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Abstract 

A novel design of dual-tree complex wavelet transform (DTCWT) and fastICA was 

proposed, aiming at the noise interference and aliasing between multi-channels sEMG 

signals. Firstly, DTCWT was utilized to decompose signals to different frequency band. 

Secondly, an improved LMS adaptive filter was designed for filtering sub band noise 

layer by layer. Finally, fastICA algorithm was introduced to separate crosstalk between 

channels. Some experiments were carried out to compare the proposed method with other 

algorithms, and the results showed that the algorithm proposed could filter noise 

effectively, keep better convergence especially in low signal-to-noise ratio and eliminate 

crosstalk more thoroughly by fastICA. 

 

Keywords: sEMG; dual-tree complex wavelet transform; subsection variable step size 

LMS; fastICA. 

 

1. Introduction 

Surface electromyogram (sEMG) signals, recorded on the face of the skin, 

provides crucial information about the neuromuscular activity in muscle. Thus, 

sEMG signals can be used for the rehabilitation, prosthesis, sports training, ect  [1-

3]. But some problems need to be solved before the commercial applications. For 

one thing, sEMG signals are very weak, with an amplitude usually between 

100~5000μV. Various noise such as artifacts and neuroelectrical excitement of non -

measured muscles gathering at the skin-electrode could interface contaminate the 

signals[4], though high-precision measuring instruments are used. At the same time, 

the frequency spectrum collected by commonly used sensors ranges from 0 to 

400Hz, and overlaps with several noise sources in the same low-frequency spectra. 

For another, multi-channel sEMG sensors are used widely for more information on 

different limb movements and there are much aliasing between multi-channels[5]. 

So it is necessary to design a specific filter to decrease such noise and represent the 

signal that matches better with the muscular function. 

The adaptive interference cancellation is a very efficient method to solve the 

problem of the signal interference with overlapping spectra[6-7], especially for the 

interference in single or a kind of different narrow frequency band. The wavelet 

transform is a good method to divide the signals into different frequencies, and the 

wavelet transform-domain least mean square (WT-LMS) algorithm is proposed to 

reduce the common artifacts in nonstationary biological signals without removing 

significant information[8-10]. However, an important drawback of the wavelet 

transform is that, the distribution of energy between coefficients at different scales 

is very sensitive to the shifts in the input data[11-12].  
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In this study, an algorithm of complex wavelet transform-adaptive filter was 

proposed for filtering out noise and crosstalk between channels effectively. And a 

variable step size LMS was present. FastICA[13-14] as a separation method for 

multi-channel aliasing signals with no inhibitory effect on noise, was used to 

separate multi-channel sEMG signals. At last, denoising performance of dual tree 

complex discrete wavelet transfor-domain subsection variable step size LMS 

(DTCWT-SMVSS) proposed in this paper was compared with other algorithms. 

Experiments shown the satisfied results in sEMG signals test. 

 

2. Background Matherials 
 

2.1.s MVSS Algorithm 

Adaptive 

algorithm

d(n)

-y(n)

e(n)x(n)

 

Figure 1. Structure of the Adaptive Filter 

Figure 1 shows a typical adaptive filter, where x(n), d(n) and e(n) are the references, 

corrupted and output error signals respectively. d(n) is composed of the desired signal s(n) 

and noise signal v0(n), which is additive and not correlated with s(n). Likewise, x(n) is 

uncorrelated with s(n) and correlated with v0(n). So the output of the filter y(n) is a close 

estimate of v0 (n). Here, w(n) is the filter coefficients. 

Then the error signal is defined as 

( ) ( ) ( ) ( )Te n d n x n w n                                                                                           (1) 

and the w(n) is updated as follow 

( 1) ( ) ( ) ( ) ( )w n w n n e n x n                                                                                 (2) 

where μ(n) is the step size of the algorithm which controls the stability and the 

convergence rate. It is updated as follow[15] 

( ) ( ) (1 ) ( ) ( 1)p n p n e n e n                                                                               (3) 

min min

max max

2

( 1)

( 1) ( 1)

( ) ( )

n

n n

n p n else

  

   

 

 


   
                                                            

(4) 

Where p(n) is the mean time estimation of e(n)e(n-1); β, 0<β<1, is error 

forgetting factor; λ, 0<λ<1, is step regulatory factor, which decides the step size at 

convergence, and γ, γ>0, decides the influence degree of step, controls the 

algorithm’s imbalame and covergence speed, and. 
 

2.2. Dual Tree Complex Wavelet Transform 

The structure of DTCWT, giving real and imaginary parts of complex coefficients 

from primary and secondary tree respectively, is shown in Figure 2. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 5 (2016) 

 

 

Copyright ⓒ 2016 SERSC  349 

h0(n) 2

2h1(n)

2

2

2

2

g0(n) 2

2g1(n)

2

2

2

2

h0(n)
h0(n)

h1(n)
h1(n)

g0(n)
g0(n)

g1(n)
g1(n)

X(n)

D(n)

Q(n)

 

Figure 2. DT-CWT Filterbank 

It consists of two DWT filter banks, and each pair of lowpass and highpass filters 

is imposed the half sample delay condition. This enables high directional selectivity 

and approximately shift-invariance[10]. h0(n) and g0(n) are two low pass filters, and 

similarly, h1(n) and g1(n) are two high pass filters. They should satisfy that[11] 

g0(n)= h0(n-0.5)                                                                                                     (5) 

and 

( ) ( ) ( )X n D n jQ n                                                                                                  (6) 

where D(n) is in-phase and Q(n) is quadrature phase components of the siganl. They 

can also be represented in terms of the directienal signals as 

 ( ) ( ) ( )

( ) ( ) ( )

f r

f r

D n S n H S n

Q n H S n S n

  

    
                                                                                      (7) 

where Sf(n) and Sr(n) represent forward and reverse signals respetively and H[] 

stands for the Hilbert transform. The information concerning on flow direction is 

encoded in the phase relationship between D(n) and Q(n). 

 

2.3. FastICA algorithm 

ICA is a statistical method for transforming an observed multidimensional 

random vector into components as statistically independent as possible[14]. As 

sEMG signal is Non-Gaussian signal and each channel is statistically independent, it 

satisfies the requirement of ICA completely. 

X AS  where 
1 2[ , , , ]T

mX x x x is a m- imensional aliasing signals, 

1 2[ , , , ]T

nS s s s is a zero-mean unknown independent signals, and A is a m n  

reversible matrix.  

The main goal of ICA is to find the matrix W such that Y=WZ 

(
1 2[ , , , ]T

nY y y y is an approximation signal of S and 1 2[ , , , ]T

nZ z z z is the 

centralization and whitening result of X) becomes as independent as possible. 

The concrete steps are 

A.  let / TW W WCW and { }TC E zz ;  

B. let 
3 1

2 2

TW W WCW W  ;  

C. repeat 2. until convergence. 
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3. DTCWT-SMVSS Algorithm for sEMG Filtering 

 

3.1. Algorithm Structure 

The corrupted d(n) is the signals collected by skin-electrode interface, and 

consisted of the pure sEMG signal s(n) and various noise signals v0(n). The 

reference x(n) is the error of d(n) reconstruction, which is connected with v0(n) and 

independent with s(n). The ouptut of the whole algorithm is ˆ( )s n , which is an 

optimal estimate of s(n). The stucture of proposed DTCWT-SMVSS algorithm is 

shown in Figure 3. 
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Figure 3. The Structure of Proposed DTCWT-SMVSS Algorithm 

3.2. Signals Decomposition and Reconstruction 

Although the frequencies of several noise overlap with that of the sEMG signals, 

by decomposing with the corrupted signals the noise spectral range is greatly 

narrowed in each packet, which is good for adaptive filter to get optimized step size.  

Let 

 ( ) ( ), ( 1), , ( 1)
T

d n d n d n d n N                                                                          (8) 

and 

 ( ) ( ), ( 1), , ( 1)
T

x n x n x n x n N                                                                           (9) 

be the corruped and reference signal vector. For the first step, they should be 

decomposed respectively. As the DTCWT consists of a pair of DWT trees, each 

representing real and imaginary parts of the transform, and in both DWTs all the 

filters are real, so 

( ) ( ), ( )j j

dj dr diz n z n z n                                                                                          (10) 

( )j

drz n  is the real part of the decomposition result of d(n) in the j
th

 subfilter, ( )j

diz n  is 

the imaginary part, and the same to 

( ) ( ), ( )j j

xj xr xiz n z n z n    ,                                                                                   (11) 

which is the decomposition result of x(n) in the j
th

 subfilter. If the signals is 

decomposed L-band, the number of adptive filters is L. 
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For descripion clearly, let zx(n)=[zx1(n), zx2(n),…, zxL(n)]
T
, zd(n)=[zd1(n), zd2(n),…, 

zdL(n)]
T
, and e(n)=[e1(n), e2(n),…, eL(n)]

T
, then zxi(n), zdi(n) and ei(n) are the 

reference, corrupted and output signal of the i
th 

subfilter(0<i<L), respectively. The 

output of DTCWT reconstruction is 0 ( )v n , which is a close estimate of v0(n). 

 

3.3. SMVSS Agorithm 

The corrupted and noise signals result in that the frequency range of decomposed 

signals is in a very narrow band. The adaptive filter could have better filtering 

performance when the noise is of single or narrow frequency band. But it is difficult 

to find a perfect step size for every filter to get satisfied filtering effect, and there is 

a contradictory relation between convergence speed and steady performance.  

Let wi(n) be the i
th 

subfilter coefficients, so the error signal is designed as 

( ) ( ) ( ) ( )T

i di i xie n z n w n z n  , and the updating equation for each subfilter is improved  

( 1) ( ) ( ) ( ) ( )i i i i xiw n w n n e n z n   ,                                                                     (12) 

1 1 1 1( 1) ( ) (1 ) ( ) ( 1)i i i ip n p n e n e n      ,                                                           (13) 

2 2 2 2( 1) ( ) (1 ) ( ) ( 1)i i i ip n p n e n e n       ,                                                       (14) 

1 1 2

2

( 1) ( 1) ( 1)
( 1)

( 1)

i i i

i

i

p n p n p n
p n

p n else

   
  

 ,                                                          (15) 

( 1) ( ) ( 1)i i in n p n                                                                                    (16) 

At the beginning of the algorithm or there is a break in the signal, a bigger ( )i n  

is needed for improving convergency rate. But ( ) ( 1)i ie n e n is smaller than ( )ie n  or 

( 1)ie n , even though (1-βi) is bigger, because ( )ie n and ( 1)ie n are both smaller than 

1. But ( ) ( 1)i ie n e n  is bigger than ( ) ( 1)i ie n e n  at that moment, so pi2>pi1, so the 

same to the other situation. When the signals is to be flatten, ( )ie n  is smaller, 

( ) ( 1)i ie n e n  is smaller than ( ) ( 1)i ie n e n . 

 

4. Experimental Analysis  
 

4.1. The Results of DTCWT-SMVSS Filtering 

For verifying the efficiency of algorithm proposed in this paper and comparing 

the filter performance with other previous ones, we simulated a pure sEMG signal 

with gaussian white noise, and the results were evaluated by the signal to noise ratio 

(SNR) and similarity degree of waveforms (η). They are 

 

2

1

2

1
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10lg

ˆ( ) ( )

N

i

N

i

s i

SNR

s i s i












                                                                                          

(17)
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1
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 
                                                                                                  

(18) 

where s(i) is original signal without noise, ( )s i is the signal after being filted, N is 

signal length. So the bigger the SNR is, the better the filtering performance is.  

η(−1≤η≤1), which -1 means the two waveforms in comparing are completely 

opposite; 0 means they are orthogonal; and 1 means they are same. 

In the aspect of parameters optimization, DTCWT-SMVSS was at (L=6, β1=0.8, 

β2=0.85, α=0.3, γ=0.3), while with other algorithms, such as WT-LMS (L=6, 

μ=0.01), WT-SMVS (L=6, β=0.8, α=0.3, γ=0.3), and DTCWT-LMS (L=6, μ=0.05). 

The SNR and η were computed as proportion of noise changed, and the results were 

shown in Table 1.  

Table 1. The Comparison Result of Some Algorithms 

SNR before 

filting 

 WT_ 

LMS 

WT-

SMVS 

DTCWT_ 

LMS 

DTCWT_ 

SMVS 

DTCWT_ 

SMVSS 

24.0320 

（0.3） 

SNR 13.3702 24.0501 32.4064 35.0928 47.7289 

η 0.8587 0.9576 0.9803 0.9852 0.9958 

10.3867 

（0.6） 

SNR 12.4301 10.4281 30.8340 24.1128 37.9520 

η 0.8436 0.8587 0.9769 0.9571 0.9888 

1.8337 

（0.9） 

SNR 12.9731 1.8719 27.4693 15.8505 28.9716 

η 0.8533 0.7387 0.9677 0.9099 0.9731 

From Table 1. it can be seen that, with the decreasing of SNR before filting, the 

proportion of noise increased, and the SNR and η decreased for all algorithms. But 

due to the condition that other parameters were always unvaried, the method 

proposed in this paper has best SNR and η for all the time with η>0.97, especially 

when noise was bigger. Also, WT-SMVS and DTCWT-SMVS were not suitable for 

sEMG signals, and the step μ depended on μmin for most time. So when the noise 

increased, the SNR decreased quickly. WT-LMS and DCTWT-LMS were computed 

the fasted, but it was difficult to find a good μ for them. 

 

4.2. Actually Signal Experiments 

To verify the effectiveness of the algorithm, many experiments have been 

conducted with the sEMG equipment of Thought Technology Ltd, and the sampling 

rate is 500Hz. Subjects were asked their consent prior to the experiment and to fill 

in a brief questionnaire concerning personal data, such as age, gender, height, 

weight, laterality and self-reported health status. The skin of the subjects was 

carefully cleaned with isoprogyl alcohol. Before the experiments, the subject stands 

naturally and relaxed without vigorous exercise. Four electrods were palpated on 

pronator teres, brachioradialis, biceps brachii and deltoid during the arm moved 

repeatedly. To ensure a consistent start and end position, repetition was alternated 

with a rest posture lasting approximately 1s. 

javascript:showjdsw('showjd_0','j_0')
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(a) The collected signals in time domain 

 
(b) The collected signal in frequency domain 
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(c) The filtered signals in time domain 
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(d) The filtered signal in frequency domain 

Figure 5. The Filtering Results of Some Algorithms 

A part of collected signal is shown in Figure 5. It can be seen that the artifacts 

was obvious in (a) and the low frequency interference was strong. After filtering the 

artifacts was removed and the noise was reduced greatly as shown in (c), the 

frequency spectrum of filtered signal is nearly the same as (b), which means that the 

frequency in main band was almost lossless after filtering. 

 

4.2. FastICA Experiment Results  

There are two uncertainties in ICA, namely the sequence of output vector, which 

means the corresponding relationship between signals and muscles could not be 

gotten, and the amplitude of output vector, which the real energy information of 

muscles movement could not be available. 

Therefore the maximum correlation coefficient between the fastICA component 

and source signals was used in this paper. At the first stage, the STCWT-SMVSS 

was used to filter most noise. Then fastICA was used to separate multi-channel. 

Figure 6 is the collected multi-channel signals, and the channels from (a) to (d) are 

the signals of pronator teres, brachioradialis, biceps brachii and deltoid respectively. 

Figure 7 shows the corresponding fastICA results. The correlation coefficient 

between four channels sEMG signals is shown in Table 2. 
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Figure 6. Collected Signals from Four Channels (from (a) to (d) are the 
Signals of Pronator Teres, Brachioradialis, Biceps Brachii and Deltoid 

Respectively) 
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Figure 7. The Results of FastICA (from (a) to (d) are the Signals of Pronator 
teres, Brachioradialis, Biceps Brachii and Deltoid Respectively) 
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Table 2. The Correlation Coefficient between Four Channels sEMG 
Signals 

 Before fastICA After fastICA 
Cha. a b c d a b c d 

a 1.000 -0.138 0.405 0.081 1 3.072e-15 1.053e-16 -8.067e-16 

b -0.138 1.000 -0.338 -0.132 3.072e-15 1 5.530e-16 -2.285e-15 

c 0.405 -0.338 1.000 0.034 1.053e-16 5.530e-16 1 9.523e-16 

d 0.081 -0.132 0.034 1.000  -8.067e-16 -2.285e-15 9.523e-16 

From table2 it can be illustrated that, the crosstalks in collected signals between 

channel (a) and (c), (b) and (c), (c) and (d) were obvious, corresponding to the arm 

motion. After fastICA the correlation coefficients between any two channels 

approached to 0, meaning there was no crosstalk in each channel. 

 

5. Conclusion 

The basic premise for accurately analysis sEMG required noise and crosstalk 

filtered effectively in collected sEMG signals. A new method was proposed by 

combining DTCWT-- subsection variable step size LMS and fastICA. The 

experiments have shown that the method, DTCWT_SMVSS, was robust with white 

noise and work well even for the case of low SNR, and the crosstalk was eliminated 

more thoroughly by fastICA after filtering. 
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