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Abstract 

This paper models image deconvolution as an l2-l1 minimization problem, which is an 

approach taken by many state-of-the-art image deconvolution algorithms. We present a 

novel iterative algorithm based on the split Bregman method and the stationary second-

degree method, which efficiently addresses the classic convex minimization problem. The 

split Bregman method, which has been proven to be very efficient for non-differentiable 

minimization problems, decomposes the equivalent constrained version of the l2-l1 

deconvolution problem into a series of sub-problems. These sub-problems are then 

individually solved using appropriate methods to obtain their closed-form solutions. 

Unlike the majority of other similar deconvolution algorithms, we use a modified 

stationary second-degree method to solve the l2-l1 denoising sub-problem, prompted by 

some recent work on the improvement of the iterative thresholding method. The presented 

algorithm can be categorized as a split Bregman method, so convergence of the solution 

can be guaranteed. In our experiment, the presented algorithm and the algorithms in 

references [6] and [8] are used to restore Gaussian-blurry and uniform-blurry images. 

The experimental results show that the presented algorithm is effective and it outperforms 

other algorithms in comparison. 

 

Keywords: Image deconvolution, l2-l1 minimization problems, split Bregman method, 

stationary second-degree method, denoising operators 

 

1. Introduction 

Blur and noise are two adverse factors that degrade digital images; thus image 

deconvolution tasks must deblur and denoise the blurry images to restore sharp images. 

The degradation of sharp images can be modeled as g=Hu+v, where gR
M

 is the known 

blurry image in vector form; HR
MN

 denotes the linear operator; uR
N
 is the unknown 

sharp image or its sparse representation and vR
M

 is the additive Gaussian noise. H can 

generally not be inverted, so directly solving g=Hu+v is impossible, especially when H is 

heavily ill-posed. To restore sharp images, image deconvolution is generally converted 

into a minimization problem minu{J(u)=||g-Hu||
2 

2 /2+||Wu||1} (we use P0 to represent it 

below) which is also called an “l2-l1 deconvolution problem”, where J(u) is the objective 

function; ||g-Hu||
2 

2 /2 is the data-fidelity term relative to the type of image noise; ||||1 

denotes the l1-norm; ||Wu||1 is the regularization term representing the prior knowledge 

about the sharp images; the constant >0 controls the balance between the data-fidelity 

and regularization; u is the sparse representation of the unknown sharp image; WR
NN

 is 

the diagonal weight matrix, i.e., W=diag[w1, w2,…, wN] with wj>0 for all js; and ||g-Hu||
2 

2 /2 

and ||Wu||1 are both convex, proper and lower semi-continuous. Thus J(u) is a convex 

function, which means the set of solutions of problem P0 is nonempty. Since u is a sparse 

representation of an unknown sharp image, P0 belongs to the synthesis-based image 

deconvolution problem. In this case, H=BD, and B and D denote the blur operator and the 
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redundant dictionary, respectively. Once the minimizer u
*
 of problem P0 has been 

calculated, the sharp image can be obtained by computing Du
*
. For a convex 

minimization problem P0, Daubechies et al. [1] present an iterative thresholding 

algorithm (ITA) as u
n+1

=W(u
n
+H

T
(g-Hu

n
)), where W is called the “denoising 

operator”. When dealing with a denoising problem which has the form 0.5||y-x||
2 

2 +||x||1, 

where x and y denote the arbitrary signals (e.g., images), ITA reduces to x
n+1

=(y). The 

most common choice of denoising operator is perhaps the soft-thresholding function [2]. 

For example, Chan et al. [3] use the soft-thresholding function to solve one of their sub-

problems. Due to its simplicity and guaranteed convergence [1], ITA is one of the most 

popular algorithms for the minimization problem P0. However, when H is heavily ill-

posed and/or  is too small or too large, it is difficult for ITA to achieve optimal results. 

To improve ITA, Wright et al. [4] use an adaptive continuation strategy [5] to 

simultaneously update the values of  when iteratively reconstructing sparse signals. In 

contrast to the algorithm of Wright et al. which only employs one previous iteration in 

each subsequent iteration, the algorithm presented by Beck et al. [6] uses a linear 

combination of two previous iterations to compute u
n+1

. To guarantee the convergence of 

their presented algorithm, Beck et al. use a well-designed expression for the linear 

combination coefficient and update this coefficient with each iteration. The experimental 

results show that compared to ITA, the algorithms of Wright et al. and Beck et al. and 

other variants of ITA truly have superior performance. Another popular algorithm for the 

minimization problem P0 is forward-backward splitting (FBS) [7], which is typically 

suitable for minimization problems where the objective function is the sum of a 

differentiable term and a non-differentiable term. FBS addresses P0 by iteratively 

computing: u
n+1

=u
n
+n(G(u

n
+nE(u

n
))-u

n
), where E(u)=||g-Hu||

2 

2 /2 and G(u)= ||Wu||1; 

G denotes the proximity operator; E(u) is the gradient of E(u); and n and n denote the 

step-size and relaxation parameter of the n
th
 iteration, respectively. If we let W and G 

represent the same operator and let n =1 and n =1 for all ns, then the algorithm shown in 

above equation is the exact same as ITA, therefore FBS can be regarded as a generalized 

ITA. Therefore, for the minimization problem P0, ITA can be also expressed by a more 

general form u
n+1

=(1-)un
+W(u

n
+H

T
(g-Hu

n
)) with constant >0. As an operator 

splitting algorithm, the two main advantages of FBS are that it has proven convergence 

and it can decouple the differentiable terms and non-differentiable terms of the objective 

function. However, if the objective function of a minimization problem has more than one 

non- differentiable term, FBS cannot be applied to it. In addition to image deconvolution 

problems [8], FBS is also widely used to address some typical imaging inverse problems, 

such as image denoising [9], image inpainting [10] and so on. 

To solve problem P0 more efficiently, this paper presents a novel image deconvolution 

algorithm that is based on the split Bregman method (SBM) and the stationary second-

degree method (SSDM) [11]. As a powerful tool, SBM is utilized to convert and split P0 

into a series of sub-problems. A modified version of SSDM is then applied to the 

denoising sub-problem to improve image deconvolution. The rest of the paper is 

organized as follows. Section 2 presents a brief review of SBM. The presented 

deconvolution algorithm and SSDM are described in Section 3. The experimental results 

are presented and discussed in Section 4. The last section provides the conclusions. 

 

2. Review of SBM 

SBM was first presented by Goldstein et al. [12] for image denoising and compressed 

sensing. Its applications were then expanded to other fields, such as image deconvolution 

[13], image segmentation [14] and so on. As the most popular member of the family of 

Bregman iteration methods, the major benefits of SBM are that it can be coded easily and 

it usually needs only several iterations to achieve convergence. To address the convex 

minimization problem 
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)()(min
21

PxFxF
x

 ,                                                                                                           (1)  

where F1(x) is differentiable, convex and proper; F2(Px) is non-differentiable, convex and 

proper; and P is an arbitrary linear operator, SBM first converts it into the equivalent 

constrained form 
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and then iteratively and alternately computes 
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From Eq. (3), the optimality conditions of SBM can be obtained as follows 























)(

)()(0

)()(0

111

111

2

1T1

1

nnnn

nnnn

nnnn

yPxdd

dPxyyF

dyPxPxF





.                                                                              (4) 

It is has been proven that if the minimization problem (1) has at least one feasible 

solution x
*
, then the following facts can be established 
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                                                                          (5) 

which means that the convergence of SBM is guaranteed. For the sub-problems in Eq. (3), 

additional methods may be needed to obtain their closed-form solutions. As recently 

revealed by Setzer et al. [15], SBM can be interpreted as a Douglas-Rachford splitting 

algorithm applied to the dual of problem (1), and it can also be interpreted as an 

alternating direction method of multipliers (ADMM), which is a special case of the 

augmented Lagrangian method, applied to l1-regularized minimization problems. 

 

3. Presented Deconvolution Algorithm 

To address the classic l2-l1 deconvolution problem P0, we first reformulate it as 

Wuzts

z
Hug

zu






..

||||
2

||||
min

1

2

2

,


,                                                                                                   (6) 

and then use SBM to decouple the problem (6) into sub-problems 
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Since its objective function is quadratic, the sub-problem u
n+1

 in (7) can be directly solved 

to get 

)]([)(
TT1TT1 nnn

ezWgHWWHHu 


 .                                                               (8) 

To efficiently compute Eq. (8), we use the fast Fourier transform (FFT) to convert it into  
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where F() denotes the FFT operation, F
-1

() denotes the inverse FFT operation; * denotes 

the complex conjugate; and  denotes the dot product. Since the time complexity of the 

FFT is O(nlogn), any one of F(H)
*
F(g), F(W)

*
F(z

n
-e

n
), F(H)

*
F(H) and F(W)

*
F(W) 

can be implemented within the time complexity of O(nlogn). After computing H
T
g, W

T
(z

n
-

e
n
), H

T
H and W

T
W by FFT, the division in Eq. (9) can also be completed within the time 

complexity of O(nlogn). Therefore, using FFT to compute u
n+1

 is definitely more efficient 

than the direct computations in Eq. (8). 

For the l2-l1 denoising sub-problem z
n+1

, most image deconvolution algorithms solve it 

using ITA. However, prompted by recent studies on improving ITA, we use a modified 

version of SSDM to solve the subproblem z
n+1

 in order to obtain better restored results. 

Considering the linear system Ax = b, the unknown signal x is computed by 
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,                                                              (10) 

where i denotes the i
th
 SSDM iteration; the constant >0; K=I-Q

-1
A, L= Q

-1
b and Q is a 

positive definite invertible matrix. Substituting K=I-Q
-1

A and L= Q
-1

b into Eq. (10), we 

get 
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Let b=S
T
f, Q=I+C

i
, A=C

i
+S

T
S, and x=z

n+1
, Eq. (11) can be expressed as 
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,                              (12) 

where C
i
 is a diagonal matrix that depends on x

i
 and the regularizer; S and f denote an 

arbitrary matrix and vector, respectively; and the constant =. If we let ==1, S=I and 

f=Wu
n+1

+e
n
, and if multiplication by Q

-1
 is replaced by the denoising operator used in ITA, 

Eq. (12) is reduced to 

)(
11,1 nn

W

in
eWuz 




                                                                                                 (13) 
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which is equal to directly applying ITA to the sub-problem z
n+1

. Therefore, the modified 

SSDM in Eq. (12) can be regarded as a variant of ITA. This fact motivates us to formulate 

the solution of the sub-problem z
n+1

 in Eq. (7) as 
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where /(Wu
n+1

+e
n
) is the soft-thresholding function, and it denotes the component-wise 

application of the function 

)0,/|)(max(|))sign(()(
111




j

nn

j

nn

j

nn
eWueWueWu                                 (15) 

with (Wu
n+1

+e
n
)j as the j

th
 (j=1, 2, … , N) component of Wu

n+1
+e

n
. 

Using Eqs. (7), (9) and (14), we summarize the procedure for the presented image 

deconvolution algorithm below, where ||||fro is the Frobenius norm. Since the 

convergences of SBM and SSDM have been proven, the convergence of the presented 

algorithm is guaranteed. Additionally, the set of solutions of the image deconvolution 

problem P0 is not empty. Therefore, with proper parameter values and reasonable 

initialization, u
n+1

 will converge to a point in the solution set of P0. 

 

Presented Image Deconvolution 

Algorithm 

Input:  and ; g, H and W; z
0
 and e

0
 

Output: u
n+1

 

for   n=0 to nmax   do 

compute u
n+1

 using Eq. (9); 

if   ||u
n+1

-u||fro>||u
n
-u||fro   then 

u
n+1

=u
n
; 

stop iteration; 

end if 

compute )(
~ 1

/

1 nnn
eWuz 




; 

compute z
n+1

 by SSDM; 

111 


nnnn
zWuee ; 

end for 

SSDM (stationary second-degree method) 

Input: ,  and ; zn+1,0
 and 1~ n

z  

Output: z
n+1, i+1

 (i. e., z
n+1

) 

10,11,1 ~
)1(




nnn
zzz  ; 

for   i=1 to imax   do 

1,11,11,1 ~
)()1(




nininin
zzzz 

; 

end for 

 

4. Experimental Results 

In this section, a series of experiments are carried out to verify the effectiveness of the 

presented algorithm. We select the famous test gray images “Cameraman” and “Lena”, 

which are shown in Figure 1(a)-(b) as sharp images. To produce the blurry images shown 

in Figure 1 (c)-(f), the sharp images are first convolved by a Gaussian blur kernel and a 

uniform blur kernel, and then different levels of Gaussian noise are added to the blurry 

images. The Gaussian blur kernel and uniform blur kernel are generated using MATLAB 

functions fspecial(’gaussian’, [9 9], 9) and fspecial(’average’, [9 9]), respectively; the 
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BSNR (blurred signal-to-noise ratio) is defined as 10log10[||u
n+1

-u||
2 

2 /N2
] with  as the 

standard deviation of the noise. To evaluate the performance of the presented algorithm, 

we also test the algorithms in references [6] and [8] to restore the same blurry images. The 

algorithm in [6] uses an improved ITA to address the sparse representation based image 

deconvolution problem, and the algorithm in [8] uses Bregman iteration plus FBS to 

address the total variation based image deconvolution problem. All algorithms are 

implemented on the following platform: Windows XP SP3, Intel Core 2 CPU T7200 @ 

2.00GHZ, 4GB RAM and MATLAB R2012b. For the presented algorithm, the 

parameters are set as follows: =0.00007, =0.07, =1.95, =4, =2.05, and nmax and imax 

are both set to be 20. For convenience and without loss of generality, wj is set to 1 for all 

js. As for the algorithms in references [6] and [8], we employ their default settings. 

 

   

          (a)                                             (b)                                             (c) 

   

(d)                                             (e)                                              (f)   

Figure 1. Sharp Images and Blurry Images (a) Cameraman; (b) Lena; (c) 
Gaussian-Blurry Cameraman (GBC); (d) Gaussian-Blurry Lena (GBL); (e) 

Uniform-Blurry Cameraman (UBC); (f) Uniform-Blurry Lena (UBL). The 

Resolutions of All Images are 256256, and the BSNR Values of all Blurry 
Images are 40 dB. 

The experimental results are presented in Table 1 and Figures 2-3, where PSNR (peak 

signal-to-noise ratio) and MSE (mean square error) are defined as 10log10[N255
2
/||u

n+1
-

u||
2 

2 ] and ||u
n+1

-u||
2 

2 /N, respectively. From the PSNR values in Table 1 and the images in 

Figure 2, we conclude that the presented algorithm can effectively restore common types 

of blurry images. Compared with similar deconvolution algorithms in experiment, the 

presented algorithm illustrates better performance. Especially in term of visual effects, our 

algorithm preserves more details of restored images without the emergence of stair-step 

effects as shown in Figure 2(e)-(h). The underlying reasons for this fact are mainly that 

the presented algorithm has an excellent architecture and the modified SSDM outperforms 

the ITA used by the algorithms in references [6] and [8]. From the curves in Figure 3, we 
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observe that the MSE values decrease with each iteration, i.e., u
n+1

 approaches sharp 

image u with each iteration, meaning that the presented algorithm is convergent. Figure 3 

also shows that even without many iterations, the presented algorithm can obtain 

satisfactory solutions. 

Table 1. PSNR Values of Restored Blurry Images in Figure 2 

Algorithms Restored images PSNR values 

algorithm in [6] 

Figure 2(a) 26.01 dB 

Figure 2(b) 28.07 dB 

Figure 2(c) 26.02 dB 

Figure 2(d) 28.15 dB 

algorithm in [8] 

Figure 2(e) 25.66 dB 

Figure 2(f) 27.33 dB 

Figure 2(g) 25.82 dB 

Figure 2(h) 27.40 dB 

presented algorithm 

Figure 2(i) 27.01 dB 

Figure 2(j) 28.67 dB 

Figure 2(k) 26.95 dB 

Figure 2(l) 28.73 dB 

 

5. Conclusions 

We present a novel SBM and SSDM based algorithm which addresses the image 

deconvolution problem by solving the minimization problem P0. SBM decomposes P0 

into sub-problems and SSDM is used to solve the denoising sub-problem to improve the 

deconvolution results. In simulated experiment, the presented algorithm is used to restore 

two common types of blurry images and the results show its effectiveness. Compared 

with the algorithms in references [6] and [8], the presented algorithm obtains higher 

PSNR values and better visual effects. Finally, we also experimentally demonstrate the 

convergence of the presented algorithm with a variety of MSE values. Studies are 

conducted to extend our algorithm to other classic image deconvolution models, and the 

future work involves using a similar algorithm to solve the total variation model. 

       
(a)                          (b)                    (c) 
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(d)                          (e)                    (f) 

       

(g)                          (h)                    (i) 

       

(j)                          (k)                    (l) 

Figure 2. Restored Results of Blurry Images in Figure 1 (a) to (d) Results 
Obtained by the Algorithm in [6]; (e) to (h) Results Obtained by the 

Algorithm in [8]; (i) to (l) Results Obtained by the Presented Algorithm. For 
each Algorithm, the Images Respectively Denote the Restored GBC, GBL, 

UBC and UBL 
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Figure 3. Variations of MSE Values of Images Restored by the Presented 
Algorithm 
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