
International Journal of Signal Processing, Image Processing and Pattern Recognition

 Vol.9, No.4 (2016), pp.443-454

http://dx.doi.org/10.14257/ijsip.2016.9.4.39

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2016 SERSC

Selection and Configuration Optimization for Customizable Cloud

Services

Hongxia Zhang, Fei Wang, Jiuyun Xu and Jiashu Guo

College of computer and communication engineering, China University of

Petroleum

Qingdao 266580, China

Abstract

Cloud services is a typical trait of cloud computing. It allows tenants rent

customizable services transparently, and guarantees substantial cost savings for the

providers. With the significant number of cloud services, a key challenge when

providing customizable cloud services is how to manage those services and find an

optimized configuration service rapidly that maximizes tenants’ preferences, subject to

resource constraints. To help address this challenge, this paper introduces a novel

approach to support the modeling and configuration of customizable cloud services. In

particular, we propose a customizable service selecting and configuring optimization

approach based on a heuristic approach, which can quickly derive an optimized valid

service selection by evaluation different configurations that optimize tenants’

preferences under resource limitations. The scalability and performance of the

algorithms is investigated in detail. And the obtained experimental results demonstrate

the feasibility of the proposed method.

Keywords: Cloud service; customizable service configuration; cloud computing;

Binary Particle Swarm Optimization

1. Introduction

With the fast development of cloud computing, among other benefits, cloud services

provide computational & data resources dynamically, which allow applications to react

faster to sudden changes in demands, while saving cost and decreasing power

consumption [1]. Recently, a number of companies are deciding to utilize cloud

services directly for building and deploying new systems [2].

Nowadays, many existing cloud applications only deliver a limited amount of

customizability, often using a one-size-fits-all approach or limiting customizations to

fit for changes. However, applications in some areas such as document processing,

medical information management, and medical communication systems, applications

must be high-variability, as different tenants often have similar needs, especially with

different non-functional requirements. High-variability applications require different

service configurations for specific requirement, which is the process of selecting proper

cloud services with different quality [3]. In order to offer cost-effective solutions to

multiple tenants in the cloud environment, customizable cloud services are necessary,

i.e., the ability to satisfy multiple tenants simultaneously based on one customizable

cloud services [4]. Currently such customizable cloud services are often developed on

an ad-hoc basis. This however poses difficulties concerning the management of these

customizations and ensures the correctness of these customizations [5].

Using Software Product Line Engineering (SPLE) [6], this issue can be addressed.

Feature model in SPLE is widely used to build customizable applications. In feature

model, features are the basic units for building applications, and by selecting and

deselecting features, different application variants can be created. Most approaches in

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

444 Copyright ⓒ 2016 SERSC

SPLE have focused on configuring products using features with static configuration of

variation points. D. Benavides et al. [7] summarize the configuration method based on

uses’ functional requirements and guarantee the soundness of results. On the other hand,

Sayyad et al. [8] present search-based software engineering to solve the SPL

configuration problem on the value of user preferences, which only focus on quality

preferences, but ignore the relationship among features. J. White et al. [9] present Filtered

Cartesian Flattening method, which is Polynomial complexity. However, in cloud

environment, facing a larger number of cloud services, configuration based on tenants

preferences is much complex, and the tenants pay much attention on the efficiency of

providing services. Therefore, a great challenge is how to provide services rapidly, that is,

to find an optimized configuration rapidly that maximizes tenants’ preferences

satisfaction, subject to resource constraints.

In this paper, we focus on the management of customizable cloud services and the

design of algorithms for configuring high-variability applications on cloud infrastructure.

The applications are built by composing customizable services from a set of cloud

services. We first build the model of customizable cloud services based on feature model,

then service configuration problem and optimization objective are designed. We design a

customizable service selecting and configuring optimization approach (CSSCOA) to solve

the problem, CSSCOA can quickly derive an optimized service selection by evaluating

different configuration both satisfy tenants’ preferences under resource limitations.

Besides, a feature amend function is been introduced to convert an optional service set to

satisfy the constraints of services, which guarantee the correctness of the solution. The

scalability and performance of the algorithm is investigated in detail.

The rest of this paper is organized as follows: Section II illustrates the motivating

example and problem analysis. Section III introduces our extended feature model,

configuration model and objective. Section IV proposes the customizable service

optimization configuration approach. Section V presents the experimental results. Section

VI concludes the paper.

2. Motivathing Example and Problem Analysis

Fig.1 shows an example of an application migrated into a cloud, which provides travel

booking service. It has three tenants: 1) Webjet, a travel booking company offering airline

ticket booking, car rental, hotel booking, and payment based in Australia; 2) Rail Plus, the

leading dedicated rail trip specialist general sales agent through Australia & New Zealand,

which provide the train ticket booking, hotel booking and payment service; and 3) P&O

Cruise, Australia and New Zealand’s leading cruise line, offering cruise ticket booking,

insurance quote and payment [10].The cloud application serves the three travel agents by

processing their customers’ requests. A customer enters their travel requirements, e.g., city

of departure, destination, departure date, return date, preferred type of rental car, etc. In

response to the request, the application returns a list of candidate travel plans for the

customer to book and pay. These three tenants configure the customizable travel booking

service from the candidate services and rent them. But, sometimes there exists the

dependencies between the candidate services, for example, if the booking service is rented,

then the pay service must be rented.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

Copyright ⓒ 2016 SERSC 445

Payment

Candidate
Services

Car Rental
Airline Ticket

booking

Candidate
Services

 Insurance
Quote ……

Candidate
Services

Candidate
Services

Candidate
Services

Rail Plus Webjet P&O Cruise

Cloud

…...
Car Rental Hotel Search

Airline Ticket

Search

Insurance

Quote

Car Rental Hotel Search

Insurance

Quote

Cruise Ticket

Search

Figure 1. A Travel Booking Application in a Cloud

On the other hand, these travel agents usually have different multi-dimensional

requirements for the quality of the application. For instance, P&O Cruise pays much

attention to the security of the application despite a high price, Webjet requires a very

fast response time of the application, and Rail Plus is more concerned about

minimizing the cost of renting the application. Therefore, a set of services must be

selected from the candidate services in the cloud to perform the application that serves

the travel agents with satisfactory quality and achieves the application provider’s

optimization goal. Similarly to other researches [11-12], we assume that alternative

functionally-equivalent services are available and can be categorized based on their

functionalities.

3. Cloud Services Configuration Problem

In this section, we first describe the customizable service model, and then present

the optimization model adopted in this research.

3.1. Extended Feature Model

In this research, we adopt the feature model to represent the customizable cloud

services, which is used to model the variability of an application. The customizability

of the application is represented by a collection of features. A feature can (1) capture

high-level variability, such as variations in end-user functionality, or (2) document

low-level variability, such as software variability (e.g., variations in software

implementation) [13]. Each complete architectural variant of the SPL is described as a

set of selected features.

In the basic form, a feature model is a tree of features which are divided in grouped

features and solitary features.

Types of solitary feature contain mandatory and optional, where

• Mandatory (a, b): If a feature a is included, the feature b must be included as well.

• Optional (a, b): If a feature a is included, the feature b may be included. Conversely, the

feature b must not be included if a is not included.

The relationship of a grouped feature includes and-groups, or-groups and xor-groups,

where

• And (a,S): If a feature a is included, all features contained in the set S must be

included. If a is not included, none of the features in S may be included.

• Or (a, S): If a feature a is included, at least one of the features contained in the set S

must be included. If a is not included, none of the features in S may be included.

• Xor(a, S): If a feature a is included exactly one of the features contained in the set S

must be included. If a is not included, none of the features in S may be included.

The relationship between features includes imply and exclude relationships:

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

446 Copyright ⓒ 2016 SERSC

• Excludes (a, b): If a feature a is included, the feature b must not be included and vice

versa.

• Requires (a, b): A feature a may only be included if the feature b is included as well.

In cloud environment, we use features to express cloud services, which not only have

functional property, but also have non-functional properties, such as price, performance,

availability, etc. Therefore, extended feature model (EFM) is presented to express the

customizable cloud services in cloud computing. Because we only focus on the functional,

non-functional and configured variants described by the feature model, skipping the

details, we informally define the extended feature model in Definition 1.

Definition 1 Extended feature model is a 5-tuple (, , , ,) LEFM FD F QP QR R , where FD

is a feature model, LF is the set of atom services, LQP F QR  is the set of

nonfunctional values of atom services, QR is the range of values for nonfunctional

properties, R is the resource costs of atom services.

Fig. 2 shows an illustrative example of a simple extended feature model, in this model,

atom services PhonePay, CreditCard，DebitCard and FraudDetection have quality

properties and corresponding values, such as the availability of PhonePay is [300,500],

the rental cost is [50,70].
Payment

PhonePay

CreditCard

FraudDetectionMethods

DebitCard

N: Availability

V: [300,500]

N: Cost

V: [50,70]

N: Availability

V: [400,500]

N: Cost

V: [20,35]

N: Availability

V: [500,600]

N: Cost

V: [10,25]

N: Availability

V: [400,500]

N: Cost

V: [25,30]

C:[50,70]
Notification

CellPhoneE-mail

SMS Phone

… … …

… …

…
C:[10,20]C:[35,50]

C:[15,25]

madatory

f

f

optional

and

or

requires

Legend:

Figure 2. An Example of an Extended Feature Model

3.2 Configuration Model and Objective

In cloud environments, tenants rent configurable services from a cloud provider. Based

on the tenants’ requirements, the cloud provider configures the configurable service and

selects services from an extended feature model. The key challenge when providing

customizable cloud services is determining how to find an optimized configuration

service rapidly that maximizes tenants’ requirements, subject to resource constraints.

Suppose a cloud environment provide n customizable services { },1iS s i n   , which

modeled by an EFM, C denote all the dependency constraints and cross-tree constraints

defined in the EFM. Besides, each service is S has an associated resource

consumption ()ir s Z , and a QoS ()t iv s Z . ()R S indicates the set of resources

consumed by all the services and ()V S indicates the set of qualities provided by all the

services. CR includes the resource constraints，e.g., 50CPU  , 1Memory G . The

service configuration problem for customizable services aims at selecting and configuring

a set of services from customizable services, which achieving the tenant’s optimization

goal on the premise of resource constraints CR .Therefore, cloud service configuration

based on tenants’ requirements is defined in Definition 2.

Definition 2 Given an extend feature model with n cloud services { },1iS s i n   and

a set of constraints C, the goal of the service configuration problem is to find a service

subset 2SS  from all valid service combinations such that

() (1 ())i jV S V S    is maximized (1)

subject to
 conform toS C

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

Copyright ⓒ 2016 SERSC 447

()(i.e. ())
i

i C

s S

R S r s R


  (2)

where ()iV S is the quality which should be maximized, and ()jV S is the quality which

should be minimized.

The aim of this problem is to find a set of services, which, when executed according

to the tenant’s customized requirements, can fulfill corresponding resource constraints.

As we know, this problem is a NP-hard problem, which should be solved by

optimization algorithm.

4. Customizable Service Optimization Configuration Algorithms

In this section, we present the customizable service selecting and configuring

optimization approach (CSSCOA) based on Binary Particles Swarm Optimization

(BPSO) Algorithm, which can quickly derive an optimized service selection by

evaluation different configurations based on the tenant’s requirements and resource

constraints.

4.1. Binary Particles Swarm Optimization Algorithm

BPSO is an evolutionary computation technique proposed by Kennedy and Eberhart

[14], which is used to solve 0-1 integer programming problem based on the binary

coding scheme specifically. In BPSO, each individual of particle swarm is called

particle, which express as a feasible solution. M particles cooperate to search for the

global optimum in the n-dimensional search space. Each particle maintains a position

idx and velocity idv . A position is a feasible solution to the optimization problem, and

the corresponding objective function value is the fitness of particles, which used to

measure the pros and cons. A velocity indicates the position of the particle velocity

change of direction to guide the search process of particle motion to the optimal

solution. In each iteration, each particle uses its own search experience(self-cognitive)

and the whole swarm’ s search experience (social-influence) to update the velocity and

flies to a new position. The updating rules are as follows:
1

1 1 2 2(()) (()) t t t t

id id best id gbest idv wv c r p t x c r p t x      (3)

1
()1 ,

()0 ,

idt

id

id

r S v
x

r S v




 


, and 1

1 1
()

1
t
id

t

id v
S v

e








 (4)

where bestP the best solution is yielded by a particle and gbestP is the best-so-far solution

obtained by the whole swarm. 1c and 2c are two parameters to weigh the importance of

self-cognitive and social-influence, respectively.  is an inertia weight. 1r and 2r are

random numbers. t

idx is the position of the current particle, and 1t

idx  is the position of the

updated particle,
t

idv and
1t

idv express the velocity of the current and updated particle,

respectively, idv is random numbers uniformly distributed in (0,1)U .

4.2 Customizable Service Selecting and Configuring Optimization Approaches

Although BPSO runs faster than other algorithms because of its relative simple

structure, if gbestp fall into a local optimum, the search will be limited in the same area,

which will prevent the real optimal solution, besides, the correctness of the solution

should be guaranteed for configuring the customizable services. Therefore, we put

forward the customizable service selecting and configuring optimization approach

based on the basic particle swarm optimization algorithm, which redefine the position

of the particle velocity updating formula to enlarge the search scope, introduce the

javascript:void(0);
javascript:void(0);

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

448 Copyright ⓒ 2016 SERSC

weight adjustment mechanism to improve the convergent speed of particle swarm and

define a dyAdjust function to satisfy the correctness of the solution.

4.2.1. The Velocity and Position Updating Strategy: Avoiding the solution falls into a

local optimum, we limit that the particle velocity must be reach the maximum speed maxV

as far as possible, and should be restricted in maxV , so the velocity updating formula is as

shown in Eq. (5)

1 1 1 2 2 max min

max min max min

(()) (()) (,)

max(min(,),) (,)

t t t t

t id best id gbest id id

id t t

id id

wv c r p t x c r p t x v V V
v

V v V v V V


     

 


 (5)

where maxV and minV are specified by experience。

As we know, if gbestp trap into a local optimum, the search will be limited in the same

area, which will prevent to obtain the real optimal solution. Therefore, the strategy of

dynamic reset is introduced in CSSCOA. If gbestp does not change after the algorithm

perform three times iteratively, gbestp will be reset into the initial value and continue

searching. If this case, the particle will leave the local optimal solution to the global area,

and find in new areas, the specific process is shown in Fig.3.

gbest

0 500 1000

0.5

1

0 500 1000

0.5

1

gbest

0 500 1000

0.5

1

0 500 1000

0.5

1
gbest

gbest

(a) (b)

(c)
(d)

(a) gbestp trapped into local optima (b) reset gbestp

(c) after resetting gbestp , the moving process of particles (d) particles gather to the

updated gbestp

Figure 3. The Searching Process of the Particles under the Strategy of
Dynamic Reset

4.2.2 The Dynamic Inertia Weight Adjustment Studies have shown that

the local search ability is stronger when w is smaller, which facilitates the convergence.

And the global search ability is stronger when w is bigger, which is conductive to jump

out of local optimal point. Although decreasing inertia weight linearly can improve the

performance of algorithm, but it can't reflect the complicated behavior of the search

process, which results the effective of the convergence is not ideal. Therefore, a nonlinear

function (5) is defined to change the inertia weight dynamically in the process of iteration,

which specifies the inertia weight in iteration. This mechanism adjusts global coefficient

adaptively, meanwhile gives consideration to the precision and efficiency.

max

()

()

nIter

Iter

initialw Iter w e


 (5)

where n is the nonlinear change rule control power exponents, specially, formula (5) is

called probability curve function when n=2. Change curves in the Fig. 4 represent the

change rule of w in different n, which shows that, the bigger the n is, the more it is

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

Copyright ⓒ 2016 SERSC 449

inclined to search in global, and vice-versa.

Figure 4. w Changing Curves with the Iteration Number under Different n

4.2.3. Feature Adaptively Adjusting Function:The important problem of applying

BPSO in solving customizable service configuration problem is how to guarantee the

optimal solution is correct. That means a solution must satisfy the all the dependency

constraints (e.g. and, or, alternative, etc.) and cross-tree constraints (as requires and

excludes) in EFM. Therefore, we should adaptively adjust an arbitrary service selection

into a correct service combination. A function, called dyAdjust is defined to achieve this

task, which is shown is Algorithm I.

The input of the dyAdjust is an arbitrary service configuration set RS , and the known

conditions are an extended feature model and a rule set C which contains the

characteristics and conditions of the EFM. The output is a service set VS which satisfies

C adjusted through RS , and the services excluded by VS are in ES . The process of the

algorithm dyAdjust is shown in Algorithm I.

Algorithm I Description：

function dyAdjust ()

Data: an arbitrary service configuration set RS

Data: an extended feature model EFM

Data: a rule set SC contains the characteristics and

conditions of the EFM

Data: The correct service set VS

Data: The exclusive service set ES

 is not the root

 (the parenet of)

 children of -group then

 service the group of s children

R

R

V

s S do

if s S and s then

s S

if s and

forea

For ev

ch s s

ery service

if s









 

 is mandatory

 the group of s children is mandatory and S

 all children of which is mandatory

 children of -group then

 c

V

E

E

then s S

if s s and s s then

s S

if s alternative

 

     





hoose a service (the group of s's children)

 the group of s's children and

 :

 :

V

E

V V

V E

s S

foreach s s s

s S

if s requires s C

case s S s S

case s S s S

if s exclu

 

   





 

 

 :

 :

V E

V V

des s C

case s S s S

case s S s S



 

 

The execution process of the customizable service selection and configuration

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

450 Copyright ⓒ 2016 SERSC

optimization approaches is shown as below.

Step 1: Initialization: Initialize the scale of particle swarm N based on the given EFM,

the maximum iteration number is K. Generate the initial velocity and position parameters

iX and iV randomly, and dyAdjust is called to guarantee the correctness of iX .

Calculate the fitness of each particle ()if X , if () 0if X  , the particle is discarded. The

initial global optimum position gbestX and the initial local optimum of each individual

particle are obtained based on ()if X

Step 2: check the iteration number K, if k equals to the maximum iteration number K,

then go to step 4; otherwise step 3.

Step3: iterative algorithm

For each particle in the swarm, calculate the inertia weight w according to equation (5)

Update the velocity and position of the particle according to equation (3) and (4)

Calculate the fitness function value ()if X according to equation (1), if

(() ()i pbestf X f X , then pbest iX X , and adjust pbestX by dyAdjust; if

(() ()pbest gbestf X f X , then gbest pbestX X .

k ++; execute Step 2;

Step 4: output the obtained optimum and its fitness value.

5. Experimental Evaluation

This section presents the experimental evaluation of our approach. We conduct a series

of in-lab experiments to verify the effectiveness (measured by success rate and objective

value) and efficiency (measured by computational time). We develop a prototype that

implements the proposed approaches in Eclipse IDE for Java. The experiment data is

generated by BeTTY feature model generator [15]. The service number in the extended

feature model is between 100 and 1000, and the quality attributes of each service are

generated randomly. [16] pointed out that the characteristics of the above model can

reflect the characteristics of the industrial practical application. The experimental

environment: Pentium Dual 2.27GHz, 2.0GB RAM, Windows Vista, Eclipse 3.6,

FeatureIDE plug-ins and Java Virtual Machine 1.6. The results are the average data for

running the algorithm 100 times.

In this paper, we improve the update formula and introduce the adaptive weight

adjustment mechanism based on the binary particle swarm optimization algorithm.

Therefore, we compare CSSCOA with the standard BPSO with the same setting of

parameters, as shown in Table (1), where itmax is the number of iterations, Np is the

number of particle population. The service constraint parameters in EFM are shown in

Table (2). 100 feature models for each size are generated randomly with the same

parameters, and we only take the mean value of their results.

Table 1. Parameters of CSSCOA and BPSO

Np itmax n
initial 1c

2c minV
maxV

15 30 2 0.8 2.0 2.0 6 -6

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

Copyright ⓒ 2016 SERSC 451

Table 2. The Service Constraint Parameters in EFM

sub-service

number of each

service

The relationship

between father and son Cross-tree

constraints and or alternativ

e

10(at most) 50

%

25% 25% 10%

Table 3 the time requirement for CSSCOA and BPSO. Here, the experiments are

performed on each feature model whose size FN varies from 100 to 1000. The rows

T-CSSCOA and T-BPSO represent the time requirement for the CSSCOA and BPSO

solutions respectively. It is observed that solution times are increased dramatically with

the increasing of features and the increasing amplitude are consistent. But, the

performance of CSSCOA is slightly better than BPSO under different feature number.

During the iterative process, adaptive weight adjustment mechanism enables the w

balance the global and local search ability, reduce the number of iterations, therefore

spend less time, especially in the case of large numbers of features.

Table 3. The Time Requirement for CSSCOA and BPSO under Different
Number of Features

time

FN
100

200
300 400 500

T-CSSCOA(ms) 186.15 669.34 1654.23 2784.71 4200.70

T-BPSO(ms) 188.99 684.55 1718.26 2809.16 4261.44

time

FN
600 700 800 900 1000

T-CSSCOA(ms) 5583.45 9318.06 10153.22 12903.99 15621.20

T-BPSO(ms) 5604.27 9401.26 10354.91 13019.38 15681.04

The comparison of the approximate optimal solution between CSSCOA and BPSO

is shown in Fig.5. As we seen, the fitness function value increased gradually with

features increasing, and the fitness value of CSSCOA is better than BPSO. Through

changing the global optimal particle’s position during searching, CSSCOA expands the

search scope of the solution space to find a better solution.

Figure 5. The Comparison of Fitness Values between CSSCOA and BSPO

Next we will analyze the influence of different service constraint parameters in EFM

for algorithm. Literature [9] pointed out that in the feature model, the main factors

influencing the product configuration is the dependency constraints among features.

CSSCOA

javascript:void(0);
javascript:void(0);
javascript:void(0);

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

452 Copyright ⓒ 2016 SERSC

To this end, the experiments are performed on 30 feature models for 1000 size, which are

generated randomly with the same parameters, and we take the mean value of their results.

Under different ratios of dependency and exclusive relationships, the efficiency and the

approximation degree of the algorithm are compared, which are shown in Table 4. The

columns T-CSSCOA, R-CSSCOA and SD-CSSCOA represent the solution time, the

approximation degree and instability of CSSCOA. With the growth of the constraint ratio,

the solution time grows linearly, the approximate solution declines gradually, and the

instability of the algorithm increases gradually.

Table 4. The Influence of Different Dependency and Mutually Exclusive Ratio
on the Algorithm

Constraint Ratio T-CSSCOA R-CSSCOA SD-CSSCOA

0 446.027 0.778 0.074

10% 5031.789 0.839 0.084

20% 10429.334 0.710 0.092

30% 15909.783 0.545 0.088

40% 20927.820 0.448 0.111

6. Conclusion

With the mature of cloud computing technology, more and more applications are

moved to the cloud. How to manage those services and provide customizable cloud

services to tenants has become a more active research. In this paper, we introduce a novel

approach to support the modeling and configuring of customizable cloud services. First,

we present an extended feature model, which manage and model customizable cloud

services effectively. Then, we propose a customizable service selecting and configuring

optimization approach (CSSCOA), which can quickly derive an optimized service

selection by evaluation different configurations that both optimize tenant preferences and

honor resource limitations. The main contributions are 1. redefine the position of the

velocity updating formula, which conducive to improve the solving accuracy; 2 introduce

the dynamic weighting adjustment mechanism, which improve convergence speed; 3 puts

forward feature adaptively adjusting function, which ensure the rationality of solving. At

last, the scalability and performance of the algorithms is investigated.

References

[1] I. Kumara, “Runtime Evolution of Service-Based Multi-tenant SaaS Applications”, Service-Oriented

Computing. Springer Berlin Heidelberg, (2013), pp. 192-206.

[2] J. G. Galán, “Migrating to the Cloud - A Software Product Line based Analysis”, In Proceedings of the

3rd International Conference on Cloud Computing and Services Science, (2013), pp. 416-426.

[3] Q. He, “QoS-Aware Service Selection for Customisable Multi-Tenant Service-Based Systems: Maturity

and Approaches”, In Proceedings of the 8th International Conference on IEEE Cloud Computing

(CLOUD), (2015), pp. 237-244.

[4] B. M. Ognjanovic, D. Gasevic, E. Bagheri and M. Boskovic, “A Metaheuristic Approach for the

Configuration of Business Process Families”, In the Proceedings of the Ninth International Conference

on IEEE Services Computing, Hawaii, USA , (2012), pp: 25-32.

[5] H. Moens, B. Dhoedt and F. D. Turck, “Allocating resources for customizable multi-tenant applications

in clouds using dynamic feature placement”, Future Generation Computer Systems , no. 53, (2015),

pp. 63-76.

[6] K. C. Kang, J. Lee and P. Donohoe, “Feature-oriented product line engineering”, IEEE Software, vol.

19, no. 4, (2002), pp. 58-65.

[7] D. Benavides, S. Segura and A. Ruiz-Cortés, “Automated analysis of feature models 20 years later-A

literature review”, Information Systems, vol. 35, no. 6, (2010), pp. 615-636.

[8] A. S. Sayyad, T. Menzies and H. Ammar, “On the value of user preferences in search-based software

engineering: A case study in software product lines”, In the Proceedings of the 35th International

Conference on IEEE Software Engineering (ICSE), (2013), pp.492-501.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

Copyright ⓒ 2016 SERSC 453

[9] J. White, B. Dougherty and D. C. Schmidt, “Selecting highly optimal architectural feature sets with

Filtered Cartesian Flattening”, Journal of Systems & Software, vol. 82, no. 8, (2009), pp. 1268-1284.

[10] Q.He, “QoS-Aware Service Selection for Customisable Multi-Tenant Service-Based Systems: Maturity

and Approaches”, In the Proceedings of the 8th International Conference on IEEE Cloud Computing

(CLOUD), (2015), pp. 237-244.

[11] M. Alrifai, D. Skoutas and T. Risse, “Selecting Skyline Services for QoS-based Web Service

Composition”, In the Proceedings of the 19th International Conference on World Wide Web

(WWW2010), Raleigh, North Carolina, USA, (2010), pp. 11-20.

[12] Q. He, J. Han, Y. Yang, J. Grundy and H. Jin, “QoS-Driven Service Selection for Multi-tenant SaaS”, In

the Proceedings of the Fifth International Conference on IEEE Cloud Computing, Honolulu, HI, USA,

(2012), pp. 566-573.

[13] A. Metzger, “Disambiguating the Documentation of Variability in Software Product Lines: A

Separation of Concerns, Formalization and Automated Analysis”, In Proceedings of the IEEE

International Requirements Engineering Conference, (2007), pp. 243-253.

[14] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm”, In

Proceedings of the International Conference on Computational Cybernetics and Simulation, no. 5,

(1997), pp. 4104-4108.

[15] Homepage for BeTTy: http://www.isa.us.es/betty/betty-online.

[16] T. Thum, D. Batory and C. Kastner, “Reasoning about edits to feature models”, In Proceedings of the

31st International Conference on Software Engineering, (2009), pp. 254-264.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 4 (2016)

454 Copyright ⓒ 2016 SERSC

