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Abstract 

Cloud services is a typical trait of cloud computing. It allows tenants rent 

customizable services transparently, and guarantees substantial cost savings for the 

providers. With the significant number of cloud services, a key challenge when 

providing customizable cloud services is how to manage those services and find an 

optimized configuration service rapidly that maximizes tenants’ preferences, subject to 

resource constraints. To help address this challenge, this paper introduces a novel 

approach to support the modeling and configuration of customizable cloud services. In 

particular, we propose a customizable service selecting and configuring optimization 

approach based on a heuristic approach, which can quickly derive an optimized valid 

service selection by evaluation different configurations that optimize tenants’ 

preferences under resource limitations. The scalability and performance of the 

algorithms is investigated in detail. And the obtained experimental results demonstrate 

the feasibility of the proposed method. 

Keywords: Cloud service; customizable service configuration; cloud computing; 

Binary Particle Swarm Optimization 

1. Introduction 

With the fast development of cloud computing, among other benefits, cloud services 

provide computational & data resources dynamically, which allow applications to react 

faster to sudden changes in demands, while saving cost and decreasing power 

consumption [1]. Recently, a number of companies are deciding to utilize cloud 

services directly for building and deploying new systems [2]. 

Nowadays, many existing cloud applications only deliver a limited amount of 

customizability, often using a one-size-fits-all approach or limiting customizations to 

fit for changes. However, applications in some areas such as document processing, 

medical information management, and medical communication systems, applications 

must be high-variability, as different tenants often have similar needs, especially with 

different non-functional requirements. High-variability applications require different 

service configurations for specific requirement, which is the process of selecting proper 

cloud services with different quality [3]. In order to offer cost-effective solutions to 

multiple tenants in the cloud environment, customizable cloud services are necessary, 

i.e., the ability to satisfy multiple tenants simultaneously based on one customizable 

cloud services [4]. Currently such customizable cloud services are often developed on 

an ad-hoc basis. This however poses difficulties concerning the management of these 

customizations and ensures the correctness of these customizations [5].  

Using Software Product Line Engineering (SPLE) [6], this issue can be addressed. 

Feature model in SPLE is widely used to build customizable applications. In feature 

model, features are the basic units for building applications, and by selecting and 

deselecting features, different application variants can be created. Most approaches in 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 4 (2016) 

 

 

444   Copyright ⓒ 2016 SERSC 

SPLE have focused on configuring products using features with static configuration of 

variation points. D. Benavides et al. [7] summarize the configuration method based on 

uses’ functional requirements and guarantee the soundness of results. On the other hand, 

Sayyad et al. [8] present search-based software engineering to solve the SPL 

configuration problem on the value of user preferences, which only focus on quality 

preferences, but ignore the relationship among features. J. White et al. [9] present Filtered 

Cartesian Flattening method, which is Polynomial complexity. However, in cloud 

environment, facing a larger number of cloud services, configuration based on tenants 

preferences is much complex, and the tenants pay much attention on the efficiency of 

providing services. Therefore, a great challenge is how to provide services rapidly, that is, 

to find an optimized configuration rapidly that maximizes tenants’ preferences 

satisfaction, subject to resource constraints.  

In this paper, we focus on the management of customizable cloud services and the 

design of algorithms for configuring high-variability applications on cloud infrastructure. 

The applications are built by composing customizable services from a set of cloud 

services. We first build the model of customizable cloud services based on feature model, 

then service configuration problem and optimization objective are designed. We design a 

customizable service selecting and configuring optimization approach (CSSCOA) to solve 

the problem, CSSCOA can quickly derive an optimized service selection by evaluating 

different configuration both satisfy tenants’ preferences under resource limitations. 

Besides, a feature amend function is been introduced to convert an optional service set to 

satisfy the constraints of services, which guarantee the correctness of the solution. The 

scalability and performance of the algorithm is investigated in detail.  

The rest of this paper is organized as follows: Section II illustrates the motivating 

example and problem analysis. Section III introduces our extended feature model, 

configuration model and objective. Section IV proposes the customizable service 

optimization configuration approach. Section V presents the experimental results. Section 

VI concludes the paper. 

 

2. Motivathing Example and Problem Analysis  

Fig.1 shows an example of an application migrated into a cloud, which provides travel 

booking service. It has three tenants: 1) Webjet, a travel booking company offering airline 

ticket booking, car rental, hotel booking, and payment based in Australia; 2) Rail Plus, the 

leading dedicated rail trip specialist general sales agent through Australia & New Zealand, 

which provide the train ticket booking, hotel booking and payment service; and 3) P&O 

Cruise, Australia and New Zealand’s leading cruise line, offering cruise ticket booking, 

insurance quote and payment [10].The cloud application serves the three travel agents by 

processing their customers’ requests. A customer enters their travel requirements, e.g., city 

of departure, destination, departure date, return date, preferred type of rental car, etc. In 

response to the request, the application returns a list of candidate travel plans for the 

customer to book and pay. These three tenants configure the customizable travel booking 

service from the candidate services and rent them. But, sometimes there exists the 

dependencies between the candidate services, for example, if the booking service is rented, 

then the pay service must be rented. 
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Figure 1. A Travel Booking Application in a Cloud 

On the other hand, these travel agents usually have different multi-dimensional 

requirements for the quality of the application. For instance, P&O Cruise pays much 

attention to the security of the application despite a high price, Webjet requires a very 

fast response time of the application, and Rail Plus is more concerned about 

minimizing the cost of renting the application. Therefore, a set of services must be 

selected from the candidate services in the cloud to perform the application that serves 

the travel agents with satisfactory quality and achieves the application provider’s 

optimization goal. Similarly to other researches [11-12], we assume that alternative 

functionally-equivalent services are available and can be categorized based on their 

functionalities. 

 

3. Cloud Services Configuration Problem 

In this section, we first describe the customizable service model, and then present 

the optimization model adopted in this research.  

3.1. Extended Feature Model 

In this research, we adopt the feature model to represent the customizable cloud 

services, which is used to model the variability of an application. The customizability 

of the application is represented by a collection of features. A feature can (1) capture 

high-level variability, such as variations in end-user functionality, or (2) document 

low-level variability, such as software variability (e.g., variations in software 

implementation) [13]. Each complete architectural variant of the SPL is described as a 

set of selected features.  

In the basic form, a feature model is a tree of features which are divided in grouped 

features and solitary features. 

Types of solitary feature contain mandatory and optional, where 

• Mandatory (a, b): If a feature a is included, the feature b must be included as well. 

• Optional (a, b): If a feature a is included, the feature b may be included. Conversely, the 

feature b must not be included if a is not included. 

The relationship of a grouped feature includes and-groups, or-groups and xor-groups, 

where 

• And (a,S): If a feature a is included, all features contained in the set S must be 

included. If a is not included, none of the features in S may be included. 

• Or (a, S): If a feature a is included, at least one of the features contained in the set S 

must be included. If a is not included, none of the features in S may be included. 

• Xor(a, S): If a feature a is included exactly one of the features contained in the set S 

must be included. If a is not included, none of the features in S may be included.  

The relationship between features includes imply and exclude relationships: 
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• Excludes (a, b): If a feature a is included, the feature b must not be included and vice 

versa. 

• Requires (a, b): A feature a may only be included if the feature b is included as well. 

In cloud environment, we use features to express cloud services, which not only have 

functional property, but also have non-functional properties, such as price, performance, 

availability, etc. Therefore, extended feature model (EFM) is presented to express the 

customizable cloud services in cloud computing. Because we only focus on the functional, 

non-functional and configured variants described by the feature model, skipping the 

details, we informally define the extended feature model in Definition 1. 

Definition 1 Extended feature model is a 5-tuple ( , , , , ) LEFM FD F QP QR R , where FD 

is a feature model, LF  is the set of atom services, LQP F QR  is the set of 

nonfunctional values of atom services, QR is the range of values for nonfunctional 

properties, R is the resource costs of atom services. 

Fig. 2 shows an illustrative example of a simple extended feature model, in this model, 

atom services PhonePay, CreditCard，DebitCard and FraudDetection have quality 

properties and corresponding values, such as the availability of PhonePay is [300,500], 

the rental cost is [50,70]. 
Payment
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Figure 2. An Example of an Extended Feature Model 

3.2 Configuration Model and Objective 

In cloud environments, tenants rent configurable services from a cloud provider. Based 

on the tenants’ requirements, the cloud provider configures the configurable service and 

selects services from an extended feature model. The key challenge when providing 

customizable cloud services is determining how to find an optimized configuration 

service rapidly that maximizes tenants’ requirements, subject to resource constraints. 

Suppose a cloud environment provide n customizable services { },1iS s i n   , which 

modeled by an EFM, C denote all the dependency constraints and cross-tree constraints 

defined in the EFM. Besides, each service is S  has an associated resource 

consumption ( )ir s Z , and a QoS ( )t iv s Z . ( )R S  indicates the set of resources 

consumed by all the services and ( )V S  indicates the set of qualities provided by all the 

services. CR includes the resource constraints，e.g., 50CPU  , 1Memory G . The 

service configuration problem for customizable services aims at selecting and configuring 

a set of services from customizable services, which achieving the tenant’s optimization 

goal on the premise of resource constraints CR .Therefore, cloud service configuration 

based on tenants’ requirements is defined in Definition 2. 

Definition 2 Given an extend feature model with n cloud services { },1iS s i n    and 

a set of constraints C, the goal of the service configuration problem is to find a service 

subset 2SS   from all valid service combinations such that 

( ) (1 ( ))i jV S V S     is maximized                                       (1) 

subject to  
 conform toS C  
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( )(i.e. ( ))
i

i C

s S

R S r s R


                                                     (2) 

where ( )iV S  is the quality which should be maximized, and ( )jV S  is the quality which 

should be minimized. 

The aim of this problem is to find a set of services, which, when executed according 

to the tenant’s customized requirements, can fulfill corresponding resource constraints. 

As we know, this problem is a NP-hard problem, which should be solved by 

optimization algorithm. 

 

4. Customizable Service Optimization Configuration Algorithms 

In this section, we present the customizable service selecting and configuring 

optimization approach (CSSCOA) based on Binary Particles Swarm Optimization 

(BPSO) Algorithm, which can quickly derive an optimized service selection by 

evaluation different configurations based on the tenant’s requirements and resource 

constraints. 

 

4.1. Binary Particles Swarm Optimization Algorithm  

BPSO is an evolutionary computation technique proposed by Kennedy and Eberhart 

[14], which is used to solve 0-1 integer programming problem based on the binary 

coding scheme specifically. In BPSO, each individual of particle swarm is called 

particle, which express as a feasible solution. M particles cooperate to search for the 

global optimum in the n-dimensional search space. Each particle maintains a position 

idx  and velocity idv . A position is a feasible solution to the optimization problem, and 

the corresponding objective function value is the fitness of particles, which used to 

measure the pros and cons. A velocity indicates the position of the particle velocity 

change of direction to guide the search process of particle motion to the optimal 

solution. In each iteration, each particle uses its own search experience(self-cognitive) 

and the whole swarm’ s search experience (social-influence) to update the velocity and 

flies to a new position. The updating rules are as follows: 
1

1 1 2 2( ( ) ) ( ( ) ) t t t t

id id best id gbest idv wv c r p t x c r p t x                                    (3) 

1
( )1 ,

   
( )0 ,

idt

id

id

r S v
x

r S v




 


, and 1

1 1
( )

1
t
id

t

id v
S v

e








                                (4) 

where bestP the best solution is yielded by a particle and gbestP is the best-so-far solution 

obtained by the whole swarm. 1c and 2c are two parameters to weigh the importance of 

self-cognitive and social-influence, respectively.   is an inertia weight. 1r and 2r are 

random numbers. t

idx  is the position of the current particle, and 1t

idx  is the position of the 

updated particle, 
t

idv and
1t

idv express the velocity of the current and updated particle, 

respectively, idv  is random numbers uniformly distributed in (0,1)U . 

 

4.2 Customizable Service Selecting and Configuring Optimization Approaches 

Although BPSO runs faster than other algorithms because of its relative simple 

structure, if gbestp  fall into a local optimum, the search will be limited in the same area, 

which will prevent the real optimal solution, besides, the correctness of the solution 

should be guaranteed for configuring the customizable services. Therefore, we put 

forward the customizable service selecting and configuring optimization approach 

based on the basic particle swarm optimization algorithm, which redefine the position 

of the particle velocity updating formula to enlarge the search scope, introduce the 

javascript:void(0);
javascript:void(0);
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weight adjustment mechanism to improve the convergent speed of particle swarm and 

define a dyAdjust function to satisfy the correctness of the solution. 

 

4.2.1. The Velocity and Position Updating Strategy: Avoiding the solution falls into a 

local optimum, we limit that the particle velocity must be reach the maximum speed maxV
 

as far as possible, and should be restricted in maxV , so the velocity updating formula is as 

shown in Eq. (5) 

1 1 1 2 2 max min

max min max min

( ( ) ) ( ( ) ) ( , )
   

max(min( , ), ) ( , )

t t t t

t id best id gbest id id

id t t

id id

wv c r p t x c r p t x v V V
v

V v V v V V


     

 


                (5) 

where maxV and minV are specified by experience。 

As we know, if gbestp  trap into a local optimum, the search will be limited in the same 

area, which will prevent to obtain the real optimal solution. Therefore, the strategy of 

dynamic reset is introduced in CSSCOA. If gbestp  does not change after the algorithm 

perform three times iteratively, gbestp  will be reset into the initial value and continue 

searching. If this case, the particle will leave the local optimal solution to the global area, 

and find in new areas, the specific process is shown in Fig.3. 
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(a) gbestp trapped into local optima   (b) reset gbestp  

(c) after resetting gbestp , the moving process of particles (d) particles gather to the 

updated gbestp  

Figure 3. The Searching Process of the Particles under the Strategy of 
Dynamic Reset 

4.2.2 The Dynamic Inertia Weight Adjustment Studies have shown that 

the local search ability is stronger when w is smaller, which facilitates the convergence. 

And the global search ability is stronger when w is bigger, which is conductive to jump 

out of local optimal point. Although decreasing inertia weight linearly can improve the 

performance of algorithm, but it can't reflect the complicated behavior of the search 

process, which results the effective of the convergence is not ideal. Therefore, a nonlinear 

function (5) is defined to change the inertia weight dynamically in the process of iteration, 

which specifies the inertia weight in iteration. This mechanism adjusts global coefficient 

adaptively, meanwhile gives consideration to the precision and efficiency. 

max

( )

( )

nIter

Iter

initialw Iter w e


                                                 (5) 

where n is the nonlinear change rule control power exponents, specially, formula (5) is 

called probability curve function when n=2. Change curves in the Fig. 4 represent the 

change rule of w in different n, which shows that, the bigger the n is, the more it is 
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inclined to search in global, and vice-versa. 

 

Figure 4. w Changing Curves with the Iteration Number under Different n 

4.2.3. Feature Adaptively Adjusting Function:The important problem of applying 

BPSO in solving customizable service configuration problem is how to guarantee the 

optimal solution is correct. That means a solution must satisfy the all the dependency 

constraints (e.g. and, or, alternative, etc.) and cross-tree constraints (as requires and 

excludes) in EFM. Therefore, we should adaptively adjust an arbitrary service selection 

into a correct service combination. A function, called dyAdjust is defined to achieve this 

task, which is shown is Algorithm I. 

The input of the dyAdjust is an arbitrary service configuration set RS , and the known 

conditions are an extended feature model and a rule set C which contains the 

characteristics and conditions of the EFM. The output is a service set VS which satisfies 

C adjusted through RS , and the services excluded by VS  are in ES . The process of the 

algorithm dyAdjust is shown in Algorithm I. 

 

Algorithm I Description： 

function dyAdjust ( ) 

Data: an arbitrary service configuration set RS  

Data: an extended feature model EFM 

Data: a rule set SC contains the characteristics and 

conditions of the EFM 

Data: The correct service set VS  

Data: The exclusive service set ES  
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The execution process of the customizable service selection and configuration 
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optimization approaches is shown as below. 

Step 1: Initialization: Initialize the scale of particle swarm N based on the given EFM, 

the maximum iteration number is K. Generate the initial velocity and position parameters 

iX  and iV  randomly, and dyAdjust is called to guarantee the correctness of iX . 

Calculate the fitness of each particle ( )if X , if ( ) 0if X  , the particle is discarded. The 

initial global optimum position gbestX  and the initial local optimum of each individual 

particle are obtained based on ( )if X  

Step 2: check the iteration number K, if k equals to the maximum iteration number K, 

then go to step 4; otherwise step 3. 

Step3: iterative algorithm 

For each particle in the swarm, calculate the inertia weight w according to equation (5) 

Update the velocity and position of the particle according to equation (3) and (4) 

Calculate the fitness function value ( )if X  according to equation (1), if 

( ( ) ( )i pbestf X f X , then pbest iX X , and adjust pbestX  by dyAdjust; if 

( ( ) ( )pbest gbestf X f X , then gbest pbestX X . 

k ++; execute Step 2; 

Step 4: output the obtained optimum and its fitness value. 

 

5. Experimental Evaluation  

This section presents the experimental evaluation of our approach. We conduct a series 

of in-lab experiments to verify the effectiveness (measured by success rate and objective 

value) and efficiency (measured by computational time). We develop a prototype that 

implements the proposed approaches in Eclipse IDE for Java. The experiment data is 

generated by BeTTY feature model generator [15]. The service number in the extended 

feature model is between 100 and 1000, and the quality attributes of each service are 

generated randomly. [16] pointed out that the characteristics of the above model can 

reflect the characteristics of the industrial practical application. The experimental 

environment: Pentium Dual 2.27GHz, 2.0GB RAM, Windows Vista, Eclipse 3.6, 

FeatureIDE plug-ins and Java Virtual Machine 1.6. The results are the average data for 

running the algorithm 100 times. 

In this paper, we improve the update formula and introduce the adaptive weight 

adjustment mechanism based on the binary particle swarm optimization algorithm. 

Therefore, we compare CSSCOA with the standard BPSO with the same setting of 

parameters, as shown in Table (1), where itmax is the number of iterations, Np is the 

number of particle population. The service constraint parameters in EFM are shown in 

Table (2). 100 feature models for each size are generated randomly with the same 

parameters, and we only take the mean value of their results. 

Table 1. Parameters of CSSCOA and BPSO 

Np itmax n 
initial  1c  

2c  minV  
maxV  

15 30 2 0.8 2.0 2.0 6 -6 
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Table 2. The Service Constraint Parameters in EFM 

sub-service 

number of each 

service 

The relationship 

between father and son Cross-tree 

constraints and or alternativ

e 

10(at most) 50

% 

25% 25% 10% 

 

Table 3 the time requirement for CSSCOA and BPSO. Here, the experiments are 

performed on each feature model whose size FN varies from 100 to 1000. The rows 

T-CSSCOA and T-BPSO represent the time requirement for the CSSCOA and BPSO 

solutions respectively. It is observed that solution times are increased dramatically with 

the increasing of features and the increasing amplitude are consistent. But, the 

performance of CSSCOA is slightly better than BPSO under different feature number. 

During the iterative process, adaptive weight adjustment mechanism enables the w 

balance the global and local search ability, reduce the number of iterations, therefore 

spend less time, especially in the case of large numbers of features. 

Table 3. The Time Requirement for CSSCOA and BPSO under Different 
Number of Features 

time        

FN 
100 

200 
300 400 500 

T-CSSCOA(ms) 186.15 669.34 1654.23 2784.71 4200.70 

T-BPSO(ms) 188.99 684.55 1718.26 2809.16 4261.44 

time        

FN 
600 700 800 900 1000 

T-CSSCOA(ms) 5583.45 9318.06 10153.22 12903.99 15621.20 

T-BPSO(ms) 5604.27 9401.26 10354.91 13019.38 15681.04 

 

The comparison of the approximate optimal solution between CSSCOA and BPSO 

is shown in Fig.5. As we seen, the fitness function value increased gradually with 

features increasing, and the fitness value of CSSCOA is better than BPSO. Through 

changing the global optimal particle’s position during searching, CSSCOA expands the 

search scope of the solution space to find a better solution. 

 

 

Figure 5. The Comparison of Fitness Values between CSSCOA and BSPO 

Next we will analyze the influence of different service constraint parameters in EFM 

for algorithm. Literature [9] pointed out that in the feature model, the main factors 

influencing the product configuration is the dependency constraints among features. 

CSSCOA 

javascript:void(0);
javascript:void(0);
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To this end, the experiments are performed on 30 feature models for 1000 size, which are 

generated randomly with the same parameters, and we take the mean value of their results. 

Under different ratios of dependency and exclusive relationships, the efficiency and the 

approximation degree of the algorithm are compared, which are shown in Table 4. The 

columns T-CSSCOA, R-CSSCOA and SD-CSSCOA represent the solution time, the 

approximation degree and instability of CSSCOA. With the growth of the constraint ratio, 

the solution time grows linearly, the approximate solution declines gradually, and the 

instability of the algorithm increases gradually.  

Table 4. The Influence of Different Dependency and Mutually Exclusive Ratio 
on the Algorithm 

Constraint Ratio T-CSSCOA R-CSSCOA SD-CSSCOA 

0 446.027 0.778  0.074  

10% 5031.789 0.839  0.084  

20% 10429.334 0.710  0.092  

30% 15909.783 0.545  0.088  

40% 20927.820 0.448  0.111  

6. Conclusion 

With the mature of cloud computing technology, more and more applications are 

moved to the cloud. How to manage those services and provide customizable cloud 

services to tenants has become a more active research. In this paper, we introduce a novel 

approach to support the modeling and configuring of customizable cloud services. First, 

we present an extended feature model, which manage and model customizable cloud 

services effectively. Then, we propose a customizable service selecting and configuring 

optimization approach (CSSCOA), which can quickly derive an optimized service 

selection by evaluation different configurations that both optimize tenant preferences and 

honor resource limitations. The main contributions are 1. redefine the position of the 

velocity updating formula, which conducive to improve the solving accuracy; 2 introduce 

the dynamic weighting adjustment mechanism, which improve convergence speed; 3 puts 

forward feature adaptively adjusting function, which ensure the rationality of solving. At 

last, the scalability and performance of the algorithms is investigated. 
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