squares Curve Fitting 

Method, we can get coefficients such as k1 and k2. By substituting k1 and k2 to the 

following algorithm block diagram, we can achieve fast image deconvolution. 
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Algorithm 1: A non-convex  ℓ
p
 norm 

regularization algorithm for image 

deconvolution 

 

Input:  Blurred image y;  kernel k;   p; 

regularization   weight ; , , ;                                             

The estimation of  the coefficients k1, k2 

according to p; 

Maximal number of outer iterations T; 

Number of inner iterations J. 

Initialize iter=0，x=y, , pre-compute 

constant terms  in Equation 

(2.5). 

While ( && iter  T) 

         for i=1 to J Do 

   X-subproblem: optimize x according to 

Equation (2.5) 

   W-subproblem: optimize w1,w2 according to  

Equation (3.12)  

        End for 

 
iter=iter+1 

end while 

Output：x 

 

In the experiment, we set , ,  and  to get the 

best PSNR performance, comparing our methods to the 
1
, 

1 / 2
, and

2 / 3
 methods in Ref. 

[5, 13]. 

To compare the performance of different methods we conduct experiments for 8 

kernels. For each kernel we choose 10 test images to evaluate the deconvolution 

performance. We list recovery results in Table 2. We can find the best PSNR performance 

of each image appearing at different p values. To further test the performance of our 

algorithm, we evaluate the deconvolution results over 8 different kernels; the results are 

shown in Table 3. We also show one of the deconvolution results in Figure 3 and Figure 

4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1,F2 ,K
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Table 2. PSNR (dB) Performances for Kernel 4 (19 × 19) 

 

Table 3. Comparison for 8 Kernels with Image dsc_0085 [5] 

 

 

 

 

 

 

 

 

 

 

 

 

p blurry 1/2 0.55 0.6 2/3 0.75 0.80 0.85 0.90 0.95 1 

lena 27.14  32.52  32.54  32.57  32.58  32.60  32.74  32.70  32.53  32.38  31.99  

barbara 22.79  28.01  28.06  28.08  28.15  28.35  28.42  28.47  28.41  28.16  27.03  

boats 25.36  31.40  31.50  31.52  31.91  31.82  31.72  31.78  31.91  32.11  30.98  

couple 23.32  29.56  29.61  29.65  29.63  29.86  29.92  29.98 29.85  29.36  29.31  

goldhill 26.37  30.86  30.96  30.98  31.10  31.23  31.04  30.98 30.96  30.94  30.80  

man 24.48  30.23  30.33  30.35  30.44  30.48  30.63  30.52  30.49  30.33  30.19  

dsc_008

5
[5]

 22.68  30.23  30.26  30.30  30.34  30.42  30.49 30.54  30.26 30.18  29.52  

crowd 23.86  30.16  30.30  30.35  30.19  30.46  30.59  30.48  30.39  29.92  29.88  

bridge 21.64  27.43  27.45  27.49  27.72  27.88  27.90  27.92  27.89  27.72  26.32  

lake 23.28  29.53  29.61  29.61  29.70  29.95  30.12  29.92  29.87 29.37  29.01  

Kernel blurry 1/2 0.55 0.6 2/3 0.75 0.80 0.85 0.90 0.95 1 

ker1(13*13) 23.77  31.33  31.40  31.45  31.54  31.67  31.85  31.83  31.69  31.22  30.56  

ker2(15*15) 23.07  30.32  30.36  30.43  30.57  30.78  30.93  30.98  30.83  29.92  29.67  

ker3(17*17) 21.74  30.06  30.10  30.18  30.26  30.19 30.45  30.38  30.11  30.07  29.74  

ker4(19*19) 22.68  30.23  30.26  30.30  30.34  30.42  30.49 30.54  30.26 30.18  29.52  

ker5(21*21) 17.75  31.05  31.18  31.25  31.29  31.34  31.51  31.53  31.28  30.98  30.06  

ker6(23*23) 19.01  30.37  30.49  30.52  30.59  30.95  31.13  31.18  30.97  30.44  29.82  

ker7(25*25) 18.87  29.93  29.95  30.29  30.12  30.33  30.48  30.45  30.35  29.91  28.48  

ker8(27*27) 17.35  29.45  29.55  29.62  29.65  29.66  29.87  29.85  29.62  29.55  28.23  
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a                                              b                                                       c 

   
d                                                e                                                     f 

   
g                                                h                                                      i 

   
j                                           k                                                   l 

Figure 3. The Deconvolution Results for Different p with Image dsc_0085 [5] 
using Kernel6(23 x 23),1%  Gaussian Noise 

a  Original image;              b  Blurry image PSNR=19.01dB; c  p=1   PSNR=29.82dB; 
d  p=1/2 PSNR=30.37dB;  e  p=0.55 PSNR=30.49dB;          f  p=0.6 PSNR=30.52dB; 
g  p=2/3 PSNR=30.59dB;  h  p=0.75 PSNR=30.95dB;          i  p=0.8  PSNR=31.13dB; 
j  p=0.85 PSNR=31.18dB; k  p=0.9 PSNR=30.97dB;            l  p=0.95 PSNR=30.44dB 
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a                                                  b                                                        c 

   
d                                                  e                                                        f 

   
g                                                  h                                                        i 

   
j                                                  k                                                        l 

Figure 4. The Corresponding Local Amplification Images of Figure 3 
a  Original image;              b  Blurry image PSNR=19.01dB; c  p=1   PSNR=29.82dB; 
d  p=1/2 PSNR=30.37dB;  e  p=0.55 PSNR=30.49dB;           f  p=0.6 PSNR=30.52dB; 
g  p=2/3 PSNR=30.59dB;  h  p=0.75 PSNR=30.95dB;          i  p=0.8  PSNR=31.13dB; 
j  p=0.85 PSNR=31.18dB; k  p=0.9 PSNR=30.97dB;            l  p=0.95 PSNR=30.44dB 

Besides, we conduct the experiment of 100 gray test images in Berkeley segmentation 

database [14,21] for 8 kernels and present the average ISNR values in Table 4. The 

comparison of average ISNR at different p values is listed in Figure 5.  



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 6 (2016) 

 

 

188   Copyright ⓒ 2016 SERSC 

From the simulation results of the approximating p norm compared to those in Ref.[5, 

13], we can draw the conclusion that the best PSNR performance appears at different p 

values for different types of images. In this paper, the proposed algorithm can get 

deconvolution results of different p values effectively, and use different weight 

coefficients for approximating different p values, therefore, the image deconvolution 

algorithm becomes more universally adaptable.  

Table 4. The Average ISNR Values Of 100 Images for 8 Kernels 

 

 

Figure 5. Comparison of average ISNR at Different p Values 

5. Conclusion 

In this paper, we propose an image deconvolution algorithm using a linear combination 

of 
1
and 

1 / 2
 terms to approximate 

p
 norm minimization based on a least-squares fitting 

method, and derive the analytic solutions and the closed-form thresholding formulae. 

Extensive experiments demonstrate that our algorithm becomes more universally 

adaptable compared to existing specific p-values of the 
p

 norm (p = 1/2; p = 2/3) 

regularization method. 
More generally, the method proposed in this paper can also be extended to the 

application of solving a kind of 
p

 regularization problem which is very hard to solve. 

We can use a convex regularization and a non-convex regularization for approximating 

any p value in 
p

 (1/2  p < 1) regularization problems. We can also further extend this 

method to other areas, such as compressed sensing. remote sensing and machine learning. 

Then we can utilize the objective image quality method[22] to evaluate them.  
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 ker1

 ker2

 ker3

 ker4

 ker5

 ker6

 ker7

 ker8

Kernel 1/2 0.55 0.6 2/3 0.75 0.80 0.85 0.90 0.95 1 

ker1(13*13) 5.92  6.01  6.04  6.36  6.55  6.60  6.61  6.59  6.29  5.29  

ker2(15*15) 5.40  5.41  5.38  5.79  5.91  5.93  5.94  5.95  5.73  4.64  

ker3(17*17) 6.06  6.08  6.04  6.25  6.44  6.47  6.48  6.43  6.05  4.93  

ker4(19*19) 5.99  6.04  6.02  6.12  6.32  6.37  6.38  6.30  5.90  4.98  

ker5(21*21) 10.06  10.15  10.19  10.33  10.57  10.62  10.64  10.59  10.17  9.07  

ker6(23*23) 8.28  8.30  8.33  8.68  8.77  8.80  8.81  8.82  8.67  7.93  

ker7(25*25) 7.98  8.00  7.98  8.29  8.41  8.43  8.45  8.44  8.21  7.15  

ker8(27*27) 9.04  9.08  9.05  9.14  9.35  9.40  9.41  9.34  8.89  7.64  
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