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Abstract 

Signal processing takes an important role in genomic with enormous data available in 

public domain. Generally digital filters are applied to predict the protein and genes, but it 

needs to be redesigned when the characteristic frequency and periodic behavior is 

changed. In this paper proposed the novel adaptive algorithm which can identify the 

genes and proteins effectively from unified framework. First using the electron ion 

potential method the symbolic DNA sequences are converted in to digital signal. Secondly 

the filtering scheme for genomic signal processing with periodic behavior in biological 

sequence is introduced, which can predict and analyze the biological region that are 

interested in. finally the proposed adaptive filtering method is applied to recognize  the 

exons of protein coding regions according to periodic-3 property. The exons prediction 

curves are obtained with Discrete Fourier Transform (DFT), Least mean square (LMS), 

and proposed Fast Recursive least Mean Square (F-RLS) algorithms. It is shown that 

proposed method shows efficiency in convergence of identification and precise prediction 

of exons regions compared to existed methods. 
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1. Introduction 

Genomic Signal Processing (GSP) is the engineering discipline that studies the 

processing of genomic signals. It encompasses several methodologies for expression 

profiles: detection, prediction, classification, control and statistical and dynamic models 

of gene networks [1]. It can be a very useful tool for processing large genomic and 

proteomic data [2-6] and [9]. These data contain deoxyribonucleic acid (DNA), 

ribonucleic acid (RNA) and protein sequences. It is necessary to process DNA, RNA and 

protein sequences to identify segments of special biological, such as exons, introns and 

hotspots. A DNA sequence comprises four different nuclides (or bases) named as A, T, C 

and G. By mapping the alphabetic sequence of a DNA chain into a set of digital signal 

processing (DSP) techniques based on digital signals can be applied to analyze the DNA 

sequence. 

At present, traditional and modern signal processing techniques play an important 

role in these fields. For example, the Fourier transform has been applied to iden tify 

exons in genes. To improve the traditional Fourier analysis performance in 

distinguishing coding from non-coding regions in a DNA sequence an optimization 

procedure has been used. The Digital filters have been applied to the gene 

prediction. The multi-stage filter is designed to process the pointer sequences, in 

order to reduce locale noise and to obtain the curve prediction coding regions. DSP 

other methods have been applied to identify protein coding regions .In hot spots on 
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proteins they have been predicted according to the characteristic frequency of the 

protein sequence. 

 

2. Numerical Mapping of DNA Sequence 

For the identification of protein-coding regions we have to apply suitable signal 

processing methods, the character string of the DNA sequence is changed to a suitable 

numerical sequence. This is achieved by assigning a numeral to each nucleotide that 

forms the DNA sequence. Therefore, various techniques have been suggested to achieve 

this particular conversion. The goal of each encoding method is to improve the hidden 

information for further analysis. One of the most extensively used methods is adaptive 

filters [1], where the character string of DNA is converted to four binary pointer 

sequences for each base (A, T, C and G). It assigns a digit ―1‖ when a particular symbol is 

found in the sequence, otherwise a ―0‖. Anastassiou [2] has proposed a complex number 

mapping by conveying a particular complex number to each base. Silverman and Linsker 

[4] have used a tetrahedron mapping, in which each nucleotide is assigned to one of the 

four corners of a regular tetrahedron. Chakravarthy [3] have proposed a real number 

mapping of the DNA sequence. Zhang [5-6] presented a Z-curve mapping, which is a 

three-dimensional curve representation for the DNA sequence. Recently, Nair [7-8] have 

used an EIIP indicator sequence to map the character string of DNA to numeric form. The 

EIIP is defined as the average energy of delocalized electrons of the nucleotide. Assigning 

the EIIP values to the nucleotides, a numerical sequence is obtained to represent the 

distribution of the free electrons’ energies along the DNA sequence. This has been 

effectively used to identify hot spots in proteins, for peptide design and also for 

identification of coding regions [7-9]. The EIIP sequence is a better choice for 

numerically representing DNA when compared to indicator sequences for the following 

reasons. First, it involves only a single sequence instead of four in the case of binary 

indicator sequences, thereby reduces the computational complexity. Second, it is 

biologically more meaningful as it represents a physical property when compared to the 

indicator values, which represent just the presence or absence of a nucleotide. Hence in 

this paper, we have also used the EIIP representation method of numerical mapping of 

DNA sequence. The DNA sequence can be converted to the numerical sequence by 

replacing each nucleotide with the corresponding EIIP value. The EIIP values for the 

nucleotides are given in Table 1. For example, if x[n]=AATGCATCA, then using the 

values from Table 1, the corresponding EIIP numerical sequence is given as: 

x[n]=[0.1260 0.1260 0.1335 0.0806 0.1340 0.1260 0.1335 0.1340 0.1260]. 

Table 1. The EIIP Values of Nucleotides 

Nucleotide EIIP value 

A 0.1260 

T 0.1335 

G 0.0806 

C 0.1340 

 

2.1. Spectral Content Measure Method 

In this frequency domain method, the discrete Fourier transform (DFT) of the EIIP 

indicator sequence is employed. Let X(k) represents the DFT of the corresponding EIIP 

numerical sequence and is given by: 

     ∑      
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 For k = 0, 1, …, N-1.  

Then the spectral content at k
th
 instant is: 

 

S [k] = |X [k] |
2
                                                                                                                    (2) 

 

S[k] acts as a preface indicator of a coding region giving a peak at the N/3 

frequency. This procedure is used to detect the probable coding regions in the DNA 

sequence. Hence the coding regions are identified by evaluating S[N/3] over a 

window of N samples, then sliding the window by one or more samples and 

recalculating S[N/3]. This process is carried out over the entire DNA sequence. The 

peaks in the spectra obtained by the sliding window DFT correspond to the protein -

coding regions. It is essential that the window length N be adequately large (typical 

sizes are a few hundred to a few thousand), so that the periodicity effect dominates 

the background noise spectrum. This approach increases the computational 

complexity as it computes the spectrum within a window and is also constrained by 

the frequency resolution and spectral leakage effects of the windowed data record. 

 

3. The Adaptive Filtering Approach for Genomic Signal Processing 

The adaptive filtering method for predicting biological function segments is shown in 

Figure 1. Let the input signal of the filter be denoted by x(n) , the output be y(n), the 

desire response be d(n) and the error be e(n). We choose the desired signal d(n)  in terms 

of the period-3 behavior. The error e(n) between output y(n) and desired response signal 

d(n) is used to regulate the weights vector of the filter. 

 

 

Figure 1. Adaptive Filtering Method for Predicting Biological Function 
Segments 

The four indicator sequences are used as the input signals xk(n) of the adaptive filter 

             .The output signals yk(n) are obtained. The four output signals all have 

contribution to the prediction, so we define the sum output y(n)  as 

     |     |   |     |  |     |  |     |                                                         (3) 

It has been noticed that period-3 property exists within the exons (coding regions inside 

the genes) for eukaryotes (cells with nucleus) and does not exist within the introns (non-

coding regions in the genes) because of coding biases in the translation of codons into 

amino acids. In this paper, period-3 property is applied to find the protein coding 

segments (exons) in a DNA sequence. According to theperiod-3 property of protein 

coding regions, the desired signal is generated by sinusoidal functions in f(k) with the 

frequency f=2Π/3, k=0,1,2,3… which is desired periodic signal. 
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3.1. The DFT 

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier 

Transform for signals known only at N instants separated by sample times T(i.e. a finite 

sequence of data)[10-15]. 

Let f(t) be the continuous signal which is the source of the data. Let N samples be 

denoted f(0), f(1), f(2), f(3),…,f(k),…,f(N-1).  

The Fourier Transform [16] of the original signal, f(t), would be  

      ∫            
 

  
                                                                                                (4) 

We could regard each sample f(k) as an impulse  having area f(k). Then, since the 

integrand exists only at the sample points: 

       ∫ ∫            
 

  

      

 
                                                                                      (5) 

                                                   
i.e., 

      ∑              
                                                                                                  (6) 

We could in principle evaluate this for any , but with only N data points to start with,   

only N final outputs will be significant. The continuous Fourier transform could be 

evaluated over a finite interval (usually the fundamental period T0) rather than from    

to    if the waveform was periodic. Similarly, since there are only a finite number of 

input data points, the DFT treats the data as if it were periodic (i.e. f(N) to f(2N-1) is  

the same as f(0) to f(N-1). 

 

3.2. Least-Mean Square (LMS) Algorithm 

Generally adaptive filter algorithms are implemented in an iterative or recursive 

manner. With each iteration, they improve the performance of the filter according to the 

criteria of performance. Specifically if we let    to be a vector of length N whose 

elements are the time-varying coefficients of an FIR filter at time index n, then the 

adaptation mechanism of the vector can be given by 

                                                                                                                    (7) 

where   is the learning parameter called the step-size that controls the amount of 

correction applied to the weight vector in each iteration and ensures the convergence of 

the adaptive algorithm. The term      is the gradient of the cost function with respect to 

the weight vector of the algorithm. (7) represents a special approach in adaptive 

algorithms called the steepest descent [1]. In this approach, the solution to the problem, 

i.e., the filter that best suits the application is sought in the direction where the cost 

function is minimized. Hence the term      is given as 

      
  

  
= 

  

  
                                                                                                         (8) 

where       is a function of the error and consequently 

                                                                                                                               (9) 

is the cost function. According to the steepest descent approach, the gradient of the cost 

function can be written as 

                                                                                                                   (10) 

where    is the tap input regressors taken from the input sequence     ,           
   

is the autocorrelation of the input regressor and              is the cross-correlation of 
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the input regressor and the desired response. The expectation that appears in (8) requires 

the knowledge of the statistics of the tap input vector that, in practice, is not available. 

Hence the gradient has to be estimated by dropping the expectation and taking the sample 

value of the tap input. This introduces a randomness or stochastic behavior to all such 

adaptive algorithms and is hence termed stochastic gradient algorithms. The 

approximation made for (8) can be further explored where 

  ̂     ̂    ̂    

=        
     

  ̂     =                                                                                                                     (11)  

or in general it can be setup as  

  ̂                                                                                                                     (12)  

Where        is a function of the error,  ̂    can be viewed as the gradient applied to 

the instantaneous error function, and 

 ̂            ̂      
  

are the instantaneous cross-correlation between the desired and tap input vector and the 

autocorrelation of the tap input vector, respectively. Substituting (12) in (7) will give us 

the generic adaptation equation for stochastic gradient algorithms as 

                                                                                                                  (13) 

where    is the step-size of the algorithm. Selecting the appropriate error function, g (en), 

will yield different algorithms that behave totally differently and require extensive 

analysis for their proper behavior to be characterized. 

By far the most popular stochastic gradient algorithm is the Least-Mean Square (LMS) 

algorithm [17-19] developed by Widrow and Hopf. The name signifies its cost function as 

the minimization of the mean squared error. The error function for LMS is given by g(en) 

= en, the LMS weight update recursion will be 

wn+1 = wn + μXnen                                                                                                             (14) 

Due to its simple yet elegant mathematics, this algorithm has been extensively used in 

various applications. The most motivating factor of its usage is its simplicity of 

implementation. The LMS algorithm achieves good performance characteristics when the 

conditions of operation are rightly suited for it. This performance is seen where the noise 

environment is Gaussian. Even then there are limitations to its performance that has seen 

its fair share of research. The motivation behind improving the LMS algorithm is its slow 

convergence rate and higher steady-state error. The slow convergence of the LMS 

algorithm is due the fact that it is based on the minimization of the mean-squared error 

and is only dependent upon the second order moment of the noise; this results in identical 

convergence rates in various noise environments. 

Also the steady-state error of the LMS algorithm is dependent on the second order 

moment of noise which, as we shall see later, compared to algorithms based on higher 

order moments of error, results in higher steady-state error. Moreover, the steady state 

error and rate of convergence are highly dependent upon the step-size of the algorithm. In 

fact the steady-state error is inversely proportional to the step-size parameter. This 

highlights a compromise that has to be made in every design of fixed step-size algorithms. 

 

3.3. Fast RLS Algorithm 

In general the problem of system identification involves constructing an estimate of an 

unknown system given only two signals, the input signal and a reference signal. Typically 
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the unknown system is modeled linearly with a finite impulse response (FIR), and 

adaptive filtering algorithms are employed to iteratively converge upon an estimate of the 

response. If the system is time-varying, then the problem expands to include tracking the 

unknown system as it changes over time. The system identification problem has numerous 

applications in control systems, digital communications, and signal processing, and a 

recent survey of adaptive filtering algorithms highlights the rich diversity of techniques 

available in the literature [1]. Adaptive filtering has been, and still is, an area of active 

research, playing important roles in an ever increasing number of applications [1-20]. 

Numerous algorithms for the solution of the adaptive filtering problem have been 

proposed over the years. The recursive least squares (RLS) algorithms are used in a broad 

class of applications. The RLS algorithm solves this problem, but at the expense of 

increased computational complexity. A large number of fast RLS (FRLS) algorithms have 

been developed over the years, but, unfortunately, it seems that the better a FRLS 

algorithm is in terms of computational efficiency, the more severe is its problems related 

to numerical stability [21]. Several numerical solutions of stabilization, with stationary 

signals, are proposed in the literature [22-27].  

The main identification block diagram of a linear system with finite impulse response 

(FIR), by adaptive filtering using an adaptation algorithm, is represented in Figure 2. 

 

Figure 2. System Identification Block Diagram 

The output a priori error    of this system at time n is: 

                                                                                                                             (15) 

Where 

       
                                                                                                                        (16) 

is the model filter output,                        
  is a vector containing the last L 

samples of the input signal   ,                              
  is the coefficient 

vector of the adaptive filter and L is the filter length. We assume that the desired signal 

from the model is: 

          
                                                                                                               (17) 

Where                              
  is the unknown system impulse response 

vector and    is a stationary, zero-mean, and independent noise sequence that is 

uncorrelated with any other signal. The superscript      describes transposition.  

The filter    is calculated by minimizing the weighted least squares criterion according to 

[1]: 

      ∑  
         

    
  

                                                                                        (18) 
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where   denotes the exponential forgetting factor (0 <  ≤ 1). The recursive solution is 

written as follows: 

                                                                                                                     (19) 

Where     represents the adaptation gain, given by: 

     
      

 
 ̅                                                                                                         (20) 

With 

   ∑  
       

            
  

                                                                               (21) 

The quantity     is the L-by-L sample covariance matrix of the input signal  . 

The variables  
 

  and  ̅  respectively indicate the likelihood variable and 

normalized Kalman gain vector. This latter is calculated, independently of the 

filtering part wn, by a FRLS algorithm using forward/backward linear prediction 

analysis over the signal  . The calculation complexity of a FRLS algorithm is of 

order L. This reduction in computation complexity. 

 

4. Results 

In order to demonstrate the performance of the methods, we apply them on some gene 

sequences. AF019074, AJ223321.1 and AF009962 from Gen bank database. AF009962 is 

the accession number for single exon, which has one coding region at position 

3934‑4581. The gene sequence AF019074.1 has the length of 6350, which has three 

distinct exons, 3187-3500, 3761-4574 and 5832-6007. There is one coding region existed 

in AJ223321.1 gene sequence, which its location is 1196‑2764. All mentioned sequences 

are converted to numerical sequences using EIIP method. 

In this paper, to compare the performance of the proposed adaptive algorithm plotted in 

Figure 3, Figure 4 and Figure 5. From the figures, the exons can be seen and the 

background noise is removed. Compared to the real locations of the exons , there exists 

some error to predict the actual exons locations using DFT method. Figure 4, 5 and 6 

shows the predictive results of the DFT, LMS and FAST-RLS adaptive algorithm. The 

peaks of the exons can be seen clearly using LMS, FAST-RLS the background noise is 

removed largely Compared to the DFT method. FAST-RLS algorithm shows the better 

prediction over LMS algorithm slightly but the rate of estimating prediction by filter 

coefficients is very fast that has shown in Figure 2.All the predictive results of different 

sequences at different segments results specified in Table 2. From all these contents it has 

to justifies that our algorithm predicts exons regions  some what more accurately than 

previous nethods. 
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Figure 3. Convergence Plot for LMS and FAST-RLS Algorithms 

 

Figure 4. Power Spectra of the Gene AF019074 Obtained By DFT, LMS and 
FAST-RLS Algorithms 

 

Figure 5. Power Spectra of the Gene AF009962 Obtained By DFT, LMS and 
FAST-RLS Algorithms 
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Figure 6. Power Spectra of the Gene AJ223321.1 Obtained By DFT, LMS and 
FAST-RLS Algorithms. 

Table 2. Comparison of the Proposed Algorithm and the Other Methods in 
Determining Protein Coding Regions in Three Gene Sequence 

Sequence NCBI DATA DFT LMS FAST-RLS 

 

AF019074 

3187-3500(313) 3093-3618(525) 3101-3599(490) 3102-3580(478) 

3761-4574(813) 3630-4653(1023) 3636-4650(1014) 3636-4649(1013) 

5832-6007(175) 5752-6545(793) 3745-6540(2795) 3745-6538(2793) 

AF009962 3934-4581(647) 3735-5210(1475) 3740-5200(1460) 3742-5198(1456) 

AJ223321.1 1196-2764(1568) 1195-2960(1765) 1195-2955(1760) 1196-2953(1957) 

 

5. Conclusion 

A novel adaptive filtering approach is presented to predict the biological function 

segments. Finally, we illustrate this method by application to identify the protein coding 

regions from a real DNA sequences. The predictive location curve of the exons is 

obtained by simulation experiments. It is shown that the presented adaptive filtering 

approach is valid. We construct a unified framework of adaptive filtering for genomic and 

proteomic signal processing. The main advantage of this method is that it can be easily 

utilized to identify some biological function segments very fast by adjusting filter 

weights.  
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