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Abstract 

Random equivalent sampling (RES) can composite a waveform with high equivalent 

sampling rate from multiple low speed sampling sequences. In practical application, the 

performance of RES signal reconstruction would be degraded by the non-uniform 

distribution of sampling time. Compressed sensing (CS) theory is adopted to reconstruct 

RES samples, which could mitigate the inherent coherence of sampling time. However, 

the CS reconstruction algorithm is sensitive to the signal sparsity level that is unknown in 

the reconstruction stage. In this paper, we propose a redundancy reduction algorithm for 

CS base RES signal reconstruction that can ensure  reconstruction accuracy while 

reducing the number of random samples. The experimental results are reported to 

evaluate the performance of  the proposed algorithm. 

 

Keywords: random equivalent sampling, compressed sensing, redundancy reduction, 
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1. Introduction 

Signal sampling, as a bridge from analog domain to digital domain, is the basis for the 

digital signal processing theory. Analog to digital converter (ADC) is the fundamental 

way to capture the analog signal. With the development of information technology, signal 

with very high frequency is fed into digital system, Such as communication systems or 

radar systems, the signal frequency  exceeds 1 GHz. Governed by the famous Shannon 

sampling theory, the sampling rate of ADC should be two times of signal frequency. ADC 

technology cannot satisfy the requirements of this felids. In order to address this 

challenge, many alternative sampling techniques are proposed. 

In the instrument applications, the time interleaved sampling [1-2] and random 

equivalent sampling (RES)
 
[3-4] are wildly used. In time interleaved sampling, multiple 

parallel ADCs are used to capture a signal. One can realize the time alternate sampling for 

the signal by controlling the sampling clock phase. Time interleaved sampling could be 

cost effective or even only possible solution in sampling non-repetitive signal due to the 

high cost or unavailable of a single ADC solution. The circuit realization of time 

interleaved sampling technique is complex, Since ADCs are asynchronously clocked [5], 

the non-uniform error would be introduced. In many practical applications, signal may be 

repetitive. RES would be an attractive sampling technique. RES samples a high frequency 

periodic analog waveform at a sub-Nyquist rate using a single analog-to-digital converter 

(ADC) clocked at a lower frequency. It assumes the analog waveform may be triggered 

no more than once per period at exactly the same relative position. Leveraging the in-

synchrony between the sampling clock and the triggering signal, each time a sample is 

taken at a different position of a cycle of the analog waveform. A time-to-digital converter 

(TDC) [6] measures the time offset between the triggering point and the sampling clock 
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edge and aligns the time samples at approximately correct positions within a period of the 

periodic analog waveform. The analogy waveform then may be reconstructed using these 

interleaved time samples at higher resolution.  

Very often, RES takes considerable longer than competing time interleaved sampling 

methods which use multiple ADCs in parallel. This is because after each sample is taken, 

the time offset will have to be measured by TDC to time-align the time sample within a 

period of the analog waveform. Moreover, the relative sampling positions within a period 

may not be evenly distributed. To achieve desired accuracy, it may take significantly 

longer time to perform RES.  

Compressed sensing (CS) [7-9] is a new signal processing theory, which can 

reconstruct signal from a small number of low speed samples. CS algorithm has been 

introduced to RES signal reconstruction (called CS-RES) [10]. Compared to the 

traditional time-aligned RES signal reconstruction algorithm, the CS-based reconstruction 

algorithm can significantly improve the efficiency of RES. Generally, the reconstruction 

precision of CS algorithm is sensitive to the underlying signal sparsity level. In the signal 

reconstruction stage, the prior knowledge of signal sparsity level is unavailable. In order 

to achieve desirable reconstruction accuracy, one has to capture enough RES acquisitions. 

In this paper, we present an algorithm as the stopping criteria for CS based RES signal 

reconstruction. Different from the traditional sequential compressive sampling judgment 

criteria (SCSJC) [11], which is based on comparison between the current reconstruction 

and the previous reconstruction, the proposed algorithm is based on the coherence test of 

samples. With the help of proposed algorithm, the redundancy of samples could be 

reduced, and a reasonable acquisition number could be obtained. 

In the remaining of this paper, the RES sampling method is reviewed, and the CS based 

RES signal reconstruction algorithm is briefly reviewed in section 2. The redundancy 

reduction algorithm is proposed in section 3. The orthogonal matching pursuit algorithm 

is introduced in section 4. The experimental results are reported in section 5. The paper is 

concluded in section 6. 

 

2. Random Equivalent Sampling 

2.1. Fundament of Random Equivalent Sampling 

The basic principle of RES sampling is illustrated in Figure 1. Given a repetitive 

signal as shown in the solid line on the top row, a level-trigger circuitry compares 

this analog waveform against a reference voltage shown as the horizontal dashed 

line. A trigger pulse will be generated whenever the voltage of the analog signal 

rises crossing the reference voltage. A sample is taken by the immediately sampling 

pulse after the trigger pulse. It is assumed that exactly one trigger pulse will be 

generated in each acquisition. The trigger pulse also provides a fixed reference point 

to align samples. tm (0 ≤ tm ≤ Ts, and Ts is the sampling interval) is the relative 

sampled position of the m’th sampled signal within a period of the sampling clock. 

A waveform with high equivalent sampling frequency can be aligned from low-

speed samples. 

In the reconstruction stage of RES, the sampling interval Ts is partitioned into 

equally spaced bins of duration Te. The value fe = 1/Te then becomes the equivalent 

sampling frequency of RES. The value of Te should be chosen to be < T0/2 so that 

the equivalent sampling rate meets the requirement of Shannon sampling theorem 

(T0 is the period of underlying signal). 
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Figure 1. The Scheme of Random Equivalent Sampling 

According to RES, the time interval tm is the duration between the trigger signal 

and the rising edge of the immediately following sampling clock, and tm distributes 

in the interval [0, Ts]. For an N dimensional reconstructed signal, the farthest 

distance between the equivalent sample and the trigger signal is NTe. So 

reconstructed signal length N, sampling clock period Ts, and equivalent sampling 

period Te need to satisfy relation: N = Ts /Te. 

Due to the uneven sampled position, some bins may have more than one sample 

falling into them while some bins may be left unfilled for a long duration, and RES 

would require a rather large number of samples to fill the empty bins and thereby 

achieve the desired accuracy. Clearly, the inefficiency of the RES sampling method 

is demonstrated. 

In order to measure time interval, time interval needs to be expanded. Time 

intervals are expanded through the fast charging circuit and slow discharging circuit, 

which is called TDC. As described in Figure 2, the trigger pulse starts the charging 

circuit, and then the capacitor is charged with the large constant current, the first 

sampling clock after the trigger pulse stops the charging process and at the same 

time the capacitor is discharged with a small constant current. The charging time tc 

is very short, and on the contrary, the discharging time td is long. The counter circuit 

counts tc and td, which are the expanded time of the time interval between the trigger 

point and the first sample clock edge after trigger. 
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Figure 2. The Principle of TDC. Time Intervals are Measured Indirectly 
after Charge-Discharge Process 

After the charge-discharge process, the voltage variation on the capacitor is zero. 

Therefore, we can have the equation as follow: 

c c d dI t I t
U

c c

 
   .                                                                                                           (1) 

where c is the capacity of the capacitor, Ic and Id are the charging current and the 

discharging current respectively (Ic >> Id). When Ic and Id are constants, td is proportional 

to tc. According to (1), we can have R = td /tc = Ic /Id, we can control R through changing Ic 

and Id. 

Time interval tm (or tc in Figure 2) is uniformly distributed in the interval [0, Ts], 

which may be very small. However, if tm is very close to “0”, the TDC will not work 

properly. In practice, time interval tm is measured after superimposed a time interval Tc 

/2 (Tc is the period of the counter clock, and let Tc equal to Ts), and then tc is uniformly 

distributed in the interval [Tc /2, 3Tc /2]. 

The measurement precision of time interval affects the accuracy of signal 

reconstruction directly. However, the TDC circuit always subjects to the temperature, and 

it is difficult to measure td accurately. In order to eliminate the effect of td on the 

measurement precision, the measurement process should be carried out carefully. In 

practical application, the time interval is measured with three steps. Let t1 = Tc/2, t2 = 

3Tc/2. First, measure t1 and t2, and then measure tm +Tc/2, the measuring steps are 

described as follows: 

(a) when tc = t1, after charge-discharge process, K1Tc = tc + td = (R+1)t1  and count 

value K1can be rewritten as: 

1 ( 1) / 2K R  .                                                                                                                    (2) 
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(b) when tc = t2, after charge-discharge process, K2Tc = tc + td = (R+1)t2 and count 

value K2 can be rewritten as: 

2 3( 1) / 2K R   .                                                                                                                 (3) 

(c) when tc = tm +Tc/2, after charging and discharging ,  KmTc = tc + td = (R+1)( tm 

+Tc/2), and the count value mK can be rewritten as: 

( 1)( / 2) /m m c cK R t T T    .                                                                                               (4) 

From (2)-(4), time interval tm  can be rewritten as: 

1

2 1

m
m c

K K
t T

K K


 


.                                                                                                                (5) 

Therefore, tm has nothing to do with R. In other words, through calibration, we can 

avoid the impact of temperature on the TDC. 

 

2.2. CS based Signal Reconstruction 

Compressive sampling (CS) signal reconstruction algorithm can successfully 

reconstruct the original signal from a small number of low-speed random sampling 

values. In RES, signal to be captured is required to be repetitive that is sparse in its 

Fourier transform domain. It is consistent with the requirement of CS. Naturally, CS is 

used to improve the RES signal reconstruction [10]. 

In CS, the signal to be reconstructed is denoted by an N dimensional vector x. In the 

current application, x would be the unknown analog signal sampled at Nyquist rate over 

the time duration Te. Using RES or other methods, a set of measurements of the elements 

of x is obtained and denoted by a vector y. In RES, each element of y is the output of a 

low-rate ADC. It can be represented as a weighted linear combination of elements in x 

over the sampling window Te. Let these weights be arranged in a measurement matrix , 

one may express the relation between x and y as follows:  

y = x.                                                                                                                               (6) 

Since the analog signal is periodic, it admits a Fourier series expansion representation:  
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                                                                                          (7) 

where {n} are Fourier coefficients. A signal is spectrally sparse if only very few Fourier 

coefficients have significant magnitudes while other Fourier coefficients are nearly zero. 

In other words, the energy of the signal is concentrated on few spectral coefficients. For 

the signal x with K significant spectral coefficients, we call it K-sparse signal, and K is 

sparsity level that is usually unknown in the signal reconstruction stage. Since x(t) is 

band-limited in practice, the signal x may be represented as: 

x =                                                                                                                                 (8) 

where  is a sparse vector consisting of few non-zero Fourier coefficients and  is the 

Fourier basis, which is approximated by the Discrete Fourier Transform (DFT) basis, and 

i,k = exp( j2ik/N)/sqrt(N)，1 ≤  i, k ≤  N [12]. Combining (6) and (8), one has 

y = x = .                                                                                                                 (9) 
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Considering the practical situation of RES sampling,  the uneven distribution of 

sampling time intervals makes RES technique inefficient. With the help of CS 

reconstruction algorithm, one only needs a small number of RES samples. In CS signal 

reconstruction stage,  we need to construct the mathematical model of RES.  For CS-RES 

signal reconstruction, measurement matrix based on Shannon interpolation formula is 

constructed.  
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                                                                  (10) 

y = x 

where 

sinc m

m,n

e

t
n

T


 
  

 
                                                                                                          (11) 

where y is the RES sampling sequence, x is the Nyquist sampling sequence that is to be 

reconstructed.  

From (10), we can compute the measurement matrix  according to the sampling time 

interval tm. Given the measurements y, the measurement matrix , and the basis matrix 

, the purpose of CS reconstruction is to find  such that  

||||1 is minimized subject to || y  D||2 ≤ …………………………………………… (12) 

Minimizing the l1 norm of  amounts to minimize the number of non-zero entries of the 

solution 
#
 and therefore force the solution to be a sparse vector. Enforcing the constraint 

||y  D||2 ≤  would ensure the reconstructed signal x
#
 = 

#
 will yield the same 

measurements y. 

In order to reconstruct signal with a desired precision, the random sampling number 

value M needed for reconstruction, signal sparsity level K, and the  length of 

reconstructed signal N need to satisfy an empirical formula: M = c1Klog(N) (c1 is an 

experience constant). However, in the practical application, the sparsity level of the 

underlying signal is unknown in advance. Therefore, we cannot choose a reasonable 

acquisition number M. Typically, one often has to collect sufficient sampling values and 

then do signal reconstruction. In this case the number of samples used for signal 

reconstruction may be far more than the theoretical sampling number required for the 

reconstruction. On the other hand, when we have acquired a certain number of sampling 

values through a certain sampling rate, considering the requirements of the sample value  

for storage resources and transmission bandwidth, it always wishes to store a small 

amount of data for signal reconstruction, It requires to reduce the redundant information 

in the sampling sequence. 

 

3. Redundancy Reduction Algorithm 

Here, we  propose a coherence based redundancy reduction algorithm for RES, which 

will be wished to adaptively choose the acquisition number with unavailable of prior 

information of signal sparsity level.  

Define the correlation between the every two sampling values as follows: 

1
( , ) max ,i d i d

d i M
y y N

  
                                                                                                (13) 
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where i  d, i is the row vector of measurement matrix . Figure 3 illustrates the 

coherence test with respect to RES acquisition number. Note from Figure 3, with increase 

of the acquisition number, the coherence of the samples is increasing. Large value of 

coherence means that the difference between the current reconstruction and the previous 

reconstruction is small. On the other hand, in the traditional sequential compressive signal 

processing algorithm, the small reconstruction difference will stop the sampling process. 

However, we can find that, the coherence does not always go larger. Therefore, based on 

the difference between the current reconstruction and the previous reconstruction does not 

work for RES signal reconstruction. 
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Figure 3. Coherence Test with Respect to RES Acquisition Number 

According to the above analysis, we present a new redundancy reduction algorithm for 

RES signal reconstruction. Let x
#
 be the reconstructed signal, and yM be the sampling 

sequence with length of M, and xM
#
 be the reconstruction from yM.  After a new RES 

acquisition，one can obtain RES sampling sequence yM+1. Verify the correlation between 

yM + 1and yM, if the samples are not coherent, reconstruct xM + 1
#
 form yM + 1. Otherwise, 

y[M +1] should be removed from sampling sequence. Compare xM +1
#
 and xM

#
 , if they are 

close, one can make the conclusion that, x
#
 = xM

#
. That is the original signal can be 

accurately reconstructed from M RES samples. 

The steps of redundancy reduction algorithm are as follows: 

① Do M RES acquisitions, obtain yM = [y1,y2, yM]
T
, construct measurement matrix  

= [1, 2,, M]
T
 based on RES random sampling time intervals, reconstruct xM# from yM. 

②  Do the (M+1)th RES acquisition, obtain sampling sequence yM+1, construct 

measurement matrix. Compute coherence between the current samples and the previous 

samples and get a maximum one M+1. If M+1 <  ( is a preset constant), go to step ③, 

otherwise, remove y[M+1], and repeat ②. 

③ Reconstruct xM+1
#
 from yM. Compare xM+1

#
 with xM

#
, if the absolute difference is 

smaller than  ( is a preset threshold), sampling process should be stopped, and x
#
 = xM

#
. 

Otherwise go to ②. 

 

4. OMP Recovery Algorithm 

To solve the optimization problem of (12), one may either apply convex programming 

[13] or use a family of greedy pursuit algorithm [14]. For real time RES signal 

reconstruction, the large computation cost of convex program makes it a less appealing 
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approach. In this work, we adopt the orthogonal matching pursuit algorithm [15] (OMP), 

a variant of greedy pursuit algorithm to solve for the sparse vector . 

For convenience, denote a matrix D = . Equation (12) implies that the sparse 

solution vector  should use the fewest possible columns of D matrix to approximate the 

observation y. This can be formulated as a subset selection problem where a minimum 

subset of columns of D matrix is chosen to approximate the observation vector y in the 

least square sense. The OMP algorithm successively chooses an additional column of D 

matrix to reduce the approximation error. Equivalent, the OMP method begins with a 

tentative solution of  with a single non-zero entry, and gradually adding non-zero entries 

one by one until the approximation error of y meets a pre-determined criterion. More 

specifically, denote B to be a matrix formed by the subset of columns of the D matrix 

whose column indices correspond to non-zero entries of the  vector. Then, the 

measurement vector y may be approximated by its projection onto the subspace spanned 

by columns of B: 

 
1

†ˆ T T


  By P y B B B B y BB y                                                                                       (14) 

where B is the Moore-Penrose pseudo-inverse of the B matrix. Note that the residual r = 

y  ŷ  is perpendicular to the subspace spanned by B: 

   ˆ      B B B B B B BP r P y y P y P P y P y P y 0 .                                                           (15) 

Here the property of a projection matrix PBPB = PB is used. 

Denote C to be a matrix whose columns are formed by the set difference of columns of 

the D matrix and those of the B matrix. A greedy criterion to select one more column of C 

to be moved to B is to choose one that has the smallest angle between r and itself. Let c 

and c’ be columns of C, then the best choice of c must satisfy. 

'' 'T T  c cP r r c c r c c P r .                                                                                 (16) 

Once the new c is chosen, the B matrix and C matrix will be updated, and the residue 

vector can be updated. The algorithm will be stopped when the norm of r is smaller than 

the preset threshold . The  vector then has the form of 

 

†

1N K 

 
  
  

B y
α

0
.                                                                                                       (17) 

 

5. Experiment 

In this section, several experiments are reported to investigate the proposed algorithm. 

We define the length of reconstructed waveform N = 250, then the equivalent sampling 

rate fe and the sampling rate fs satisfy fe = N fs. In all the experiments, signal is 

reconstructed using OMP. Define signal to noise ratio (SNR) : 

10 #
20 log

x
( )

x x
SNR  


                                                                                             (18) 

where x is the original signal, and x
#
 is the reconstructed signal.  
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Figure 4. Comparison of Reconstruction Performance via the Original 
Method and the Improved Method 

The first experiment compares the proposed algorithm and the traditional sequential 

compressive signal processing algorithm. Figure 4 depicts the comparison. If the 

traditional sequential is employed, M = 21 meets the sampling stop criteria, it yields 

SNR=14.2dB (referred as "SCSJC"). However, with the proposed algorithm, one can find 

that the coherence is large, RES sampling should continue. Until M = 35, the samples 

yield a small coherence and the reconstruction difference is small, the sampling process is 

stopped. Reconstruction achieves  SNR = 17.1dB (referred as "RR"). Clearly, the 

accuracy of reconstructed waveform has been improved. 

In the second experiment, a sinusoidal signal is acquired with RES system and 

reconstructed. Figure 5(a) shows the reconstruction using the traditional compressive 

processing criteria, The criteria makes the decision that the signal reconstruction only 

needs 33 RES samples, and reconstruction yields SNR = 27.4 dB. Figure 5(b) depicts the 

reconstruction using the proposed redundancy reduction algorithm, The criteria makes the 

decision that the signal reconstruction needs 42 RES samples, and reconstruction yields 

SNR = 30.8 dB. 
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Figure 5. Sinusoidal Signal Reconstruction. (a) Based on Traditional Criteria. 
(b) Based on the Proposed Criteria 

Finally, a square signal is acquired with RES system and reconstructed. Figure 6(a) 

shows the reconstruction using the traditional compressive processing criteria, The criteria 

makes the decision that the signal reconstruction only needs 89 RES samples, and 

reconstruction yields SNR = 14.2 dB. Figure 6(b) depicts the reconstruction using the 

proposed redundancy reduction algorithm. The criteria makes the decision that the signal 

reconstruction needs 98 RES samples, and reconstruction yields SNR = 16.8 dB. Since 

the square signal is less sparse than the sinusoidal signal, more samples needs to 

reconstruct the square signal. 

0 50 100 150 200 250

-300

-200

-100

0

100

200

300

400

Time (ns)

A
m

p
lit

u
d
e
(m

V
)

 

 
SCSJC Reconstructed

Original Signal

 
(a) 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 5 (2016) 

 

 

Copyright ⓒ 2016 SERSC  11 

0 50 100 150 200 250
-300

-200

-100

0

100

200

300

400

Time (ns)

A
m

p
lit

u
d
e
(m

V
)

 

 
RR Reconstructed

Original Signal

 
(b) 

Figure 6. Square Wave Reconstruction. (a) Based on Traditional Criteria. 
(b) Based on the Proposed Criteria 

6. Conclusion 

CS based signal reconstruction algorithm can improve the RES signal reconstruction. 

This paper proposed a redundancy reduction algorithm to mitigate the performance of CS-

RES reconstruction to the unknown sparsity level. Difference from the traditional 

sequential compressive signal processing criteria, the proposed algorithm combines the 

sampling coherence and the reconstruction difference. Only the sampling sequence with 

small coherence is reconstructed, and then the current reconstruction and previous 

reconstruction are compared. The experimental results demonstrate the feasibility of the 

proposed algorithm. With the help of proposed algorithm, higher SNR could be achieved. 
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