
International Journal of Signal Processing, Image Processing and Pattern Recognition

 Vol.9, No.6 (2016), pp.133-148

http://dx.doi.org/10.14257/ijsip.2016.9.6.12

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2016 SERSC

Research on Integration Algorithm of Global Function Call Path

Based on Module Path

Pan Lu, Mu Yong-min and Yang Zhi-jia

Open Computer System Laboratory, Beijing Information Science & Technology

University, Beijing 100101, China

Abstract

The coverage test method based on function call path is according to the relationship

between functions, not only effectively reduce the number of test case, but also ensure the

adequacy of the test coverage, how to accurately extract these paths is the key problem of

this test method. Paper proposed that for the single function of C program, analysis and

extraction the control flow graph and local function call information stored on a

particular data structure, design a algorithm to analysis the local function call

information, starting from the main function, expanse the function call information layer

by layer, and then get the global function call relationship of the program. Experimental

results show that this method can accurately obtain the local function call information

and global function call path, accurately restore the function call relationship of the

program.

Keywords: test coverage; function call path; C program; control flow graph

1. Introduction

Software testing is an important stage in the software development process. It is the

key to ensure the software quality and improve the reliability of the software [1].

Considering whether care about the internal structure and concrete realization of the

software, software testing can be divided into white box testing, black box testing and

white box test. The white box testing can efficiently find and solve human causes errors in

the software [2]. Basis path testing is first proposed by Tom McCabe, which is a white

box testing technique, the method is mainly based on control flow graph of program,

through the analysis of the control structure's annular complexity, so as to extract the basic

path test set, design the corresponding test cases [3-4]. Compared with the basic path

testing method, the path testing method which based on function calls is expanse the

analysis size to the function, a single function as a processing unit, based on control flow

information to analysis the logical relationship between functions in the source code, thus

obtaining a function call path set as the test path set [5]. Under the premise of single

function completed the unit testing, this method can not only optimize the test paths

effectively, but also can ensure the test completely. The function call relationship reflects

the dependence relationship between functions in the software system, in understanding

and analysis procedures, test and maintenance of software, compiler optimization and

many other field of software engineering has a wide range of applications [6-8]. At the

same time, the thought of based on function call path is also provides a new idea for the

research of defect location [9], the defect location which take the function as the

processing unit can be first located in function, in this way, to a great extent narrowing the

scope of detecting, have a great help to improve the locating efficiency.

As a basic test method, the key of path testing method is to obtain the test path set

accurately. According to the different extraction methods, the function call path is divided

into two categories, namely static path

[10] and dynamic path [10]. The static path refers

to the function call path obtained by static analysis of source code. With the wide

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

134 Copyright ⓒ 2016 SERSC

application of the function call path testing method, for different programing languages

there have a complete method for static path extraction. For example, software testing

tools Regression Test For C/C++ is already available through static analysis of C/C++

source code, to obtain static path and the function call graph which contain control flow

[11-15]. Using the support of Soot which provide optimization and analysis that within

process or between processes, the control flow graph of each function in Java source code

can be obtained easily, then the static path also can be extracted [16-17]. Dynamic path

refers to obtain the function execution sequence in the dynamic execution of program.

The more commonly used processing method is dynamic instrumentation [18-19]. The

method is based on guaranteeing the program logic integrity, insert a detection program

(also known as probe function) in the specific parts of the tested program [18]. In order to

determine the instrument position, ensure the accuracy of the instrument and does not

generate redundant information, the lexical analysis and syntax analysis of source code is

needed, insert instrument at function call processing. The method can effectively obtain

the dynamic path of program. But the integrity of the obtained path depends heavily on

test cases. The tools of Valgrind and Gprof [20-21] are based on dynamic path obtained

method.

Yang Zhijia in literature [22] proposed a new idea in the year of 2014, namely extract

the function call path based on the control flow graph. This method can accurately obtain

the intermediate code with gcc compiler, then obtain the control flow information based

on the control flow information which contained in intermediate code, finally get the

function call information and extract the function call path. But as the key research point

of this paper is not in the function call path, therefore this paper only extracted a single

function's local call information, did not get the global function call path.

Based on the research of literature [22], this paper proposes a method of extracting

global function call path based on the local function call path. The premise of using this

method has two, one is that the local function call relationship can be obtained accurately,

the other is there have a simple and feasible algorithm to extract the global function call

relationship from local function call relationship. In the above premise, the global

function call path of source code can be obtained accurately.

2. Related Concepts

The definition of function calls are as follows:

Definition 2.1 local function call path set, namely a function name sequence which

obtained by a function's internal logic and function call information. Expressed as

Gf-i={F0, F1, F2,... Fn}, among them, Gf-i refers to this function call path set is belongs to

the function f, Fj is a function name, function f call the function Fj, the adjacent

relationship between Fj and Fj+1 only expressed their order of execution, don't denote Fj

call the function Fj+1.

Definition 2.2 function call path set: also known as global function call path set. It

refers to a function name sequence from the entrance point to the exit point which

according to the source code and obtained by function calls. Expressed as Gi={ F0, F1,

F2,... Fn}, among them, Fj is a function name, the adjacent relation of Fj and Fj+1,

expressed Fj calls Fj+1 or Fj and Fj+1 are executed in sequence.

Definition 2.3 local function call relationship graph: the call relationship inside a single

function can be described by a directed graph, the local call graph of function f can be

expressed as Gf=<V,E>. V=[f1,f2,…,fn] is nodes set, each node fj represents a function,

E={(x,y) | x,y∈V} is a set of arcs, expressed the correlation between function x and y, if

x is the function f, it’s indicated that function x calls function y; if x is not, it's indicates

that y will be executed sequentially after function x.

Definition 2.4 function call relationship graph: also known as global function call

graph. The call relation between functions can also use a directed graph to described,

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 135

expressed as G=<V,E>
[22]

. V=[f1,f2,…,fn] is nodes set, each node fj represents a function,

E={(x,y) | x,y∈V} is a set of arcs, expressed the correlation between function x and y,

which is that x call y or x and y executed sequentially.

Program fragments shown as follows in Figure 1:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

int add(int a,int b)

{

 return(a+b);

}

int minus(int a,int b)

{

 return (a-b);

}

int operate(int a,int b)

{

 if(a<b)

 add(a,b);

else

 minus(a,b);

}

void fun()

{

 printf(“operate is ok.”);

}

void main ()

{

 int a=0;

 int b=5;

 scanf(“%d”,&a);

 operate(a,b);

 fun();

}

Figure 1. Examples of Program Fragments

There are five functions in the program fragments: main,operate,fun,add,minus. (The

standard library functions will not consider.) According to the call relation between

functions, the local function call path set of function main is Gmain-1={operate,fun}, of

function operate is Goperate-1={add}, Goperate-2={minus}, which in the internal of function

fun,add and minus do not contain function call information. The global function call path

set of this program is G1={main,operate,add,fun},G2={main,operate,minus,fun}. A path

set corresponding to a function call path, combining with the above definitions, the local

function call path of function main is P1：main→operate→fun. The local function call

path of Function operate are P1：operate→add,P2：operate→minus. The global function

call path of program are P1：main→operate→add→fun,P2：main→operate→minus→fun.

When the input test data of program is a<5, executing the 12
th
 lines’ code, calling the

function add to get the function call path P1. If Entering a>=5, executing the 14
th
 lines’

code, calling the function minus to get the function call path P2. The local function call

relationship graph of function main is Gmain=<[main,operate,fun], {(main,operate),

(operate,fun)}>. The local function call relationship graph of function operate is

Goperate=<[operate,add,minus], {(operate,add), (operate,minus)}>. Global function call

graph of the program is the integration of local function call graph, it can be expressed as

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

136 Copyright ⓒ 2016 SERSC

G=<[main, operate, add, minus, fun], {(main, operate), (operate, add), (operate,minus),

(add,fun), (minus,fun)}>. Adding node <begin> and <end> when drawing the function

call relationship graph, as shown in Figure 2. The node <begin> and <end>, which in

local function call relationship graph respectively represent the beginning and end

execution of this function. In global function call relationship graph the <begin> and

<end> node respectively represent the beginning and end execution of main function.

Local function call graph of
main

Local function call graph of operate

Global function call graph of

program

Figure 2. Function Call Path Graph

3. Local Function Call Information Extraction

3.1 Control Flow Graph Extraction

Control flow graph can be described as a tuple<N, E, B, D>, which N denotes the

nodes set, each node represents a basic code block, E∈N×N denotes the edges set, each

edge represents a basic block of control flow, B∈N represents the beginning node of each

edge, D∈N represents the end node of each edge [23]. The extraction of control flow

graph is mainly based on gcc. gcc is a powerful C language editor, which contains a

number of options for controlling the compile and link process, among them, –fdump -tree

option can get gcc pre-coding information of the source code, select the appropriate

sub-options can generate intermediate code which like control flow graph [22]. Using the

way of pattern: action to static analyze the intermediate code, combining with the format

of code, designing algorithms to match function declaration, basic code block, jump

statement and function call. During the extraction control flow graph, regard function as

the basic processing unit, therefore, when matching the function declaration is means to

open a processing unit. Control flow information extracted from the intermediate code are

stored in the Json file with a specific format. Json is a lightweight data interchange format,

It’s written in the format of key: value pairs, where value can be numeric, string or array

[22]. When key value is functions, the corresponding value is stored an array of all

functions’ control flow information, a single element function in the array is a processing

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 137

unit which contains two elements function_name and tokens. Json file uses key:value to

store the control flow information of the function in the layer by layer, its file structure

tree is shown in Figure 3, the whole tree structure represents a processing unit, the leaf

node in the tree is the explanation of parent node.

f unct i on

f unct i on_name

t okens

edge

node

begi n

end

t ype

node_name

cal l ed_f unct i ons

t ype

Funct i on
name

Type mar ker

Begi n node

End node

Type mar ker

Node name

The f unct i on set t hat
i s cal l ed by t he node

Figure 3. The File Structure Tree of Control Flow Graph

Combined with the definition of the Json file structure, the static analysis results of the

intermediate code are in turn to fill in the corresponding position in the Json file. An

analysis example that contains a number of functions is shown in Figure 4.

Source code Intermediate code Json file of control flow graph

Figure 4. Storage Format of Control Flow Graph

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

138 Copyright ⓒ 2016 SERSC

3.2 Local Function Call Relation Extraction

The control flow graph of function shows the information of function’s internal control

logic, the local function call graph displays the call information of the internal function.

So the meaning of the node in control flow graph and function call graph are also different.

A node in the control flow graph represents a basic block of code, but a node represents a

function in the function call graph. Therefore, it is important to accurately analyze the

function call information in each basic block of code.

In the control flow graph, for each basic block of code, according to the number of

internal including function calls can be divided into three categories: no function calls,

exactly one function call, the function call number is greater than one [22]. Different

situations using different processing methods. If there is no function call information in

the basic code block, according to the situation analysis of the node's in degree and out

degree, remove the node, and then perform the corresponding "merge"

[22] operation. If

there is only one function call in the base code block, the name of the node can be

replaced by the name of the function. In the third case, we can use the "split"[22]

operation. By processing the Json file which stored the control flow information, get the

Json file which containing the function call information, the specific analysis of the

sample as shown in Figure 5.

Source code Json file of Control flow

Information

Json file of local function call

information

Figure 5. Storage Format of the Local Function Call Information

4. Global Function Call Relation Extraction

In the C language program, main called the main function, is the entrance of the

program. The remaining functions are called by the main function or other general

functions. Therefore, in order to obtain the global function call graph, function main can

be regarded as a breakthrough, then gradually acquire the global call graph step by step.

Local function call graph of function main can be regarded as the zeroth level

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 139

expanded view of the function call graph, and then extract total functions which called by

the function main, analyze this functions one by one, and divide them into two categories

according to whether they contain any other function call information. For the function

which not contain other function call information, don’t need to deal with. If the function

contain other function call information, it is necessary to further processing this kind of

functions, namely adding these functions' local call function information to the global

function call information, getting the one level expanded view of function call graph.

Using this approach step by step, finally get the global function call graph. The

complexity of the program is different, the function call information is also different, so

the expansion of the series is not the same, in order to be flexible master, it is necessary to

make some adjustments to the Json file which stored the local function call information,

add an open attribute to the node's property, which is used to label the function call

information of this node whether opened. The tree structure of a single processing unit in

the modified Json file as shown in Figure 6.

f unct i on

f unct i on_name

t okens

edge

node

begi n

end

t ype

node_name

cal l ed_f unct i ons

t ype

Funct i on name

Type mar ker

Begi n node

End node

Type mar ker

Node name

The f unct i on set t hat
i s cal l ed by t he node

open

Tag t he f unct i on cal l r el at i onshi p
i n t he node whet her expanded

Figure 6. The File Structure Tree of the Global Function Call Graph

The core idea of extracting global function call relation based on the local function call

relation is starting with main function, getting the local function call information

according to the call depth step by step, then add them to the global function call

information after processed by the algorithm, when all the functions within the call

relationship have been launched, global function call relation can be obtained, analysis of

the sample as shown in Figure 7.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

140 Copyright ⓒ 2016 SERSC

Source code

 Local function call information

Global function call information

Figure 7. Storage Format of Global Function Call Information

The conversion steps from the local function call graph to the global function call

graph are as follows:

First. Add the open attribute to the node of the local function call information, and the

initial value is set false.

Second. Starting from the main function call information, traversing the corresponding

nodes tokens of function main, if the node’s called_functions array is not empty and open

attribute value is false, then traversal the function in called_functions array, for each

function using a dictionary dict to store the out edge information, the assignment form is

dict[i]=j. Dict is stored data by key-value pair. Key i in dict is function name, the node set

which function i pointed to in the function call graph is stored in j. After save an out edge

information of i , delete this edge's information from the global function call information,

at the same time set the open attribute value of this node to true.

Third. For each function node k in j, make different processing according to the

complexity of the i function’s call relationship, then add the corresponding node and edge

information to the global function call graph.

In view of the above analysis, the core algorithm of extracting global function call

graph from the local function call graph is given as follows. The input of this algorithm is

the data file that containing local function call information, and the output is the data file

that contains the global function call information. In the algorithm, starting with the local

function call relationship of main function, through the analysis of the node in the local

function call graph, local function call information is extracted step by step to the Global

function call information. Due to the expansion series can be controlled by one condition,

the algorithm of only expand at one level is shown below.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 141

Algorithm 1 PCFG2GCFG

Input：PCFG (data)

Output：GCFG (main_tokens)

1: tokens=get_tokens(data,'main')

2: main_tokens=copy.deepcopy(tokens)

3: for token in tokens:

4: if token['type']=='node' and len(token['called_functions'])>0 and

token['open']=='false':

5: find this token in main_tokens and set token['open']= 'true'

6: get called_funs=token['called_functions']

7: for i in called_funs:

8: copy_tokens=copy.deepcopy(main_tokens)

9: for token in copy_tokens:

10: get function call relationship: dict[i]=j

11: for i,j in dict.items():

12: fun_tokens=get_tokens(data,i)

13: for k in j:

14: if fun_tokens==None:

15: add edge in main_tokens: i→k

16: else:

17: for fun_token in for_tokens:

18: if fun_token['type']== 'node':

19: if len(fun_token['called_functions'])>0:

20: append node: fun_token

21: else:

22: pass

23: else:

24: if fun_token['begin']== '<begin>' and fun_token['end']==

'<end>' :

25: add edge in main_tokens: i→j

26: elif fun_token['begin']== '<begin>' :

27: add edge in main_tokens: i→fun_token['end']

28: elif fun_token['end']== '<end>' :

29: add edge in main_tokens: fun_token['begin']→j

30: else:

31: add edge in main_tokens:

fun_token['begin']→fun_token['end']

Every time the PCFG2GCFG algorithm is executed the function call relationship can

be expanded one level, the local function call graph of function main is used as the zeroth

level expansion graph, and then expanded step by step until all the local function calls are

extracted. The specific example is shown in Figure 8.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

142 Copyright ⓒ 2016 SERSC

Source code

the zeroth level expanding

graph

the second level expanding

graph
the first level expanding graph

Figure 8. Function Call Relation Expansion Graph

In the source code shown in Figure 8, function main directly call the function f11 and

f12, so the zeroth level expanding graph of function call relation only shows f11 and f12.

Then obtain the local function call information of f11 and f12, the source code show that

f11 directly call f21 and f12 directly call f22, so the first level expanding graph of function

call information is shown above. In which the local function call relationship of f11 and

f12 has been expanded, the local function call relationship of the local f21 and f22 is not

expanded, so further processing can obtain the second level expanding graph of function

call information. Due to the function f21 does not contain any other function call

information, it is only expanding the function call relationship of f22 in the second level

expanding graph of function call information. In term of source code, as a result of the

function f32 does not contain any other function call information, so the second level

expanding graph of function call information is seem as the global function call graph of

source code.

If a number of functions call the same function, the extraction of global function call

information is not affected, but the visibility of global function call graph is relatively

poor. Although the function call relationship is shown in the graph, but the function call

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 143

path is not intuitive, on this basis, make a slight adjustment, described the function call

relationship in the node, example as shown in Figure 9.

Source code global function call graph 1 global function call graph

2

Figure 9. Comparison of Global Function Call Graph

By the source code of example can be known, function fun1 were called in the three

functions main, add and minus, global function call path is P: main→operate→add→fun1

→minus→fun1→fun1, In the global function call graph 1 shows two paths, P1:<begin>→
operate→add→ fun1→minus→ fun1→<end>, P2:<begin>→operate→add→ fun1→
<end>. The main reason for this deviation is that there is only one node representing fun1

function, no matter which function calls fun1 all point to this node. In order to increase

the visibility of the function call graph, adjusted display form is shown as global function

call graph 2. In the graph the nodes are not directly called by main function are added an

illustration. Although fun1 implement three times, but it is being called by different

functions, so there are three nodes are used to express fun1 in order to be distinguished.

This form of display may seems complicate, but it can clearly expressed the function call

path and the execution relationship between functions.

5. Experiment and Evaluation

Sequence, selection and circulation are the three basic sentence structures of C

language, which can be nesting used without limitation, and each of them can contain

function call statements. So in the experiment, the method of extracting the global

function call path is verified by the way of three kinds of statement structure nested each

other. The function call statement in the loop structure is likely to be repeated several

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

144 Copyright ⓒ 2016 SERSC

times, during the extraction of the function call path, the function call statement in the

loop is divided into two cases, namely execution and not execution, the number of

repeated execution is not considered.

5.1 Sequential and Selection Nested Program

In the upper part of Figure 10 is the source code of sequential and selection nested

program, main function used branch structure if…else if…else , the value of two input

variables are used as branch condition, in the four functions that are called directly by

main function, show function and the other three functions are sequential execution

relation, and function fa, equal, fb will not be executed simultaneously, among them,

function fa and fb used branch structure if... else. The following part of Figure 10 is the

global function call relationship graph that extracted from the experimental program.

Source code of program

Global function call path graph

Figure 10. Global Function Call Path Extraction from Sequential and
Selection Nested Program

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 145

According to the single variable's value and the value size relation between the two

variables, combined with the source code manual analysis the function call path as shown

in Table 1.

Table 1. The Global Function Call Path Analysis of Sequential and Selection
Nested Program

Number The value size relation of

variable a and b

The value of a

single variable

Function call path

1 a>b a<0 main→show→fa→negative

2 a>=0 main→show→fa→nonnegative

3 a=b a、b take any

value

main→show→equal

4 a<b b<0 main→show→fb→negative

5 b>=0 main→show→fb→nonnegative

Comparing the global function call graph shown in Fingure10 and the analysis result of

function call path shown in table 1, it is obvious that the extracted function call path and

manual analysis results is accordance. It is demonstrated that using global function call

path extraction method can accurately obtain the function call path of source code in this

case.

5.2 Sequential and Loop Nested Program

The left side of Figure 11 is an experimental source code of a sequential and loop

nested program. Function main used for loop structure, if meeting the condition of for

loop, function show and fun in the main is sequential execution, Function fun used the

while loop structure, if meet the condition of the while loop, it will performed minus

function. On the right side of Figure 11 is the global function call graph which extracted

from the experimental program.

Source code

Global function call graph

Figure 11. Global Function Call Path Extraction from Sequential and Loop
Nested Program

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

146 Copyright ⓒ 2016 SERSC

According to the value of two variables, combined with the source code manual

analysis the function call path as shown in Table 2.

Table 2. The Gobal Function Call Path Analysis of Sequential and Loop
Nested Program

Number The value

of b

The value

of a

Function call path

1 b>1 a>1 main→show→fun→minus(2~n)→…
→fun→minus(2~n)

2 a=1 main→show→fun→minus→…→fun→minus

3 a<1 main→show→fun→…→fun

4 b=1 a>1 main→show→fun→minus(2~n)

5 a=1 main→show→fun→miuns

6 a<1 main→show→fun

7 b<1 a take any

value

main→show

minus (2~n) in Table 2 indicates that the function minus performs two times or more than

two times. Due to the function call in loop structure only considers the two cases, namely

execution and not execution, so in Table 2, the function call path 1 and 2, 3 and 5, 4 and 6

can be merged. The four function call path after merged and the path of global function

call graph shown in Figure 11 is accordance, indicating that using global function call

path extraction method can accurately obtain the function call path of source code in this

case.

5.3 Sequential, Selection, and Loop Nested Program

The left side of Figure 12 is the source code of sequential, selection, and loop nested

program, main function used branch structure if…else if…else , the value of two input

variables are used as branch condition, in the four functions that are called directly by

main function, show function and the other three functions are sequential execution

relation, and function fa, equal, fb will not be executed simultaneously, among them,

function fa used branch structure if... else, function fb used while loop structure, and in the

loop structure used branch structure if... else again. On the right side of Figure 11 is the

global function call graph which extracted from the experimental program.

Source code

Global function call graph

Figure 12. Global Function Call Path Extraction from Experimental Program

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

Copyright ⓒ 2016 SERSC 147

According to the single variable's value and the value size relation between the two

variables, combined with the source code manual analysis the function call path as shown

in Table 3.

Table 3. The Global Function Call Path Analysis of Experimental Program

Number The value size

relation of variable a

and b

The value of a

single variable

Function call path

1 a>b a>0 main→show→fa→fa1

2 a<=0 main→show→fa→fa2

3 a=b a、b take any

value

main→show→equal

4 a<b b>2 main→show→fb→fb1(2~n) →fb2

5 b=2 main→show→fb→fb1→fb2

6 0<b<2 main→show→fb→fb2

7 b<=0 main→show→fb

fb1(2~n) in Table 3 indicates that the fb1 function performs two times or more than two

times. As the same, the repeated execution number of functions in the loop structure is not

considered, so in Table 3, the function call path 4 and 5 can be merged. Thus we can

obtained six function call paths by manual analysis, Comparing with the path of global

function call graph which shown in Figure 12, results and expectations are consistent, It is

demonstrated that using global function call path extraction method can accurately obtain

the function call path of source code in this case.

6. Conclusion

The path coverage method which based on function call information improves the test

efficiency and at the same time ensures the adequacy of the test. The key is to obtain the

set of testing path, which is the set of the function call path. In this paper, a global

function call path integration method based on module path is proposed. First, obtained

the local function call relation of the single function based on control flow graph. then,

according to the correlation between local function call relation and global function call

relation, starting from the local function call relation of local function of function main,

lunching the local function call relation step by step through the algorithm, then the global

function call relation of the program is obtained. Finally, analyzing reachable path from

begin point to end point of the global function call relation to obtain the function call path.

The experimental data show that this method can effectively extract the function call path.

It provides a new way of thinking for the accurate acquisition of path test set based on

function call path test coverage method.

References

[1] Z. H .Zhang and Y. M. Mu, “Research of path coverage generation techniques based function call graph”,

Acta Electron Sin, vol. 138, (2010), pp. 1808–1811.

[2] I. Jovanović, “Software Testing Methods and Techniques”, [J]. The IPSI BgD Transactions on Internet

Research, vol. 30, (2006).

[3] L. X. MEI and Z. L. ZHANG, “A Research on Basis Path Acquire Method for Software Testing”, [J].

Journal of LanZhou JiaoTong University, vol. 1, (2011), pp. 6-9.

[4] A. H. Watson, T. J. McCabe and D. R. Wallace, “Structured testing: A testing methodology using the

cyclomatic complexity metric”, [J]. NIST special Publication, vol. 500, no. 235, (1996), pp. 1-114.

[5] Y. M. MU, Y. H. ZHENG and Z. H. ZHANG, “The algorithm of infeasible paths extraction oriented the

function calling relationship”, [J]. CHINESE JOURNAL OF ELECTRONICS, vol. 21, no. 2, (2012)，pp.

236-240.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 6 (2016)

148 Copyright ⓒ 2016 SERSC

[6] D. Dewu, “Complex Network Analysis of Call Graph in Linux Kernel”, [J].Journal of Chizhou

University, vol. 26, no. 6, (2012), pp. 1-3.

[7] D. ZHAO, “The Research of call graph construction based on static type anlysis for Java program”,

[D].HuNan University, (2006).

[8] H. Shuangling, “Research on C/C++ programs’ function call relations based on static analysis”,

[D].University of Science and technology of China, (2015).

[9] X. CHEN, X. L. JU, W. Z. WEN and Q. GU, “Review of Dynamic Fault Localization Approaches Based

on Program Spectrum.Journal of Software, vol. 26, no. 2, (2015), pp. 390−412.

[10] Y. MU，Z. JIANG and Z. ZHANG, “Path extraction based on C program instrumentation”, Computer

Engineering and Applications, vol.47, no. 1, (2011), pp. 67-69.

[11] S. Baharom and Z. Shukur, “Module documentation based testing using grey-box approach”, In:

Proceedings of Information Technology, Kuala Lumpur, (2008), pp. 1–6.

[12] Y. H. Zheng, Y. M. Mu and Z. H. Zhang, “Research on the static function call path generating

automatically.”, In: Proceedings of Information Management and Engineering, Chengdu, (2010), pp.

405–409.

[13] Y. M. Mu, Y. H. Zheng and Z. H. Zhang, “The algorithm of infeasible paths extraction oriented the

function calling relationship”, Chinese J Electron, vol. 21, (2012), pp. 236–240.

[14] Y. M. MU and M. T. LIU, “Determination of overload uniqueness in C++ based on finite-state machine”,

[J]. Application Research of Computers, vol. 31, no. 4, (2014), pp. 1059-1062.

[15] D. F. Liu, Y. M. Mu and Y. J .He, “Generation of Static Function Calling Paths in C++ Based on

Finite-State Machine”, [C]. Applied Mechanics and Materials, vol. 568, (2014), pp. 1497-1504.

[16] X. ZHU, Y. MU and Z. ZHANG, “Analysis of function call path based on Soot control flow graph”, [J].

Data Communication, vol. 4, (2012), pp. 26-29+35.

[17] M. M. Yan, Y. M. Mu and Y. J. He, “The Analysis of Function Calling Path in Java Based on Soot”, [C].

Applied Mechanics and Materials, vol. 568, (2014), pp. 1479-1487.

[18] A. P. Xu, Y. M. Mu and Z. H. Zhang, “The Dynamic Function Calling Path Generation Based on

Instrumentation”, [C]. Applied Mechanics and Materials, vol. 568, (2014), pp. 1469-1478.

[19] J. C. Huang, “Program Instrumentation and Software Testing” [J]. Computer, vol. 11, (1978), pp. 25-32.

[20] Z. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary instrumentation”,

[C]//ACM Sigplan notices. ACM, vol. 42, no. 6, (2007), pp. 89-100.

[21] S. L. Graham, P. B Kessler and M. K. Mckusick, “Gprof:A call graph execution profiler”, [C]//ACM

Sigplan Notices.ACM, vol. 17, no. 6, (1982), pp. 120-126.

[22] Y. M. MU and Z.YANG, “Verify consistency of software implementation and design based on function

call path”, [J]. Science in China: Information Science, vol. 10, (2014), pp. 1290-1304.

[23] L. Bang, A. Aydin and T. Bultan, “Automatically computing path complexity of programs”, [C]//

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, (2015), pp.

61-72.

