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Abstract 

   Accurate segmentation for magnetic resonance (MR) images is an essential step in 

quantitative brain image analysis, and hence has attracted extensive research attention. 

However, due to the existence of noise and intensity inhomogeneity, also named as bias 

field, many segmentation methods suffer from limited accuracy. This paper presents a 

novel variational framework for the registration, segmentation and bias estimation 

simultaneously. We first presented an improved segmentation model by using the intensity 

statistic distributions with different means and variances in local regions. The model can 

estimate the bias field meanwhile segmenting images. We also proposed an anisotropic 

non-rigid registration method by using the structure tensor information and nonlocal 

information to contain the information of the image details. Finally, we defined a coupled 

term to combine the segmentation and registration. The registration term can provide 

shape information as a prior to guide the segmentation and the segmentation term can 

provide the edge information to guide the registration. The segmentation and registration 

can obtain benefit from each other. Our statistical results on both synthetic and clinical 

images show that the proposed method can overcome the difficulties caused by noise and 

bias fields and obtain more accurate results. 
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1. Introduction 

In order to diagnose brain disease, many segmentation methods have been proposed. 

Unfortunately, most segmentation methods are hindered by various imaging artifacts such 

as noise and intensity inhomogeneities. In order to obtain accurate anatomical structures 

from brain MR images, active contour models have been extensively applied [1-2]. The 

active contour models are several desirable than classical image segmentation methods, 

such as edge detection, thresholding, and region grow. The active contour models can be 

easily formulated into an energy minimization framework, which enable the models allow 

incorporate various prior knowledge, such as shape and intensity distribution, for robust 

image segmentation [3]. Furthermore, the active contour models can provide the 

segmentation results as smooth and closed contours, which can be readily used for further 

applications, such as shape analysis and recognition. 

The active contour models can be categorized into two major classes: edge-based 

models and region-based models. Edge based models use edge information to attract the 

active contour toward the object boundaries, which makes the models sensitive to the 

noise [4]. Region based models identify the region of interest by using a certain region 
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descriptor to guide the motion of the active contour. Region based models are less 

sensitive to the noise [1], however, most of them tend to rely on intensity homogeneity in 

each of the regions to be segmented. In fact, due to technical limitations or artifacts 

introduced by the object being imaged, the medical images usually have intensity 

inhomogeneities. With the effect of the intensity inhomogeneity, the intensity varies 

within the same tissues. The variety usually less affects the human visual system; 

however, it may make the intensity distributions flatter in each tissue region. 

Segmentation experiments presented by Jungke et al.[5] illustrate that the intensity 

inhomogeneities affect the brain MR image segmentation more than the noise. 

After the first paper has been proposed to estimate the bias field [6] in 1986, many 

methods have been proposed [7]. In the first decade, the methods relay on the information 

of the acquired images. The bias field estimation often by used as a preprocessing step, 

however, the estimation usually loses the detail information and makes the following 

segmentation inaccurate. In order to deal with this shortcoming, many segmentation and 

bias field estimation coupled methods have been proposed [8]. In the coupled methods, 

the bias field estimation and the segmentation can obtain benefit from each other. 

In order to obtain more accurate results, Wang et al. proposed improved level set based 

method [4] by using the mean and variance information in a neighborhood around each 

pixel. However, these methods cannot obtain satisfied results when the bias field of the 

images is severe. Furthermore, although these methods can reduce the effect of the noise 

and bias field, they still cannot obtain accurate results in regions with severe low contrast. 

In medical images, most structures contain priori shape information. Based on this 

assumption, a tremendous amount of registration based segmentation methods have been 

presented, see surveys [9]. The registration based segmentation methods need an atlas, 

which once has been constructed can be used as a template and can be registered to the 

image being segmented, to achieve the segmentation. The registration based segmentation 

methods usually have two processes. Firstly, they estimate the deformation field between 

the registered image and segmented image. Secondly, the estimated deformation field is 

applied to the atlas to achieve the segmentation.  

The registration based segmentation methods can be categorized into two major 

classes: feature based and direct methods. The feature based methods require computation 

of enough features of points/surface/contours in the image and hence they need additional 

computational time in detecting the features. On the other hand, medical images usually 

have not enough distinctive features details, which makes the methods need interactive 

selection by an expert or by introducing extrinsic features, rigidly positioned with respect 

to the patient. 

The direct methods estimate the transformation between the registered image and 

segmented image from the raw data. Wells and viola [10] proposed a novel direct method 

by using mutual information as a similarity measure. The scheme has been used in rigid 

and non-rigid registration. The mutual information based methods can be used without 

any preprocessing, user initialization or parameter tuning. However, when the overlapping 

part of the images is too small, the mutual information based methods are hard to find 

satisfied results. Furthermore, there are many local maxima in mutual information 

measure function, which cause problems with optimizer. 

Among direct methods, a kind of approaches are based on the optical flow theory, 

which was firstly proposed by Horn and Schunck [11]. These methods use a global 

smoothness term to compute the optical flow. The optical flow method was first proposed 

for object tracking in image sequence. Because the displacement field and the velocity 

field in the optical flow model are similar to the registration. The optical flow method is 

based on the basis of the Taylor expansions and differential theory, and thus, it is weak to 

estimate large-scale movements between images. Furthermore, the optical flow method is 

sensitive to noises because it is on the basis of differential technology. In order to 

overcome this problem, some filters are used to reduce this bad effect, however, they may 
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lose edge information. Optical flow based methods usually assume that in the local 

neighborhood of every pixel is uniform; however, due to the effect of bias field, this 

assumption cannot be hold. 

In order to obtain more accurate results, scholars attempt to joint registration and 

segmentation. Yezzi et.al.[12] and Paragios et.al. [13], proposed simultaneous registration 

and segmentation methods based on variational principle. These methods can improve the 

accuracy of the segmentation; however, they are based on rigid registration, which makes 

them hard to be used for brain MR image segmentation.  

In this paper, we propose a coupled framework, which can process the registration, 

segment tissues and estimate the bias field, simultaneously. The registration can provide 

shape information as a prior to guide the segmentation and the segmentation results can 

make the registration more accurate. In order to reduce the effect of noise, we use 

statistical information (mean and variance) of local region around each pixel to construct 

the segmentation term and use the structure tensor information and nonlocal information 

to construct the registration term. The registration term can provide shape information as 

a prior to guide the segmentation and the segmentation term can provide the edge 

information to guide the registration. Another unique advantage of our method find 

accurate edges of the tissues with severe low contrast.  

 

2. Methods 
 

2.1. Simultaneous Intensity Inhomogeneity and Segmentation Method 

The observed MRI image J can be regarded as the production of the true image I and 

the bias field B with the additive noise n [3]: 

( )J I n B                                                                                                                      (1) 

In order to estimate the true image I, many methods take the logarithmic transform 

of both sides of Equation 1: 

log( ) log(( ) ) log( ) log( )J I n B I n B                                                                   (2) 

In this paper, we set log( )J as J%, log( )I n as I%and log( )B as B%, respectively. Then, 

Equation 2 can be written as J I B % % %. 

In our previous work [3], we assumed that the bias field B% varies slowly over the 

entire image domain and the image intensity I% is fairly constant within each class of 

tissue in brain MR images. Let   be the image domain,  
1

N

i i


 
be a set of disjoint 

regions of the image. Then,  
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      U I , where N is the number 

of regions. Due to the effect of the bias field, we model the intensities in the 

neighborhood Y of each pixelY by Gaussian distribution. Based on our previous work in 

[3], the Gaussian probability density with varying means  i Y and variances  i Y is 

defined as: 

  
    

2

, 2

,,

1
exp ,

22

i

i Y Y

i Yi Y

I X Y
p I X X





 
   
 
 

%
%                                        (3) 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 5 (2016) 

 

 

360   Copyright ⓒ 2016 SERSC 

Where  I X% is the intensity of X in the neighborhood Y of the current pixel Y . 

Furthermore, we uses the Gaussian kernel   with scale   to reduce the effect of the 

noise and control the size of the neighborhood. Based on Maximum a posteriori 

probability(MAP), we can obtain the local energy function: 

    ,

1

log
i

N

Y i Y

i

X Y p I X dX 




   %                                                                   (4) 

Then, the ultimate goal is to minimize Y  for all the pixels Y  in the image, which 

directs us to define the energy function as: 

      ,

1

log
i

N

local i Y

i

X Y p J X B Y dXdY 
 



     % %                                          (5) 

The energy minimization can thus be performed by solving a level set evolution equation: 

           , 1 2

1

log ,
i

N

local i Y i

i

X Y p J X B Y M X X dX dY   
 



    
  

  % %  (6) 

Where  1 2,iM   are functions of  ,such that  1 2

1

, 1
N
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M  

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1 arctan
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x
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    

is the Heaviside function. In this paper, we set 4N  and 

the image domain can be segmented into 4 regions corresponding to the white matter 

(WM), gray matter (GM), cerebrospinal fluid (CSF) and the background. 

     211  HHM  ,       2 1 21M H H    ,       3 1 21M H H    , 

       4 1 21 1M H H     . The derivative of H is the smoothed Dirac delta 

function   2 2

1
x

x




 



. For simplicity of notation, we denote  1 2,   , 

 1 2 3 4 1 2 3 4, , , , , , ,u u u u      .The entire energy function can be written as: 
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where i , 1,2,3,4i  , and are nonnegative constant.  H dY  is the length of the 

zero level contour of to maintain a smooth contour,  
21

1
2

dY  is the penalize 

term to regularize the level set. 

 

2.2. Optical Flow Theory Based Registration Method 

A general problem definition for optical flow theory based image registration can be 

posed as follows: Given two images  , ,I x y t and  , , 1I x y t  , the optical flow is based 

on the assumption that grey values of images in subsequent frames do not change over 

time: 

   , , 1 , ,I x u y v t I x y t                                                                                          (8) 

where the displacement field  ,
T

u v  is called optical flow. Perform a first order Taylor 

expansion, the optical flow constraint 

0x y tI u I v I                                                                                                                (9) 

The flow  ,u v  cannot be computed locally without additional constraints [14]. So Horn 

et.al. added a smoothness constraint regularization term: 

2 2
u v                                                                                            (10) 

where 

2 2 2 2
2 2

2 2 2 2
,

u u v v
u v

x y x y

   
     

   
The basic idea underlying variational 

approaches is to recover the optical flow as a minimizer of the flow energy function: 

     
2 2 2

,opt x y tE u v I u I v I dxdy u v dxdy
 

                                        (11) 

where the smoothness weight 0  serves as regularization parameter: Larger values 

for 0  result in a stronger penalisation of large flow gradients and lead to smoother 

flow fields. Minimising Equation 11 comes down to solving the Euler-Lagrange 

equations: 

 2 0x x y x tI u I I v I I u                                                                                            (12) 

 2 0y x y y tI v I I u I I v                                                                                           (13) 

Where is the spatial Laplace operator. The smoothness constraint regularization term 

can fill in information at location with 0I  . This results in dense flow fields and 

makes subsequent interpolation steps obsolete. 

As we know, the spatial Laplace operator is isotropic, which makes the method 

inaccurate in edge region, furthermore, it is more sensitive to noise. In order to deal with 

this problem, we use nonlocal information to construct an anisotropic smoothness 

constraint regularization term. 

Let us consider the noisy image 
2:I R  defined on . Barbu [15] has proposed 

PDE-based method to smooth images along defined directions of each pixels. In order to 
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smooth the image only along the directions of the edges, most of the denoising methods 

retrieve the local geometry of the image by using the diffusion tensor 
T

X X XD I I  . 

The eigenvectors  
and 

 of the tensor XD  can define the maximum and minimum 

variations of image intensities at X and the eigenvalues  
 and  

 measure the 

variations along  
and  

. We can find that the rank of XD one and the eigenvalue of 

the tangent direction is zero. In order to retrieve a more coherent geometry, a Gaussian-

smoothed version D G D   is usually computed.  

In order to smooth the images on the desired directions, Weickert et al. [16] defined a 

new diffusion tensor D  as: 

   , ,
,T T

XD f f X
   

      

                                                                       (14) 

where f 
 and f 

 control the strength along the desired directions  
 and  

. 

Following the idea of the improved diffusion tensor, we have defined  , 1f      and 

    , expf C            in our previous work [17]. With this definition, 

 ,f    
is less than 1 in the edge regions and near to 1 in homogeneous regions. As 

analyzed in [43], in this paper, we set 1 90C  . 

The diffusion tensor is based on the gradient of each pixel’s intensity, which makes it 

sensitive to the noise. We use the Nonlocal information to improve the diffusion tensor. 

The traditional NonLocal framework has been widely used for image denoising. The basic 

idea of the nonlocal framework is using the local patch information of each pixels of the 

image to update the intensity of the current pixel: 

 
   

 

,
,

,

I y x y dy
R x x

x y dy









  



                                                                           (15) 

With 

 
2 2

, x yP P h
x y e

 
                                                                                                     (16) 

The weight function  ,x y  measures the similarity between patches centered 

at x and y with width 2 1p  . The points, whose neighborhood are more similar, will 

have a larger weight and are more probably, belong to the same tissue. h is a nonnegative 

number to control the decay of the exponential function[46]. In practical implementations, 

the denoising methods only search pixels in a small window with radius r for 

computational purposes. Then the eigenvectors  
 and  

 of the tensor D can be 

improved as: 
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Then Equation 12 and Equation 13 can be improved as: 

   2 0x x y x tI u I I v I I div D v     
                   

                                                     (19) 

   2 0y x y y tI v I I u I I div D v     
                                                                       

(20) 

 

3. Simultaneous Intensity Inhomogeneity Correction, Registration and 

Segmentation Method  

Let 1I  be the reference image containing the atlas table 1T , 2I be the float image that 

needs to be segmented,  ,
T

u v be the vector field. The segmentation and registration 

coupled framework is given as : 

       2 Re 1 2 1min , , , , , , , , , , , , ,seg g CouE u v B E I B E I I u v E u v T      % %          (21) 

where, the first term denotes the segmentation functional, the second term denotes the 

registration functional and the third term measures the distance between the transformed 

atlas  1 ,T x u y v    and the current segmentation .Then, the simultaneous intensity 

inhomogeneity correction, registration and segmentation model can be written as: 
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3.1. Numerical Technique 

For fixed u , v , B%, , the minimization of  , , , ,E u v B % can be solved by using the 

gradient descent method: 
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         

 
   

 

   


       



     
           

    

 

      (23) 

Where,    #

1 1, ,T x y T x u y v  
 
and    

      
      

 

2

2
log

2

i

i i

i

J x B y u x
e y x y x dx

x
 



  
   
 
 


% %

                              (24)  

In the same manner, we can obtain the gradient descent flow of 2 : 

         

  

2
2 1 1 1 2 2 1 3 3 1 4 4 1

22 2
2 2

2 2

#

6 2 1 2

( )( 1 1

( )

( )

e H e H e H e H
t

div div

T H


         

 
   

 

   


       



     
           

    

 

       (25) 

For fixed  , B%, u , v ,we find an optimal  and that minimizes E . By some calculus 

manipulations, and can be given as 

 
      

 

i

i

i

J Y B X M dY
X

M dY

 


 

 








% %

                                                                (26) 
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 
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i i

i X

i

J Y B X u X M dY

M dY

 


 

  








% %
                                                    (27) 

For fixed  , , , u and v , B%can be obtained by minimum E : 

 
 

   
 

 
 

 

21
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N i

i ii
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i ii
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X Y M dY

B X

X Y M dY
X
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  













 

 

%

%                                             (28) 

For fixed  , , and B%,the minimization of Equation (23) comes down to solving its 

corresponding Euler-Lagrange equations. They are given by: 

       2

3 5 1 1, 1, 1,, 0x x y x t x y xI u I I v I I div D u T T u T v H x y T             (29) 

       2

3 5 1 1, 1, 1,, 0x y y y t x y yI I u I v I I div D v T T u T v H x y T             (30) 

Our model for simultaneous intensity inhomogeneity correction, segmenting and 

registration can be summarized as follows: 

Step 1. Initialize , , B%,u and v . 
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Step 2. Update   
by using Equation (23) and (25). 

Step 3. Update i , i by using Equation (26) and Equation (27). 

Step 4. Update B  by using Equation (28). 

Step 5. Update u , v  by using Equation (29) Equation (30). 

Step 6. Repeat Steps (2-5) until the stop requirement is achieved. 

 

4. Implementation and Results 

In this section, we tested the proposed method on both synthetic and real images 

acquired using different modalities. For all experiments shown in this paper, we set the 

parameters 5  for in Equation (4), 1i  , 1,2,3,4,5i  , 1  ,
20.001 255    and 

6 200  . 

The first experiments are carried out on 3T-weighted brain MR images. Three MR 

slices, together with the estimated bias fields, bias corrected images, and segmentation 

results are shown in Figure 1. The first column shows the reference images and the 2nd 

column shows the segmentation results of the reference images. It shows that the 

intensities within each brain tissue in the bias corrected images become quite 

homogeneous. Figure 1 demonstrates that the results of our method are consistent with the 

expected tissue regions. 

 

Figure 1. Illustration of Three 3T-Weighted Brain MR Images, (1st Column) 
Reference Image, (2nd Column) Atlas of the Reference Image, (3rd 

Column)the Images to be Segmented, (4th Column) Their Estimated Bias 
Fields, (5th Column) Bias-Corrected Images, and(6th Column) Segmentation 

Results of the Proposed Algorithm 
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In the second experiment, we quantitatively compared our method with four existing 

segmentation methods, including Li’s method [47], Ji’s method [15], Nonlocal 

information based Fuzzy Clustering method (NLFCM) [45] and LGD method[8]. The 

parameters for each method are set with the default values specified in the papers. All five 

methods are tested on the synthetic images, which were created with the MRI simulator 

(Brain Web, Brain Imaging Center at the Montreal Neurological Institute, McGill 

University). The simulator can provide full three-dimensional data volumes which have 

been simulated using three sequences(T1-,T2-,and PD- weighted) and a variety of slice 

thicknesses, noise levels and intensity inhomogeneity levels; provides the ground truth of 

the image data. In this manuscript, the parameters of the simulated data sets are: Phantom: 

normal, Slice thickness:1mm, Scan technique: SFLASH, TR=18 msec, flip angle =30 

degrees, TE=10 msec. The dimension of the image data sets is 181×217×181. In order to 

show the robustness of the methods on the noise, we applied all these methods on the 87th 

transaxial image with the noise levels: noise levels 1%, 3%, 4% and 5%. All these images 

have the same intensity inhomogeneity level 30%. The results are shown in Figure 2.  

 

 

 

 

 

 

Figure 2. Illustration of Simulated Four Transaxial Images (87th from 
BrainWeb). The First Row Shows the Reference Image, the Ground Truth of 
the Reference Image and the Ground Truth of the 87th Image, Respectively. 
The 1st Column Show the Initial Images with Parameters: Noise Levels 1%, 
3%, 4%and 5%, Respectively and Same Intensity Inhomogeneity Level 30%. 
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From the 2nd Column to the Right Column Show the Results of Li’s Method, 
Ji’s Method, NLFCM, LGD Method and Our Method, Respectively 

 

Figure 3. Details of the Results on the 87th Transaxial Image of a Simulated 
Image with Parameters: Noise Levels 3% and Intensity Inhomogeneity Level 
30%. (a) The Ground Truth. (b) The Result of Li’s Method, (c) The Result of 

Ji’s Method, (d) The Result of NLFCM, (e) The Result of LGD Method, (f) The 
Result of Our Method 

 

 

 

 

Figure 4. Illustration of Simulated Four Transaxial Images (87th from 
BrainWeb). The 1st Column Show the Initial Images with Parameters: 

Intensity Inhomogeneity Levels 20%, 40%, 60% and 80%, Respectively and 
the Same Noise Level 3%. From the 2nd Column to the Right Column Show 

the Results of Li’s Method, Ji’s Method, NLFCM, LGD Method and Our 
Method, Respectively 
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The first column shows the initial images and the second column shows the 

segmentation results of Li’s method. The Li’s method can reduce the effect of the bias 

field; however, it is based on the k-method and only uses the intensity information of each 

pixels, which makes it sensitive to the noise. From the results, we can find that the Li’s 

method cannot obtain satisfied results when the noise level increases. The third column 

shows the segmentation results of the Ji’s method. In order to reduce the effect of the 

noise, the method proposed spatial information amongst neighborhood pixels based on the 

posterior probabilities, prior probabilities and the spatial direction information. We can 

find that the Ji’s method can reduce the effect of the noise. However, Ji’s method is based 

on FCM, which makes it hard to segment tissues with low contrast. Figure 3 shows the 

details of the results on the 87th transaxial image of a simulated image with parameters: 

noise levels 3% and intensity inhomogeneity level 30%. The details of the Ji’s method are 

shown in Figure3.(c) and from the result we can find that the method is hard to distinguish 

the transition region between the tissues. The NLFCM reduce the effect of the noise by 

using nonlocal patch information of each pixel and the results can be seen in the 4th 

column of Figure 2. The NLFCM only uses the isotropic patch information, which makes 

it cannot obtain the results of tissues with slim structures. The details of the segmentation 

results can be seen in Figure 3.(d) and from the result, we can find that some CSF have 

been misclassified into GM. The LGD method models the intensities of each tissues by a 

spatial Gaussian distribution in local regions of each pixel, which can segment images 

meanwhile estimate the intensity inhomogeneities. The right column of Figure 2 shows 

the results of our method. From the results we can find that the LGD method cannot 

obtain satisfied results in some transition regions. The results of our method can be seen 

in the right column of Figure 2. In our method, we use the information of local region 

intensity distribution to construct the segmentation energy, use nonlocal information to 

guide the registration, and coupled the segmentation and registration to obtain the best 

results. 

In order to show the robustness to the bias field, we compared our method with Li’s 

method [19], Ji’s method [8], Nonlocal information based Fuzzy Clustering method 

(NLFCM)[18] and LGD method [3] on the 87 the transaxial image with the parameters: 

intensity inhomogeneity levels 20%, 40%, 60% and 80%, respectively and the same noise 

levels 3%. 

The first column of the Figure 4 shows the initial image. In this experiment, we use the 

same reference image as shown in Figure 2. The second column shows the segmentation 

results of the Li’s method. The Li’s method estimates the bias field by using basis 

function. However, this method is sensitive to the noise and when the inaccurate results 

may make the method trapped into local optima. The segmentation results of the Ji’s 

method are shown in the 3rd column. From the result, we can find that the method can 

reduce the effect of the noise by using local neighbor information of each pixel. As 

illustrated before, Ji’s method find accurate results in area with low contrast. The fourth 

column shows the segment results of the NLFCM method. The NLFCM method reduce 

the effect of the bias field by defining a regular term, which needs uses the intensity 

information of the local neighborhood of each pixel. This method has high computational 

cost and cannot estimate the bias field. This method cannot obtain satisfied results in the 

areas with low contrast. The fifth column shows the segmentation results of the LGD 

method. The method can segment images meanwhile estimate the intensity 

inhomogeneities. However, the bias field is depend on the accuracy of the segmentation, 

more accurate segmentation results can make the method obtain more accurate estimated 

bias field. The method cannot obtain accurate results in the area with low contrast. The 

segmentation results of our method are shown in the right column and are more robust 

than other methods. 

To facilitate the visions, we compare the proposed algorithm with the other relative 

methods on simulated brain MR images. The performance of segmentation was evaluated 
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quantitatively by using the Jaccard similarity (JS), which is the ratio between intersection 

and union of the segmented volume 1S and ground truth volume 2S . 

 1 2 1 2 1 2,JS S S S S S S                                                                                     (31) 

The value of JS ranges from 0 to 1, with a higher value presenting a more accurate 

segmentation result. To statistically show the significant of the proposed method, we 

apply above five methods to the segmentation of 40 whole simulated MR image data sets, 

in which the level of noise ranges from 3% to 9%. The accuracy of the segmentation is 

measured by the average JS value, and the statistical results (means and standard 

deviations of JS values for WM, GM and CSF) are listed in Table 1. The results 

demonstrate that our method produces the most accurate results and has the best ability 

and robustness to the noisy images (with lower standard deviations of JS values and 

higher mean of JS values when the noise increases), especially in the area with abundant 

textures (with higher JS values for CSF tissue). We also apply above five methods to the 

segmentation of 40 whole simulated MR image data sets, in which the level of intensity 

inhomogeneity ranges from 20% to 100%. The segmentation accuracy is measured in 

terms of the average JS of WM, GM and CSF delineation, and is shown in Figure 5. Both 

visual and quantitative comparisons show that the our method is more robust to the 

intensity inhomogeneity and can obtain more accurate results. 

Table 1. The Average JS Values (Mean ± Standard Deviation) of GM, WM 
and CSF Segmentation Obtained by Applying Five Algorithms to T1-

Wighted Brain MR Images with Increasing Level of Noise. 

Algorithm 
Tissue

s 
3% 5% 7% 9% 

Li’s method 

WM 

GM 

CSF 

0.9182 0.078 

0.9062 0.048 

0.8937 0.052 

0.7831  0.06

5 

0.7914  0.04

6 

0.7624  0.06

5 

0.7100  0.04

6 

0.7250  0.03

6 

0.7023  0.06

9 

0.6814 0.038 

0.6753 0.032 

0.6649 0.042 

Ji’s method 

WM 

GM 

CSF 

0.9265 0.054 

0.9156 0.023 

0.9143 0.021 

0.9069  0.06

1 

0.8387  0.01

9 

0.8911  0.03

1 

0.8825  0.06

5 

0.8216  0.03

9 

0.8711  0.03

2 

0.8631 0.066 

0.8076 0.021 

0.8421 0.041 

NLFCM 

WM 

GM 

CSF 

0.9214 0.024 

0.9286 0.041 

0.9103 0.028 

0.8735  0.03

1 

0.8626  0.04

9 

0.8541  0.03

7 

0.8625  0.03

4 

0.8716  0.01

9 

0.8427  0.04

1 

0.8432 0.041 

0.8264 0.052 

0.8268 0.046 

LGD 

WM 

GM 

CSF 

0.9212±0.037 

0.9236±0.026 

0.9167±0.029 

0.9037±0.041 

0.9108±0.037 

0.9061±0.035 

0.8912±0.045 

0.8979±0.049 

0.8820±0.030 

0.8811±0.037 

0.8851±0.046 

0.8713±0.029 

our method 

WM 

GM 

CSF 

0.9401±0.019 

0.9391±0.017 

0.9303±0.022 

0.9367±0.036 

0.9307±0.032 

0.9289±0.033 

0.9286±0.037 

0.9245±0.037 

0.9207±0.029 

0.9152±0.035 

0.9128±0.033 

0.9119±0.031 
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Figure 5. Average JS Values of the Segmentation Results of WM(Left), 
GM(Middle) and CSF(Right) Obtained by Applying Five Segmentation 

Methods to Simulated Brain MR Images with Increasing Levels of Intensity 
Inhomogeneity 

4. Conclusion 

In this paper, we proposed a simultaneous intensity inhomogeneity correction, 

registration and segmentation coupled method. The method can obtain more accurate 

results, especially for brain tissues with low contrast, by coupling the registration and 

integrating the bias field estimation model into the objective function. This method 

successfully overcomes the drawbacks of existing simplex segmentation schemes, 

including limited robustness to outliers, over-smoothness for segmentations, and limited 

segmentation accuracy for image details. Our results of both synthetic and real images 

show that the proposed model can largely overcome the difficulties raised by noise, 

intensity inhomogeneity, low contrast and is capable of producing more accurate 

segmentation results than several state-of-the-art algorithms. 
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