# An Optimised Fuzzy Approach to Remove Mixed Noise from Images

Sweety Deswal<sup>1</sup>, Surbhi Singhania<sup>2</sup>, Shailender Gupta<sup>3</sup> and Pranjal Garg<sup>4</sup>

YMCA University of science and technology, Faridabad, India Sweetydeswal92@gmail.com<sup>1</sup> Surbhidec24@gmail.com<sup>2</sup> Shailender81@gmail.com<sup>3</sup>,prnjlgrg0@gmail.com<sup>4</sup>

### Abstract

Mixed noises can be defined as a combination of different types of noises acting on a single carrier. There has been a mention of various mechanisms used to restore images corrupted with mixed noise in the past. This paper proposes a simple method based on fuzzy set theory and Bilateral Filter to remove mixed noises and compares it with previously mentioned techniques such as: Vector Median Filter(VMF), Vector Direction Filter (VDF), Fuzzy Peer Group Averaging (FPGA), Fuzzy Vector Median Filter (SBF), Joint Bilateral Filter (JBF), and Trilateral Filter (TF) on the basis of performance metrics such as Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), Mean Square Error (MSE) and Normalised Colour Difference (NCD). For the purpose of a detailed analysis, the performance of each method is evaluated by varying the image size and the noise density by implementing them in MATLAB-09. The mixed noise used in this paper is a combination of three noise i.e. poisson, impulse and Gaussian noise. The simulation and result shows that the proposed method provides better PSNR and hence better image quality than almost all the methods mentioned above.

Keywords: Noise, Filter, Gaussian, Poissson, Impulse, PSNR, MSE, MAE.

## 1. Introduction.

Noise [4] is a commonly used term which describes visual distortion in images. It may be caused due to film grain in case of digital cameras acquisition or electronic transmission discrepancy as observed in television broadcasting. Several researchers [6-8] have proposed mechanism to remove single noise from images but only few proposals are available in literature about how to remove mixed noise [14-18] *i.e.* mixture of two or more noises from images. Few popular noises are impulse [11-13], poisson [27] and Gaussian noise[27]. The impulse noise is created due to transmission faults. For instance, in case of satellite transmission over long distances impulse noise is prominent. Also known as the "salt and pepper noise", it replaces the pixels with a zero or maximum pixel value leaving black and white spots on the image.

Poisson noise or photo shot noise is caused by random variation of photons, which cause more photons to enter one sensor than the other. In real world photography, if enough images are taken, it will be seen that the deviation in intensity found for each image follows the well-known poisson distribution. In effect, we can't be sure that the intensity measured in a particular image represents the "true" intensity as it is obvious that this value will deviate from the average. It is this deviation which is considered to be the noise associated with the image. As the deviation is known to follow a Poisson distribution, we know that the likely deviation will be plus or minus the square root of the signal intensity measured. Gaussian noise is caused during acquisition process e.g. electronic circuit noise. In case of telecommunications and computer networking, communication channels can be affected by wideband Gaussian noise coming from many natural sources, such as thermal vibrations of atoms in conductors.

In this paper we consider all these noises as mixed ones and de-noising is done using Fuzzy logic and Bilateral Filter with the previous ones in literature. The techniques used for comparison are as follows:

- Average Median Filter (AMF) is the simplest type of filter to remove impulse noise from image where each pixel is replaced by arithmetic mean of neighbouring pixels. It is generally assumed that pixel values vary slowly over space, so neighbouring pixels are likely to have similar values, and it is therefore appropriate to average them together.
- Vector Median Filter (VMF) is an extension of the median filter [2] to multivariate data. For an observation window Ω= {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>}, the output of the vector median filter is defined as

$$x_{VM} = \arg \operatorname{Min} \sum_{i=1}^{N} ||x - x_i||_2$$

Where  $\|.\|$  denotes the  $L_p$  norm. The impulse response of this type of filter is zero; therefore, it is good for removal of impulse noise.

• Vector Directional Filter (VDF) is a vector directional filter (VDF) for directional [3][25-26] processing, which is a generalized Basic Vector Directional Filter (BVDF). For an observation window, the output of the BVDF is defined as:

$$x_{BVD} = \arg \operatorname{Min} \sum_{i=1}^{N} A(x - x_i)$$

Where  $A(x,x_i)$  denotes the angle between x and  $x_i$ .

• **Fuzzy Vector Median Filter (FVMF)** utilizes the techniques of fuzzy set theory, Y. Shen and K.E. Barner proposed fuzzy vector median (FVM) based surface smoothing [1][19-20] which utilize the information regarding the spread of samples in image pixels. In this technique one membership function  $\mu$  is used to calculate degree of pixel as below:

$$\iota(a,b) = e^{\frac{-(a-b)^2}{a^2}}$$

Where  $\alpha$  control the spread of membership function. Then output is calculated as:

$$F_{FVMF} = \frac{\sum_{i=1}^{N} F_i \mu(F_0 F_i)}{\sum_{i=1}^{N} \mu(F_0 F_i)}$$

where  $F_0$  is the central pixel and  $F_i$  is the current pixel in neighbourhood.

• **Fuzzy Peer Group Averaging (FPGA)** is a filtering method [12] where the fuzzy peer group of each image pixel is determined by means of a novel fuzzy logic-based procedure. Then output is calculated by weighting averaging operation as below where weighting coefficients for each pixel vector is its membership degree.  $FP_m^{F_0}$  to peer group's m<sup>f</sup>.

$$F_{out} = \frac{\sum_{i=1}^{mf} F_i \times FP_m^{F_0}(F_i)}{\sum_{i=1}^{mf} [F_i FP_m^{F_0}](F_i)}$$

• **Bilateral filter:** Bilateral Filter [28, 29, 30] was first proposed by C. Tomasi, R. Manduchi in the year 1998. It is basically a non-linear, edge-preserving and Gaussian noise reducing filter used for gray and color images. Thus mathematically at a pixel location (x,y) the output I(x,y) of the bilateral filter is calculated as follows

$$I'(\mathbf{x},\mathbf{y}) = \sum y_{\in N(x)} e^{\frac{-||y-x||^2}{2\sigma_d^2}} e^{\frac{-||I(y)-I(x)||^2}{2\sigma_r^2}} \mathbf{I}(\mathbf{x},\mathbf{y})$$

Where  $\sigma_d$  and  $\sigma_r$  are parameters controlling the fall-off of weights in spatial and intensity domains, respectively. N(x) is a spatial neighborhood of pixel I(x).  $\sigma_d$  is the geometric spread parameter that is to be chosen based on the amount of the low pass filtering required.

- Adaptive Bilateral Filter: An Adaptive Bilateral filter (ABF)[31] is proposed by Zhang and Allebach in the year 2008 which not only smoothes the image but also sharpens the image by increasing the slope of the edges. ABF adds an offset (φ) to the existing bilateral filter in order to sharpen the edges. ABF adds an offset (φ) to the existing bilateral filter in order to sharpen the edges.
- Switching Bilateral Filter: SBF works on mixed noise (Gaussian +impulse) techniques. It is based upon the "detect and replace" methodology and for detection purpose, we used a noise detector [33, 35, 36] in the switching filtering technique. The absolute difference between current pixel and reference median is calculated. Depending upon the value of absolute difference, we can determine whether the pixel is noisy or not. To determine the value of reference median, we define an approach called Sorted Quadrant Median Vector (SQMV).
- Joint Bilateral Filter: A new technique [37, 38] was proposed by O.U.NirmalJith and R. Venkatesh Babu in the year 2014 to achieve high quality image from two images. It performs a Non Local Means (NLM) approach for de-noising of images. It works on images corrupted with Gaussian noise.
- **Trilateral Filter[13]:** The technique is used to remove mixed noise (Gaussian and impulse noise) from images. Instead of making use of 'detect and replace methodology', it adds a ROAD statistics to existing bilateral filter that helps to remove two types of noises. This provides better results as compared to Switching Bilateral Filter.

All these techniques are implemented in MATLAB-09. The rest of the paper is organised as follows: Section 2 gives the proposal. Section 3 provides the optimisation algorithm used to optimization the parameters used in our fuzzy based method. Section 4 provides the simulation set up parameters, performance metrics used for comparison purpose. Section 5 compares the results of our proposed technique with the previous ones followed by conclusion and references.

# 2. The Proposal

The block diagram for proposed technique is shown in Figure. 1. We use fuzzy logic theory to remove all the noises mentioned above and at last remove traces of Gaussian noise left by using Bilateral filter.

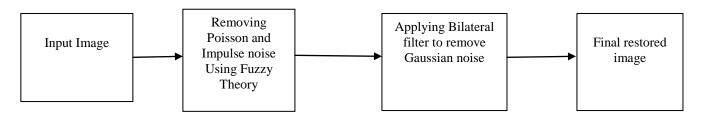



Figure 1. Proposed Block Diagram

Now we would like to give a brief description about Fuzzy theory for better understanding of our proposal.

### 2.1 Basics of Fuzzy Theory.

It is a new science that enables its user to arrive to a definite conclusion despite the fact that the inputs provided are vague, imprecise and ambiguous. Unlike Classical Set Theory which deals with crisp sets, Fuzzy Set Theory provides means to convert non-numeric Linguistic Variables into an exact outcome. This science has been used for the control purpose of robotic equipments, image recognition, architectural space analysis and cluster analysis. (This Science has been used everywhere from control theory to artificial intelligence.) Basic setup of a Fuzzy Knowledge Base Controller is as depicted follows (see Figure. 2).

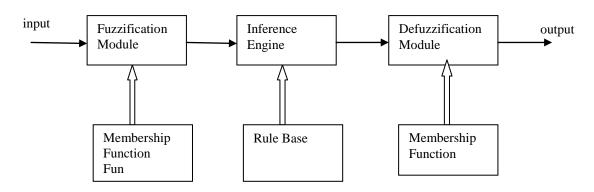



Figure 2. Fuzzy Knowledge Base Controller

The basic functioning of each block is as follows:

- **Fuzzification Module** is responsible for the fuzzification or converting the crisp sets into fuzzy sets. It uses a pre-defined membership function for the process of conversion.
- **Inference Engine** uses if-then rules defined in the rule base to analyse the fuzzy sets and provide corresponding outputs.
- **Defuzzification Module** is responsible for converting the fuzzy sets back to their crisp form. In our proposal we used Centre of Gravity method to convert the fuzzy value to crisp value.

The final aim of this method is to use fuzzy logic to assign weights to pixels in the window (W) around the pixel under analysis (*i.e.*F<sub>i</sub>). Using the weighted average or Centre of Gravity method this pixel is then replaced with a new Pixel value ( $F_i$ ) which is given by the formula:

$$F_i' = \frac{\sum_{i=0}^m w_i F_i}{\sum_{i=0}^m w_i}$$
(1)

Using this method, for each pixel an appropriate replacement is found keeping in mind the noisiness and similarity of its neighbouring pixels within a window surrounding the pixel. The value of 'm' in equation (1) is set as 3 on experimental verification. This noisiness is a property of the impulse noise and similarity aids us to remove the Poisson noise. Now we discuss how each block is used in our proposed method.

## a. **Fuzzification Module:**

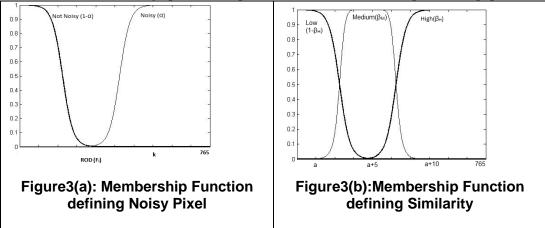
This module takes two inputs named as Noisiness and Similarity discussed below:

## • Noisiness:

Noisiness of a pixel (F<sub>i</sub>) is calculated with respect to pixels in the  $n \times n$  window around it. Then we assign a degree of certainty  $\alpha(F_i)$  for the vague statement "(F<sub>i</sub>) is noisy". Let

the pixel be (F<sub>i</sub>)and the window pixels be  $F_j$  with *j* varying from 0 to n<sup>2</sup>-1. The metric  $L_{\infty}$  is calculated for every F<sub>i</sub> in the window using the function:

$$L_{\infty}(F_{i}, F_{j}) = \max\{|F_{i}^{R} - F_{j}^{R}|, |F_{i}^{G} - F_{j}^{G}|, |F_{i}^{B} - F_{j}^{B}|\}$$


These values of all pixels are sorted and stored as a matrixl<sub>1</sub>(k) where k varies from 0 to  $n^2$ -1 and  $l_1(0)$  holds the minimum value of  $L_{\infty}$  and  $l_1(0) < l_1(1) < l_1(2) < \dots < l_1(n^2-1)$  The least s+1 values of  $L_{\infty}$  are used in calculating the statistics  $ROD_s$  given by:

$$ROD_s(F_i) = \sum_{k=0}^{s} l(k)$$

*RODs* takes values in the interval[0,255s]. The value of 's' is set such that only close pixels with least noise are involved in the calculation of the  $ROD_s$  factor. It has been taken to be 3 in this proposal after experimental analysis. Low value of  $ROD_s$  indicates that the pixel value of the neighbours of  $F_i$  is close to its own pixel value thus implying that  $F_i$  is expected to be noise-free. But, higher value of  $ROD_s$  indicates a noisier pixel. The value of s is taken as 3. The membership function used to define noisy pixel (see Figure. 2(a)) is given as:

$$\propto (F_i) = \frac{1}{1 + e^{-0.1077(x-k)}}$$

Where k is selected using optimisation process discussed in the later part of the paper.



#### Similarity

This function defines the degree of closeness  $\beta(F_i, F_j)$  between the value of the pixel in question  $(F_i)$  and the value of pixels around it  $(F_j: j \in (0, n^2 - 1))$ . The similarity of window pixels with  $F_i$  is labelled as "low", "medium" or "high" represented by  $\beta_L, \beta_M$ ,  $\beta_H$  and defined by the metric  $L_1$  given by:

$$L_1(F_i, F_j) = |F_i, F_j|$$

It should be noted here that the  $L_1$  parameter is calculated individually for each colour plane. The window pixels  $(F_j)$  are sorted into a matrix  $l_2(k)$  where  $l_2 \square(0)$  contains the least value of  $L_1$  and  $l_2 \square(0) \le l_2(1) \le l_2(2) \le l_2(3) \dots l_2(n^2 - 1)$ . First m+1 pixels of this matrix are used for further inferring process. To assign a degree of closeness membership function shown in Figure. 2(b) is used and mathematically stated as:

$$\beta_H(F_i, F_j) = \frac{1}{1 + e^{0.3662(x-a)}}$$
$$\beta_M(F_i, F_j) = \frac{1}{1 + |\frac{x - (a+5)}{15}|^{5/2.5}}$$

The parameter 'a' is suitably chosen using the optimisation process discussed in the later part of this paper. The next subsection discusses the inference engine.

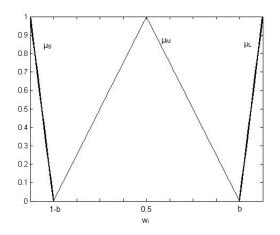
### a. Inference Engine

This module depends on if-then conditions that make the rule base of the fuzzy system. Depending on these conditions this module analyses the degree of certainty of input conditions that is noise and similarity. In addition to it also assigns weight to be small, medium or large as shown in Table 1. The weight assigned is a number between 0 and 1. The rules are as summarised below (see Table 1):

| Is F <sub>i</sub> noisy? | Is F <sub>j</sub> noisy? | Similarity b/w F <sub>i</sub> &F <sub>j</sub> | Weight |
|--------------------------|--------------------------|-----------------------------------------------|--------|
| Yes                      | No                       | Medium                                        | Medium |
| Yes                      | No                       | Low                                           | Large  |
| No                       | No                       | High                                          | Large  |
| Yes                      | Yes                      | Low                                           | Small  |
| Yes                      | Yes                      | Medium                                        | Small  |
| Yes                      | Yes                      | High                                          | Small  |
| No                       | Yes                      | Low                                           | Small  |
| No                       | Yes                      | Medium                                        | Small  |
| No                       | Yes                      | High                                          | Small  |
| Yes                      | No                       | High                                          | Small  |
| No                       | No                       | Medium                                        | Small  |
| No                       | No                       | Low                                           | Small  |

Table 1. Rule Base

These rules can be summarised as:


- i. Noisy pixels are assigned small weights.
- ii. Noise free pixels are assigned high values of weight if similarity with central pixel is moderate or high.
- iii. Noise free pixels are assigned high values of weight if the central pixel is noise.

#### b. De-fuzzification Module

This module converts fuzzy sets back into crisp sets. There are various methods available in literature for de-fuzzification such as maximum principle, centroid value method, weighted average method, mean maximum membership method *etc*. In this paper, we have used the weighted average or Centre of Gravity method to calculate the de-fuzzified value as it gives the best results. The membership function shown in Figure. 3 is the degree of certainty of each pixel's weight being "small", "medium" or "large" as assigned by the inference engine lead us to calculate the weight associated with each window pixel. The membership equations are as follows:

$$\mu_{M}(w_{i}) = \begin{cases} \frac{(2w_{i}-1)}{(2b-1)} + 1, & 1-b < w_{i} \le 0.5\\ \frac{(1-2w_{i})}{(2b-1)} + 1 & 0.5 < w_{i} \le b\\ 0 & otherwise \end{cases}$$
$$\mu_{s}(w_{i}) = \begin{cases} \frac{w_{i}}{(b-1)} + 1, & 0 < w_{i} \le 1-b\\ 0, & otherwise \end{cases}$$

where the value of b' if found using optimisation process.



**Figure 4. Membership Function Defining Output** 

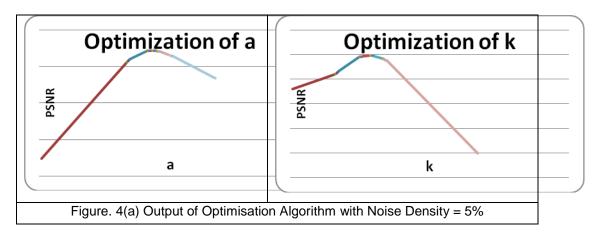
The final de-fuzzified value can be found out by using the de-fuzzification process. On replacement of all  $F_i$  with  $F'_i$  using equation (1), the procedure yields a de-noised image. An important point to be kept in mind is that the image has to be padded with zeros before hand in order to perform all the steps on the edge pixel smoothly.

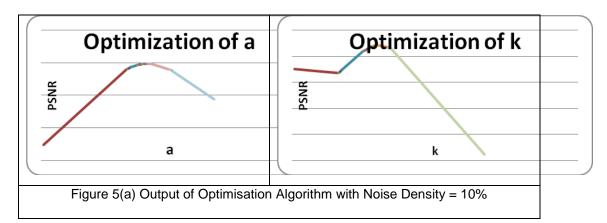
### 2.2 Bilateral Filter.

After applying above parameters to input image, impulse and poisson noise has been removed. Then we pass the image through a bilateral filter to remove any Gaussian noise left in the image. Mathematically at a pixel location (x,y) the output I(x,y) of the bilateral filter is calculated as follows:

$$I'(\mathbf{x},\mathbf{y}) = \sum y_{\in N(x)} e^{\frac{-||y-x||^2}{2\sigma_d^2}} e^{\frac{-||I(y)-I(x)||^2}{2\sigma_r^2}} I(\mathbf{x},\mathbf{y})$$

Where  $\sigma_d$  and  $\sigma_r$  are parameters controlling the fall-off of weights in spatial and intensity domains, respectively. N(x) is a spatial neighborhood of pixel I(x).  $\sigma_d$  is the geometric spread parameter that is to be chosen based on the amount of the low pass filtering required. A large value of  $\sigma_d$  means it combines values from more distance in an image. Similarly  $\sigma_r$  is the parametric spread that is set to achieve the desired amount of combination of pixel values. Finally we get our restored image as resultant image.


## **3. Optimization of Parameters**


For the purpose of obtaining the best possible value of PSNR in the de-noised images, we performed the optimisation of the variables a, b and k. keeping one of the variable constant at a time and by using regression the most optimised value was obtained. The algorithm to optimise the values is as follows:

a=1; b=0.9;For k=1 to 501 Perform denoising Calculate PSNR If PSNR (k)  $\leq$  PSNR(k-50) Break; Else

| k = k + 50;                                                                |
|----------------------------------------------------------------------------|
| End                                                                        |
| End                                                                        |
| If(k < 100)                                                                |
| $k\_left=k-50$                                                             |
| k_right=k                                                                  |
| Else                                                                       |
| k_left=k-100                                                               |
| k_right=k                                                                  |
| End                                                                        |
| <i>For i=1:20</i>                                                          |
| $k_max = floor((k_left + k_right)/2)$                                      |
| Calculate PSNR (k_max-1), PSNR (k_max+1)                                   |
| If $[PSNR (k_max-1) > PSNR (k_max)]$ and $[PSNR (k_max+1) < PSNR (k_max)]$ |
| k_right=k_max-1                                                            |
| End                                                                        |
| If $[PSNR (k_max-1) < PSNR (k_max)]$ and $[PSNR (k_max+1) > PSNR (k_max)]$ |
| $k\_left=k\_max+1$                                                         |
| End                                                                        |
| If $[PSNR (k_max-1) < PSNR (k_max)]$ and $[PSNR (k_max+1) < PSNR (k_max)]$ |
| Display: k_max is the optimised value                                      |
| Break                                                                      |
| End                                                                        |
| End                                                                        |

This algorithm yields best possible value for k. After this, the process is repeated for finding the most optimum value of a Figure. 4 shows the output of the algorithm for image size  $128 \times 128$  and  $256 \times 256$  with noise density 5%, 10%, 15% and 20%. Similar graphs were obtained for other noise density and image sizes. Table 2 shows the optimum values of parameters obtained using the above algorithm for other noise densities. It should be noted here that b=0.9, this value has been found to yield best results when the process was run from 0.6 to 0.9 on a step of 0.1. The next section discusses the experimental setup parameters and performance metrics chosen.





## Figure 5: Output of Optimisation Algorithm

| Image Size | Noise Density | Optimised value of k | Optimised value of a |
|------------|---------------|----------------------|----------------------|
| 128x128    | 5             | 65                   | 44                   |
|            | 10            | 62                   | 44                   |
|            | 15            | 56                   | 1                    |
|            | 20            | 54                   | 1                    |
| 256x256    | 5             | 52                   | 41                   |
|            | 10            | 47                   | 1                    |
|            | 15            | 45                   | 1                    |
|            | 20            | 47                   | 1                    |

| Table 2. | <b>Optimised F</b> | Parameters |
|----------|--------------------|------------|
|----------|--------------------|------------|

## **4.Experimental Setup**

#### **4.1Performance Metrics**

Peak Signal to noise Ratio- is the measure of maximum error. It is used to express the ratio [4-5] of maximum possible power of image (signal) and the power of the noise that affects the quality of its demonstration. It is represented as:

$$PSNR=10log_{10}(\frac{MAX^2}{MSE})$$

 $MAX_I$  is the maximum possible pixel value of the coloured image. It is equal to 255 for 8 bit represented image.

Mean square error- is the total squared error between the denoised image and the true uncorrupted image. This enables us to compare methods more precisely by analysing results under same conditions like image size noise, *etc.* It is mathematically stated as:

$$MSE = \frac{1}{M \times N \times 3} \sum_{c=1}^{3} \sum_{y=1}^{N} \sum_{x=1}^{M} [F^{c}(x, y) - F^{c}(x, y)]^{2}$$

Where  $m \ge n$  is the image size.

Mean absolute error- is the absolute error between the original image and the denoised image obtained after denoising the image using one of the filters. It is used to measure the closeness of the denoised pixel to its original value before corruption. It is given by:

$$MAE = \frac{1}{M \times N \times 3} \sum_{c=1}^{3} \sum_{y=1}^{N} \sum_{x=1}^{M} Abs \left[F^{c}(x, y) - F^{c}(x, y)\right]^{2}$$

- Image Quality- The original and the denoised images were compared by placing them side by side to examine the variance in degradation of image quality in each method. This was tested on the images of varying sizes.
- Normalised Colour Difference (NCD)- is used to measure the degradation in colour quality in colour images since it approaches the human perception. It is defined as below:

$$NCD_{lab} = \frac{\sum_{i=1}^{N} \sum_{i}^{M} \Delta E_{lab}}{\sum_{i=1}^{N} \sum_{i}^{M} E_{lab}}$$

Where M, N are the image dimensions.

### 4.2. Simulation Setup

Algorithms were developed in MATLAB-09 to simulate the methods for filtering an image consisting of dual noise. The value of variance was varied and hence, a comparative result generated. The setup parameters are shown in Table 3 as follows:

| Component | Parameter  | Value of parameter                         |
|-----------|------------|--------------------------------------------|
| <b>.</b>  |            | <b>1</b>                                   |
| Image     | Image Size | 128x128( lena and academy)                 |
|           |            | 256x256                                    |
|           | Туре       | RGB                                        |
| Noise     | Туре       | Single noise (Gaussian, Impulse, Poisson)  |
|           |            | Mixed noise (Gaussian + Impulse+ Poisson)  |
|           |            | Three noise (Gaussian + Impulse + Poisson) |
|           | Variance   | 0.05                                       |
|           | of noise   | 0.1                                        |
|           | density    | 0.15                                       |
|           |            | 0.2                                        |
| Processor | Туре       | i3-64 bit                                  |
|           | RAM        | 4 GB                                       |
|           | Speed      | 1.70 GHz                                   |
| Software  |            | MATLAB-09                                  |

**Table 3. Setup Parameters** 

 Table 4. Parameters for Different Filters Used

| Bilateral      | Filter                              |       | Adaptive Bilateral Filter |                                     |       |
|----------------|-------------------------------------|-------|---------------------------|-------------------------------------|-------|
| Symbol         | Parameter                           | Value | Symbol                    | Parameter                           | Value |
| W              | Window size                         | 5     | W                         | Window                              | 3     |
| $\sigma_d$     | Spatial domain standard deviation   | 3     | $\sigma_d$                | Spatial domain filter               | 1.0   |
| σ <sub>r</sub> | Intensity domain standard deviation | 10    | σ <sub>r</sub>            | Intensity range filter              | 20    |
| N              | Gaussian noise intensity            | 0.03  |                           |                                     |       |
| Switchin       | g Bilateral Filter                  |       | Trilateral                |                                     |       |
| Symbol         | Parameter                           | Value | Symbol                    | Parameter                           | Value |
| W              | Window size                         | 5     | W                         | Window size                         | 5x5   |
| ro             | Reference median                    | 40    | $\sigma_S$                | Spatial domain standard deviation   | 5     |
| N              | Salt & pepper noise                 | 0.2   | $\sigma_R$                | Intensity domain standard deviation | 10    |

| Tk1        | Threshold 1 | [25,30]   | $\sigma_I$ | Approx threshold      | [25,55] |
|------------|-------------|-----------|------------|-----------------------|---------|
| Tk2        | Threshold 2 | [5,10,15] | $\sigma_I$ | Controls the shape of | [30,80] |
|            |             |           |            | the function          |         |
| $\sigma_s$ |             | 3,1       |            |                       |         |
| $\sigma_r$ |             | [30,50]   |            |                       |         |
| Proposed   | l method    |           |            |                       |         |
| Symbol     | Value       |           |            |                       |         |
| a          | 1           |           |            |                       |         |
| b          | 0.9         |           |            |                       |         |
| k          | 1 to 501    |           |            |                       |         |
| Wi         | 0 to 1      |           |            |                       |         |

## 5. Results

This section compares the proposed method with previously mentioned methods in the literature to remove mixed noise and proposes a new method to remove combination of three type of noise from images. The table contrasts these methods quantitatively and the image put side by side make a quantitative comparison.

| Original image<br>(lena 128.png) | Gaussian noise<br>5% | 10% | 15% | 20% |
|----------------------------------|----------------------|-----|-----|-----|
|                                  |                      |     |     |     |
| BF                               |                      |     |     |     |
| ABF                              | R                    | R   | R   | R   |

| JBF             |     |     |    |     |
|-----------------|-----|-----|----|-----|
| PGA             |     |     |    |     |
| FVMF            |     | 1   | K  | A   |
| FBF             | X   | No. | R. | N.  |
| SBF             | No. | No. | X  | No. |
| TF              |     |     |    | R   |
| Proposed method |     |     |    | R   |

| Original image<br>Academy128.png | Gaussian noise<br>5% | 10% | 15% | 20% |
|----------------------------------|----------------------|-----|-----|-----|
|                                  |                      |     |     |     |
| Filtered by BF                   |                      |     |     |     |
| Filtered by ABF                  |                      |     |     |     |
| Filtered by JBF                  |                      |     |     |     |
| PGA                              |                      |     |     |     |
| FVMF                             | A                    |     |     |     |

| FBF      |  |  |
|----------|--|--|
| SBF      |  |  |
| TF       |  |  |
| Proposed |  |  |

Figure 6. Comparison for Gaussian Noise Removal Techniques:

| Original image | Impulse noise | 10%         | 15% | 20%                                      |
|----------------|---------------|-------------|-----|------------------------------------------|
| (Lena128.png)  | 5%            |             |     |                                          |
|                |               |             |     |                                          |
|                |               |             |     |                                          |
|                |               |             |     |                                          |
|                |               |             |     |                                          |
|                |               |             |     |                                          |
|                |               |             |     | C MARKAN AND                             |
| and l          |               |             |     | A Company of the                         |
|                | 1. 19         | Calle March |     |                                          |
|                | A AN          |             |     |                                          |
|                |               |             |     |                                          |
|                | ASD SA        |             |     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |

| AMF  |   |   |   |  |
|------|---|---|---|--|
| VDF  |   |   |   |  |
| VMF  |   |   |   |  |
| FVMF |   |   |   |  |
| PGA  |   | R |   |  |
| SBF  |   |   |   |  |
| FBF  | 1 |   | 1 |  |

| TF<br>Proposed            |                     |     |     |     |
|---------------------------|---------------------|-----|-----|-----|
| IMAGE 2<br>Academy128.png | Impulse noise<br>5% | 10% | 15% | 20% |
|                           |                     |     |     |     |
| AMF                       |                     |     |     |     |
| VDF                       |                     |     |     |     |
| VMF                       |                     |     |     |     |

| FVMF     |   |  |
|----------|---|--|
| PGA      |   |  |
| SBF      |   |  |
| FBF      |   |  |
| TF       | A |  |
| Proposed |   |  |

Figure 7. Comparison of Impulse Noise Removal Techniques

| original image | Mixed noise<br>Impulse=5%<br>Gaussian=5 | Impulse=10%<br>Gaussian=10 | Impulse=15%<br>Gaussian=15 | Impulse=20%<br>Gaussian=20 |
|----------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|
|                |                                         |                            |                            |                            |
| PGA            |                                         |                            |                            |                            |
| FVMF           |                                         | X                          | A                          | A                          |
| FBF            | A                                       | A                          | A                          | 1                          |
| SBF            |                                         | X                          | X                          | K                          |
| TF             |                                         | A                          | R                          |                            |

| Proposed    | K | R | R |
|-------------|---|---|---|
|             |   |   |   |
| PGA<br>FVMF |   |   |   |
|             |   |   |   |
| FBF         |   |   |   |
| SBF         |   |   |   |
| TF          |   |   |   |

| Proposed<br>Figure 8.           | Comparison of Mixed | Noise (Gaussian+im | pulse) Removal Tec | hniques: |
|---------------------------------|---------------------|--------------------|--------------------|----------|
|                                 | 5%                  | 10%                | 15%                | 20%      |
| Original image<br>(Lena128.png) | 5%                  | 10%                | 1370               | 20%      |
| FPGA                            |                     |                    |                    |          |
| VMF                             |                     |                    |                    |          |
| VDF                             |                     |                    |                    |          |
| FVMF                            |                     | X                  |                    | R        |

| Proposed<br>Original image<br>(academy128.png) | Poison and (salt and pepper 5%) | 10% | 15% | 20% |
|------------------------------------------------|---------------------------------|-----|-----|-----|
| FPGA                                           |                                 |     |     |     |
| VMF                                            |                                 |     |     |     |
|                                                |                                 |     |     |     |
| VDF                                            |                                 |     |     |     |
| FVMF                                           |                                 |     |     |     |

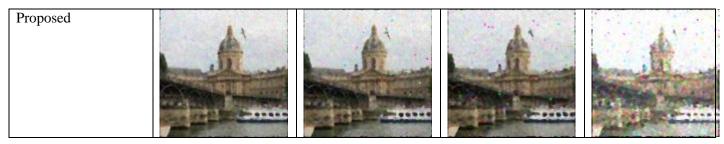



Figure 9. Comparison of Mixed Noise (Poisson and Salt & Pepper Noise)

| Lena128.png<br>Original image | 5 & 5 | 10 &10 | 15&15 | 20&20 |
|-------------------------------|-------|--------|-------|-------|
|                               |       | R      |       |       |
| Proposed                      |       | R      |       | R     |
|                               |       |        |       |       |
| Proposed                      |       |        |       |       |

Figure 10. Comparison for Removal of Mixed Noise (Impulse+Poisson+Gaussian) Proposed Technique:

### 5.2 Impact on PSNR, MSE, MAE and NCD

Table 5-18 shows the PSNR, MSE, MAE for different noise density (5%, 10%, 15% and 20%) and different image sizes( $128 \times 128$  and  $256 \times 256$ ). The following inference can be drawn:

It can be concluded from that the proposed method provides highest value of PSNR and lowest value of NCD in all the cases.

On increasing the impulse noise factor while keeping the image size constant, PSNR decreases, MSE and MAE increases. This is for the reason that the ratio of image size to noise density decreases with increase in image size and constant noise, therefore the output image is lesser de-noised.

On increasing the image size with constant impulse noise density, PSNR increases, MSE and MAE decreases. This is because the ratio of image size to noise density increases with increasing image size and constant noise, therefore the output image is better de-noised.

(1) For lena image (128 x 128):

| Gaussian noise: |                                 |         |         |         | Impulse no | oise:      |           |            |         |         |         |
|-----------------|---------------------------------|---------|---------|---------|------------|------------|-----------|------------|---------|---------|---------|
|                 | σ                               | 5       | 10      | 15      | 20         |            | σ         | 5          | 10      | 15      | 20      |
| PGA             | PSNR                            | 58.0726 | 55.3988 | 53.5967 | 52.4672    | AMF        | PSNR      | 55.7429    | 54.9812 | 53.2522 | 52.7084 |
|                 | MSE                             | 0.1013  | 0.1876  | 0.2841  | 0.3684     |            | MSE       | 0.0027     | 0.0065  | 0.0090  | 0.0139  |
|                 | MAE                             | 0.1013  | 0.1876  | 0.2841  | 0.3684     |            | MAE       | 0.0027     | 0.0065  | 0.0090  | 0.0139  |
|                 | NCD                             | 0.1469  | 0.1925  | 0.2498  | 0.3150     |            | NCD       | 0.0120     | 0.0231  | 0.0345  | 0.0499  |
| FVMF            | PSNR                            | 56.3475 | 56.0565 | 56.1313 | 56.7393    | VDF        | PSNR      | 59.9415    | 58.6266 | 57.3982 | 56.5027 |
|                 | MSE                             | 0.1508  | 0.1612  | 0.1585  | 0.1378     |            | MSE       | 0.0659     | 0.0892  | 0.1184  | 0.0687  |
|                 | MAE                             | 0.1508  | 0.1612  | 0.1585  | 0.1378     |            | MAE       | 0.0659     | 0.0892  | 0.1184  | 0.0687  |
|                 | NCD                             | 0.2976  | 0.2807  | 0.2664  | 0.2500     |            | NCD       | 0.1899     | 0.2730  | 0.3613  | 0.1479  |
| BF              | PSNR                            | 61.7931 | 61.4045 | 61.6220 | 61.8531    | VMF        | PSNR      | 59.9443    | 58.4739 | 57.2031 | 56.2887 |
|                 | MSE                             | 0.0430  | 0.0471  | 0.0448  | 0.0424     |            | MSE       | 0.0659     | 0.0924  | 0.1238  | 0.1528  |
|                 | MAE                             | 0.0430  | 0.0471  | 0.0448  | 0.0424     |            | MAE       | 0.0659     | 0.0924  | 0.1238  | 0.1528  |
|                 | NCD                             | 0.0725  | 0.0697  | 0.0669  | 0.0637     |            | NCD       | 0.1899     | 0.3010  | 0.0687  | 0.4836  |
| FBF             | PSNR                            | 57.3988 | 54.9369 | 53.1825 | 56.7393    | FVMF       | PSNR      | 58.9578    | 57.6845 | 56.6944 | 55.8679 |
|                 | MSE                             | 0.1206  | 0.2086  | 0.3125  | 0.4000     |            | MSE       | 0.0827     | 0.1108  | 0.1392  | 0.1684  |
|                 | MAE                             | 0.1206  | 0.2086  | 0.3125  | 0.4000     |            | MAE       | 0.0827     | 0.1108  | 0.1392  | 0.1684  |
|                 | NCD                             | 0.1513  | 0.1970  | 0.2531  | 0.3158     |            | NCD       | 0.2007     | 0.3039  | 0.3914  | 0.4719  |
| ABF             | PSNR                            | 58.1676 | 55.4917 | 53.6556 | 52.5030    | PGA        | PSNR      | 61.3561    | 60.5396 | 59.6973 | 58.6394 |
|                 | MSE                             | 0.0992  | 0.1836  | 0.2802  | 0.3021     |            | MSE       | 0.0476     | 0.0574  | 0.0697  | 0.0963  |
|                 | MAE                             | 0.0992  | 0.1836  | 0.2802  | 0.3021     |            | MAE       | 0.0476     | 0.0574  | 0.0697  | 0.0963  |
|                 | NCD                             | 0.1526  | 0.1990  | 0.2523  | 0.3654     |            | NCD       | 0.0806     | 0.1119  | 0.3914  | 0.2096  |
| JBF             | PSNR                            | 58.2959 | 55.6972 | 54.2882 | 53.3292    | FBF        | PSNR      | 58.9566    | 58.5418 | 58.2965 | 58.1898 |
|                 | MSE                             | 0.1212  | 0.1751  | 0.2422  | 0.3021     |            | MSE       | 0.0827     | 0.0910  | 0.0963  | 0.0987  |
|                 | MAE                             | 0.1212  | 0.1751  | 0.2422  | 0.3021     |            | MAE       | 0.0827     | 0.0910  | 0.0963  | 0.0987  |
|                 | NCD                             | 0.1663  | 0.1995  | 0.2395  | 0.2826     |            | NCD       | 0.1487     | 0.1765  | 0.2096  | 0.2390  |
| SBF             | PSNR                            | 57.6339 | 55.2116 | 53.3890 | 52.3143    | SBF        | PSNR      | 60.2572    | 60.2007 | 60.1151 | 60.0137 |
|                 | MSE                             | 0.1121  | 0.1958  | 0.2980  | 0.3816     |            | MSE       | 0.0613     | 0.0621  | 0.0633  | 0.0648  |
|                 | MAE                             | 0.1121  | 0.1958  | 0.2980  | 0.3816     |            | MAE       | 0.0613     | 0.0621  | 0.0633  | 0.0648  |
|                 | NCD                             | 0.1591  | 0.2026  | 0.2570  | 0.3174     |            | NCD       | 0.1005     | 0.1056  | 0.1113  | 0.1182  |
| TF              | PSNR                            | 57.7566 | 55.3499 | 53.5503 | 52.3937    | TF         | PSNR      | 61.0537    | 60.4132 | 59.7607 | 59.5831 |
|                 | MSE                             | 0.1090  | 0.1897  | 0.2871  | 0.3747     |            | MSE       | 0.0510     | 0.0591  | 0.0687  | 0.0716  |
|                 | MAE                             | 0.1090  | 0.1897  | 0.2871  | 0.3747     |            | MAE       | 0.0510     | 0.0591  | 0.0687  | 0.0716  |
|                 | NCD                             | 0.1645  | 0.1958  | 0.2596  | 0.3214     |            | NCD       | 0.0967     | 0.1261  | 0.1479  | 0.1616  |
| proposed        | PSNR                            | 70.0219 | 66.8986 | 64.2533 | 62.1717    | Proposed   | PSNR      | 70.6712    | 70.9327 | 70.8982 | 69.1310 |
|                 | MSE                             | 0.0065  | 0.0133  | 0.0244  | 0.0394     |            | MSE       | 0.0056     | 0.0052  | 0.0053  | 0.0079  |
|                 | MAE                             | 0.0626  | 0.1027  | 0.1447  | 0.1869     |            | MAE       | 0.0389     | 0.0381  | 0.0381  | 0.0446  |
|                 | NCD                             | 0.1357  | 0.1734  | 0.2183  | 0.2675     |            | NCD       | 0.1028     | 0.1005  | 0.1007  | 0.1281  |
| Mixed nois      | Mixed noise(Gaussian + impulse) |         |         |         |            | Mixed nois | se(poisso | n+ impulse | )       |         |         |

Table 5. For Different Kinds of Noises:

| International Journal of Signal Processing, Image Pro | cessing and Pattern Recognition |
|-------------------------------------------------------|---------------------------------|
| Vol. 9, No. 4 (2016)                                  |                                 |

|                                          | _    | -       | 10      | 45      | 20      |          | _    | -       | 40      | 45      | 20      |
|------------------------------------------|------|---------|---------|---------|---------|----------|------|---------|---------|---------|---------|
|                                          | σ    | 5       | 10      | 15      | 20      |          | σ    | 5       | 10      | 15      | 20      |
| PGA                                      | PSNR | 57.7721 | 55.2218 | 53.5303 | 52.5230 | FPGA     | PSNR | 60.4633 | 59.6852 | 59.0186 | 58.1504 |
|                                          | MSE  | 0.1086  | 0.1954  | 0.2884  | 0.3637  |          | MSE  | 0.0584  | 0.0699  | 0.0815  | 0.0995  |
|                                          | MAE  | 0.1086  | 0.1954  | 0.2884  | 0.3637  |          | MAE  | 0.0584  | 0.0699  | 0.0815  | 0.0995  |
|                                          | NCD  | 0.1576  | 0.221   | 0.2995  | 0.3784  |          | NCD  | 0.1121  | 0.1462  | 0.1938  | 0.2454  |
| FVMF                                     | PSNR | 55.7870 | 55.0693 | 54.6806 | 54.5174 | VDF      | PSNR | 58.0190 | 57.0440 | 56.3440 | 55.7496 |
|                                          | MSE  | 0.1715  | 0.2024  | 0.2213  | 0.2298  |          | MSE  | 0.1026  | 0.1284  | 0.1509  | 0.1730  |
|                                          | MAE  | 0.1715  | 0.2024  | 0.2213  | 0.2298  |          | MAE  | 0.1026  | 0.1284  | 0.1509  | 0.1730  |
|                                          | NCD  | 0.3705  |         | 0.4499  | 0.4839  |          | NCD  | 0.2551  | 0.3457  | 0.4119  | 0.4747  |
|                                          |      |         | 0.4119  |         |         |          |      |         |         |         |         |
| FBF                                      | PSNR | 57.4342 | 54.9956 | 53.2415 | 52.2377 | VMF      | PSNR | 58.0190 | 57.1034 | 56.3609 | 55.5604 |
|                                          | MSE  | 0.1174  | 0.2058  | 0.3083  | 0.3884  |          | MSE  | 0.1004  | 0.1267  | 0.1503  | 0.1807  |
|                                          | MAE  | 0.1174  | 0.2058  | 0.3083  | 0.3884  |          | MAE  | 0.1004  | 0.1267  | 0.1503  | 0.1807  |
|                                          | NCD  | 0.1769  | 0.2372  | 0.3020  | 0.3703  |          | NCD  | 0.2830  | 0.3847  | 0.4575  | 0.5385  |
| SBF                                      | PSNR | 57.5113 | 55.1269 | 53.4501 | 52.3423 | FVMF     | PSNR | 57.7530 | 56.7839 | 56.0611 | 55.3833 |
|                                          | MSE  | 0.1153  | 0.1997  | 0.2938  | 0.3792  |          | MSE  | 0.1091  | 0.1364  | 0.1611  | 0.1883  |
|                                          | MAE  | 0.1153  | 0.1997  | 0.2938  | 0.3792  |          | MAE  | 0.1091  | 0.1364  | 0.1611  | 0.1883  |
|                                          | NCD  | 0.1661  | 0.2153  | 0.2705  | 0.3345  |          | NCD  | 0.2702  | 0.3579  | 0.4356  | 0.5037  |
| TF                                       | PSNR | 57.4558 | 55.0882 | 53.3985 | 52.3094 | Proposed | PSNR | 73.3915 | 71.9852 | 70.6346 | 69.1445 |
|                                          | MSE  | 0.1168  | 0.2015  | 0.2973  | 0.3821  |          | MSE  | 0.0334  | 0.0041  | 0.0056  | 0.0079  |
|                                          | MAE  | 0.1168  | 0.2015  | 0.2973  | 0.3821  |          | MAE  | 0.0334  | 0.0370  | 0.0413  | 0.0478  |
|                                          | NCD  | 0.1872  | 0.2397  | 0.3055  | 0.3698  |          | NCD  | 0.0837  | 0.0941  | 0.1112  | 0.1382  |
| Proposed                                 | PSNR | 69.4300 | 66.2824 | 63.7289 | 61.5795 |          |      |         |         |         |         |
|                                          | MSE  | 0.0661  | 0.1070  | 0.0276  | 0.1951  |          |      |         |         |         |         |
|                                          | MAE  | 0.0661  | 0.1070  | 0.0276  | 0.1951  |          |      |         |         |         |         |
|                                          | NCD  | 0.1443  | 0.1905  | 0.2450  | 0.3033  |          |      |         |         |         |         |
| Mixed noise (Gaussian + impulse+poisson) |      |         |         |         |         |          |      |         |         |         |         |
| Proposed                                 | PSNR | 69.6158 | 66.2339 | 63.6126 | 61.6922 | 1        |      |         |         |         |         |
| •                                        | MSE  | 0.0071  | 0.0155  | 0.0283  | 0.0440  |          |      |         |         |         |         |
|                                          | MAE  | 0.0647  | 0.1078  | 0.1515  | 0.1927  |          |      |         |         |         |         |
|                                          | NCD  | 0.1421  | 0.1910  | 0.2474  | 0.3026  |          |      |         |         |         |         |

## (2) Academy128.png

| Table 6. | <b>For Different</b> | Kinds of | Noise |
|----------|----------------------|----------|-------|
|----------|----------------------|----------|-------|

| Gaussian noise: |      |         |         |         |         |      | Impulse noise: |         |         |         |         |  |  |
|-----------------|------|---------|---------|---------|---------|------|----------------|---------|---------|---------|---------|--|--|
|                 | σ    | 5       | 10      | 15      | 20      |      | σ              | 5       | 10      | 15      | 20      |  |  |
| PGA             | PSNR | 60.0590 | 57.6769 | 55.8129 | 54.3902 | AMF  | PSNR           | 56.3730 | 54.8743 | 52.4420 | 50.8346 |  |  |
|                 | MSE  | 0.0641  | 0.1110  | 0.1705  | 0.2366  |      | MSE            | 0.0030  | 0.0067  | 0.0117  | 0.0170  |  |  |
|                 | MAE  | 0.0641  | 0.1110  | 0.1705  | 0.2366  |      | MAE            | 0.0030  | 0.0067  | 0.0117  | 0.0170  |  |  |
|                 | NCD  | 0.1508  | 0.1913  | 0.2413  | 0.2937  |      | NCD            | 0.0140  | 0.0284  | 0.0472  | 0.0669  |  |  |
| FVMF            | PSNR | 57.5904 | 57.2163 | 57.1086 | 57.2224 | VDF  | PSNR           | 59.2380 | 58.0110 | 56.9659 | 56.2578 |  |  |
|                 | MSE  | 0.1133  | 0.1234  | 0.1265  | 0.1233  |      | MSE            | 0.0775  | 0.1028  | 0.1308  | 0.1539  |  |  |
|                 | MAE  | 0.1133  | 0.1234  | 0.1265  | 0.1233  |      | MAE            | 0.0775  | 0.1028  | 0.1308  | 0.1539  |  |  |
|                 | NCD  | 0.3028  | 0.2686  | 0.2346  | 0.2036  |      | NCD            | 0.1776  | 0.2804  | 0.3683  | 0.4346  |  |  |
| BF              | PSNR | 64.1015 | 63.7236 | 63.5633 | 63.6129 | VMF  | PSNR           | 59.5484 | 58.1224 | 57.0826 | 56.2513 |  |  |
|                 | MSE  | 0.0253  | 0.6276  | 0.0286  | 0.0263  |      | MSE            | 0.0721  | 0.1002  | 0.1273  | 0.1542  |  |  |
|                 | MAE  | 0.0253  | 0.6276  | 0.0286  | 0.0263  |      | MAE            | 0.0721  | 0.1002  | 0.1273  | 0.1542  |  |  |
|                 | NCD  | 0.0769  | 0.0722  | 0.0674  | 0.0578  |      | NCD            | 0.1941  | 0.3039  | 0.4009  | 0.4884  |  |  |
| FBF             | PSNR | 59.0650 | 58.7961 | 58.3333 | 58.2633 | FVMF | PSNR           | 58.7304 | 57.6794 | 56.8859 | 55.990  |  |  |
|                 | MSE  | 0.0806  | 0.0858  | 0.0911  | 0.0970  |      | MSE            | 0.0871  | 0.1110  | 0.1332  | 0.1634  |  |  |
|                 | MAE  | 0.0806  | 0.0858  | 0.0911  | 0.0970  |      | MAE            | 0.0871  | 0.1110  | 0.1332  | 0.1634  |  |  |
|                 | NCD  | 0.1754  | 0.2175  | 0.2519  | 0.2758  |      | NCD            | 0.1999  | 0.3094  | 0.3854  | 0.4710  |  |  |
| ABF             | PSNR | 60.4675 | 57.7806 | 55.9129 | 54.4177 | PGA  | PSNR           | 61.3305 | 60.6847 | 60.2778 | 59.9990 |  |  |
|                 | MSE  | 0.0584  | 0.01084 | 0.1666  | 0.2351  |      | MSE            | 0.0479  | 0.0555  | 0.0610  | 0.0703  |  |  |

|            | 1      | 1                 |          | 1          | 1                 | r         |         | 1                 | n       | 1                 | r                 |
|------------|--------|-------------------|----------|------------|-------------------|-----------|---------|-------------------|---------|-------------------|-------------------|
|            | MAE    | 0.0584            | 0.01084  | 0.1666     | 0.2351            |           | MAE     | 0.0479            | 0.0555  | 0.0610            | 0.0703            |
|            | NCD    | 0.1560            | 0.1971   | 0.2412     | 0.2971            |           | NCD     | 0.0759            | 0.3094  | 0.3854            | 0.4710            |
| JBF        | PSNR   | 58.3419           | 57.0618  | 56.0322    | 55.1455           | FBF       | PSNR    | 59.2712           | 59.2072 | 59.0614           | 58.9554           |
|            | MSE    | 0.0953            | 0.1279   | 0.1621     | 0.1989            |           | MSE     | 0.0769            | 0.0780  | 0.0807            | 0.0827            |
|            | MAE    | 0.0953            | 0.1279   | 0.1621     | 0.1989            |           | MAE     | 0.0769            | 0.0780  | 0.0807            | 0.0827            |
|            | NCD    | 0.1337            | 0.1632   | 0.1934     | 0.2202            |           | NCD     | 0.1401            | 0.1660  | 0.1988            | 0.2277            |
| SBF        | PSNR   | 59.0197           | 57.3119  | 55.6669    | 54.2721           | SBF       | PSNR    | 59.8977           | 59.9332 | 59.8414           | 59.7777           |
|            | MSE    | 0.0815            | 0.1208   | 0.1764     | 0.2431            |           | MSE     | 0.0666            | 0.0660  | 0.0674            | 0.0684            |
|            | MAE    | 0.0815            | 0.1208   | 0.1764     | 0.2431            |           | MAE     | 0.0666            | 0.0660  | 0.0674            | 0.0684            |
|            | NCD    | 0.1693            | 0.2103   | 0.2557     | 0.2990            |           | NCD     | 0.0952            | 0.1038  | 0.1132            | 0.1223            |
| TF         | PSNR   | 59.3195           | 57.2438  | 55.6043    | 54.2601           | TF        | PSNR    | 60.8653           | 60.4661 | 60.1022           | 59.6200           |
|            | MSE    | 0.0761            | 0.1227   | 0.1789     | 0.2438            |           | MSE     | 0.0533            | 0.0584  | 0.0635            | 0.0710            |
|            | MAE    | 0.0761            | 0.1227   | 0.1789     | 0.2438            |           | MAE     | 0.0533            | 0.0584  | 0.0635            | 0.0710            |
|            | NCD    | 0.1798            | 0.2146   | 0.2573     | 0.3038            |           | NCD     | 0.0844            | 0.1031  | 0.1238            | 0.1386            |
| proposed   | PSNR   | 69.3128           | 66.7176  | 64.4361    | 62.6226           | proposed  | PSNR    | 74.2217           | 71.1501 | 69.6657           | 68.4261           |
|            | MSE    | 0.0076            | 0.0138   | 0.0234     | 0.0355            |           | MSE     | 0.0025            | 0.0050  | 0.0070            | 0.0093            |
|            | MAE    | 0.0660            | 0.1008   | 0.1375     | 0.1713            |           | MAE     | 0.0290            | 0.0375  | 0.0434            | 0.0488            |
|            | NCD    | 0.1369            | 0.1658   | 0.1986     | 0.2290            |           | NCD     | 0.0576            | 0.0805  | 0.0989            | 0.1269            |
| Mixed n    |        |                   |          |            |                   | Mixed n   |         |                   |         |                   |                   |
| MIACU II   | UISC(U | uussiun           | mpuise   | <i>.</i> ) |                   | WIIACU II | onse(pt | 155011 1          | npuise) |                   |                   |
|            | σ      | 5                 | 10       | 15         | 20                |           | σ       | 5                 | 10      | 15                | 20                |
| PGA        | PSNR   | 59.6811           | 57.4105  | 55.6541    | 54.3731           | FPGA      | PSNR    | 60.9647           | 60.1645 | 59.2927           | 58.5753           |
| FGA        | MSE    | 0.0700            | 0.1180   | 0.1769     | 0.2376            | FFGA      | MSE     | 0.0521            | 0.0626  | 0.0765            | 0.0903            |
|            | MAE    | 0.0700            | 0.1180   | 0.1769     | 0.2376            |           | MAE     | 0.0521            | 0.0626  | 0.0765            |                   |
|            | NCD    | 0.1639            | 0.2250   | 0.1789     | 0.3629            |           | NCD     | 0.1209            | 0.1563  | 0.1985            | 0.0903            |
| FVMF       | PSNR   | 56.7468           | 55.9044  | 55.3603    | 54.7644           | VDF       | PSNR    | 58.7710           | 57.6667 | 56.6409           | 55.6791           |
| FVIVIF     | MSE    | 0.1375            | 0.1670   | 0.1893     | 0.2171            | VDF       | MSE     | 0.1081            | 0.1113  | 0.1409            | 0.1759            |
|            | MAE    | 0.1375            | 0.1670   | 0.1893     | 0.2171            |           | MAE     | 0.1081            | 0.1113  | 0.1409            | 0.1759            |
|            |        |                   |          |            |                   |           |         |                   |         |                   |                   |
| FBF        | NCD    | 0.3691            | 0.3968   | 0.4099     | 0.4496            | VMF       | NCD     | 0.3192<br>57.7930 | 0.4086  | 0.4850<br>56.3889 | 0.5688<br>55.7867 |
| гвг        | PSNR   | 58.6908<br>0.0879 | 57.1110  | 55.3921    | 54.0773<br>0.2543 | VIVIF     | PSNR    |                   | 57.0315 |                   |                   |
|            | MSE    |                   | 0.1265   | 0.1879     |                   |           | MSE     | 0.1081            | 0.1259  | 0.1493            | 0.1716            |
|            | MAE    | 0.0879            | 0.1265   | 0.1879     | 0.2543            |           | MAE     | 0.1081            | 0.1259  | 0.1493            | 0.1716            |
| CDE        | NCD    | 0.1641            | 0.2050   | 0.2570     | 0.2961            |           | NCD     | 0.2923            | 0.3658  | 0.4269            | 0.4844            |
| SBF        | PSNR   | 59.0348           | 57.3408  | 55.7755    | 54.3313           | FVMF      | PSNR    | 58.2722           | 57.4049 | 56.5908           | 55.853            |
|            | MSE    | 0.0812            | 0.1199   | 0.1720     | 0.2399            |           | MSE     | 0.0968            | 0.1182  | 0.1426            | 0.1677            |
|            | MAE    | 0.0812            | 0.1199   | 0.1720     | 0.2399            |           | MAE     | 0.0968            | 0.1182  | 0.1426            | 0.1677            |
| <b>T</b> F | NCD    | 0.1764            | 0.2228   | 0.2693     | 0.3186            | Durana    | NCD     | 0.2891            | 0.3737  | 0.4451            | 0.5055            |
| TF         | PSNR   | 58.9566           | 56.9053  | 55.2275    | 54.0598           | Proposed  | PSNR    | 71.5152           | 70.5853 | 69.6474           | 68.3453           |
|            | MSE    | 0.0827            | 0.1326   | 0.1951     | 0.2553            |           | MSE     | 0.0046            | 0.0057  | 0.0071            | 0.0095            |
|            | MAE    | 0.0827            | 0.1326   | 0.1951     | 0.2553            |           | MAE     | 0.0398            | 0.0435  | 0.0474            | 0.0539            |
| Droposed   | NCD    | 0.1967            | 0.2397   | 0.2870     | 0.3344            |           | NCD     | 0.0861            | 0.0982  | 0.1144            | 0.1464            |
| Proposed   | PSNR   | 68.6859           | 66.1393  | 63.9407    | 62.1186           |           |         |                   |         |                   |                   |
|            | MSE    | 0.0088            | 0.0158   | 0.0262     | 0.0399            |           |         |                   |         |                   |                   |
|            | MAE    | 0.0693            | 0.1046   | 0.1412     | 0.1757            |           |         |                   |         |                   |                   |
|            | NCD    | 0.1466            | 0.1812   | 0.2220     | 0.2582            |           |         |                   |         |                   |                   |
|            |        |                   | + impuls | 1          | 1                 |           |         |                   |         |                   |                   |
| Proposed   | PSNR   | 68.6052           | 66.0514  | 64.0136    | 62.2536           |           |         |                   |         |                   |                   |
|            | MSE    | 0.0090            | 0.0161   | 0.0258     | 0.0387            |           |         |                   |         |                   |                   |
|            | MAE    | 0.0692            | 0.1049   | 0.1383     | 0.1722            |           |         |                   |         |                   |                   |
|            | NCD    | 0.1548            | 0.1871   | 0.2224     | 0.2576            |           |         |                   |         |                   |                   |

(3) Lena256.png

| Gaussia  | n noise:   | :        |         |                             |                             | Impulse noise: |             |                             |                             |                             |                |  |
|----------|------------|----------|---------|-----------------------------|-----------------------------|----------------|-------------|-----------------------------|-----------------------------|-----------------------------|----------------|--|
|          | σ          | 5        | 10      | 15                          | 20                          |                | σ           | 5                           | 10                          | 15                          | 20             |  |
| PGA      | PSNR       | 58.4496  | 55.6894 | 53.7878                     | 52.5479                     | AMF            | PSNR        | 56.6224                     | 55.3680                     | 54.1635                     | 53.7243        |  |
|          | MSE        | 0.0929   | 0.1754  | 0.2718                      | 0.3617                      |                | MSE         | 0.0022                      | 0.0047                      | 0.0079                      | 0.0110         |  |
|          | MAE        | 0.0929   | 0.1754  | 0.2718                      | 0.3617                      |                | MAE         | 0.0022                      | 0.0047                      | 0.0079                      | 0.0110         |  |
|          | NCD        | 0.1412   | 0.1885  | 0.2474                      | 0.3122                      |                | NCD         | 0.0086                      | 0.0176                      | 0.0270                      | 0.0382         |  |
| FVMF     | PSNR       | 56.6802  | 56.4057 | 56.4966                     | 56.9909                     | VDF            | PSNR        | 60.3751                     | 58.8331                     | 57.6598                     | 56.7323        |  |
|          | MSE        | 0.1397   | 0.1488  | 0.1457                      | 0.1300                      |                | MSE         | 0.0596                      | 0.0851                      | 0.1115                      | 0.1380         |  |
|          | MAE        | 0.1397   | 0.1488  | 0.1457                      | 0.1300                      |                | MAE         | 0.0596                      | 0.0851                      | 0.1115                      | 0.1380         |  |
|          | NCD        | 0.2897   | 0.2737  | 0.2594                      | 0.2435                      |                | NCD         | 0.1714                      | 0.2689                      | 0.3585                      | 0.4330         |  |
| BF       | PSNR       | 57.5378  | 55.5510 | 53.9122                     | 52.7627                     | VMF            | PSNR        | 60.3774                     | 58.7518                     | 57.4264                     | 56.4641        |  |
|          | MSE        | 0.1146   | 0.1811  | 0.2642                      | 0.3442                      |                | MSE         | 0.0596                      | 0.0867                      | 0.1176                      | 0.1468         |  |
|          | MAE        | 0.1146   | 0.1811  | 0.2642                      | 0.3442                      |                | MAE         | 0.0596                      | 0.0867                      | 0.1176                      | 0.1468         |  |
|          | NCD        | 0.2286   | 0.2590  | 0.3036                      | 0.3562                      |                | NCD         | 0.1834                      | 0.2899                      | 0.3902                      | 0.4786         |  |
| FBF      | PSNR       | 57.9201  | 55.4308 | 53.4298                     | 52.3886                     | FVMF           | PSNR        | 59.6889                     | 58.2880                     | 57.2279                     | 56.3038        |  |
|          | MSE        | 0.1050   | 0.1862  | 0.2952                      | 0.3752                      |                | MSE         | 0.0699                      | 0.0964                      | 0.1231                      | 0.1523         |  |
|          | MAE        | 0.1050   | 0.1862  | 0.2952                      | 0.3752                      |                | MAE         | 0.0699                      | 0.0964                      | 0.1231                      | 0.1523         |  |
|          | NCD        | 0.1304   | 0.1863  | 0.2404                      | 0.3058                      |                | NCD         | 0.1882                      | 0.2884                      | 0.3767                      | 0.4569         |  |
| ABF      | PSNR       | 58.4252  | 55.7342 | 53.7883                     | 52.6046                     | PGA            | PSNR        | 62.2666                     | 61.3554                     | 60.5805                     | 59.4335        |  |
|          | MSE        | 0.0934   | 0.1736  | 0.2718                      | 0.3570                      |                | MSE         | 0.0386                      | 0.0476                      | 0.0569                      | 0.0741         |  |
|          | MAE        | 0.0934   | 0.1736  | 0.2718                      | 0.3570                      |                | MAE         | 0.0386                      | 0.0476                      | 0.0569                      | 0.0741         |  |
|          | NCD        | 0.1457   | 0.1920  | 0.2497                      | 0.3138                      |                | NCD         | 0.0717                      | 0.0986                      | 0.1379                      | 0.1884         |  |
| JBF      | PSNR       | 57.7072  | 55.7248 | 54.1963                     | 53.1404                     | FBF            | PSNR        | 60.1678                     | 59.7448                     | 59.3695                     | 58.8880        |  |
|          | MSE        | 0.1102   | 0.1737  | 0.2474                      | 0.3155                      |                | MSE         | 0.0626                      | 0.0690                      | 0.0752                      | 0.0840         |  |
|          | MAE        | 0.1102   | 0.1737  | 0.2469                      | 0.3147                      |                | MAE         | 0.0626                      | 0.0690                      | 0.0752                      | 0.0840         |  |
|          | NCD        | 0.1369   | 0.1784  | 0.2235                      | 0.2700                      |                | NCD         | 0.1206                      | 0.1563                      | 0.1900                      | 0.2228         |  |
| SBF      | PSNR       | 58.0088  | 55.4869 | 53.6220                     | 52.4744                     | SBF            | PSNR        | 61.1132                     | 61.0992                     | 60.9746                     | 60.8696        |  |
|          | MSE        | 0.1028   | 0.1838  | 0.2824                      | 0.3678                      |                | MSE         | 0.0503                      | 0.0505                      | 0.0520                      | 0.0532         |  |
|          | MAE        | 0.1028   | 0.1838  | 0.2824                      | 0.3678                      |                | MAE         | 0.0503                      | 0.0505                      | 0.0520                      | 0.0532         |  |
|          | NCD        | 0.1464   | 0.1915  | 0.2499                      | 0.3127                      |                | NCD         | 0.0873                      | 0.0908                      | 0.0951                      | 0.1003         |  |
| TF       | PSNR       | 58.2006  | 55.6476 | 53.7697                     | 52.5662                     | TF             | PSNR        | 61.8670                     | 61.0485                     | 60.6188                     | 60.3489        |  |
|          | MSE        | 0.0984   | 0.1771  | 0.2730                      | 0.3601                      |                | MSE         | 0.0423                      | 0.0511                      | 0.0564                      | 0.0600         |  |
|          | MAE        | 0.0984   | 0.1771  | 0.2730                      | 0.3601                      |                | MAE         | 0.0423                      | 0.0511                      | 0.0564                      | 0.0600         |  |
|          | NCD        | 0.1560   | 0.1989  | 0.2544                      | 0.3162                      |                | NCD         | 0.0898                      | 0.1195                      | 0.1403                      | 0.1574         |  |
| proposed | PSNR       | 70.0368  | 66.8986 | 64.2533                     | 62.1717                     | Proposed       | PSNR        | 69.6712                     | 68.9327                     | 68.8982                     | 67.1013        |  |
|          | MSE        | 0.0063   | 0.0133  | 0.0244                      | 0.0394                      |                | MSE         | 0.0052                      | 0.0056                      | 0.0052                      | 0.0079         |  |
|          | MAE        | 0.0610   | 0.1027  | 0.1447                      | 0.1869                      |                | MAE         | 0.0389                      | 0.0381                      | 0.0381                      | 0.0446         |  |
|          | NCD        | 0.1284   | 0.1734  | 0.2183                      | 0.2675                      |                | NCD         | 0.1028                      | 0.1005                      | 0.1007                      | 0.1281         |  |
| Mixed n  | oise(Ga    | ussian + | impulse | )                           |                             | Mixed n        | oise(po     | oisson+ in                  | npulse)                     |                             |                |  |
|          | σ          | 5        | 10      | 15                          | 20                          |                | σ           | 5                           | 10                          | 15                          | 20             |  |
| PGA      | PSNR       | 58.1961  | 55.4924 | 53.6943                     | 52.6537                     | FPGA           | PSNR        | 61.5104                     | 60.7635                     | 60.0200                     | 59.1230        |  |
| - 1      | MSE        | 0.0985   | 0.1836  | 0.2777                      | 0.3529                      |                | MSE         | 0.0459                      | 0.0545                      | 0.0647                      | 0.0796         |  |
|          | MAE        | 0.0985   | 0.1836  | 0.2777                      | 0.3529                      |                | MAE         | 0.0459                      | 0.0545                      | 0.0647                      | 0.0796         |  |
|          | NCD        | 0.1513   | 0.2127  | 0.2923                      | 0.3718                      |                | NCD         | 0.0967                      | 0.1225                      | 0.1559                      | 0.2069         |  |
| FVMF     | PSNR       | 56.0833  | 55.3185 | 54.9376                     | 54.7106                     | VDF            | PSNR        | 58.4104                     | 57.4428                     | 56.6380                     | 55.9690        |  |
|          | MSE        | 0.1602   | 0.1911  | 0.2086                      | 0.2198                      |                | MSE         | 0.0938                      | 0.1172                      | 0.1410                      | 0.1645         |  |
|          | MAE        | 0.1602   | 0.1911  | 0.2086                      | 0.2198                      |                | MAE         | 0.0938                      | 0.1172                      | 0.1410                      | 0.1645         |  |
|          | NCD        | 0.3603   | 0.4053  | 0.4399                      | 0.4768                      |                | NCD         | 0.2492                      | 0.3306                      | 0.4031                      | 0.4698         |  |
| FBF      | PSNR       | 57.8764  | 55.3446 | 53.5197                     | 52.4438                     | VMF            | PSNR        | 60.3377                     | 58.7482                     | 57.5141                     | 56.4742        |  |
|          | MSE        | 0.1060   | 0.1899  | 0.2891                      | 0.3704                      | İ              | MSE         | 0.0602                      | 0.0867                      | 0.1153                      | 0.1464         |  |
|          | MAE        | 0.1060   | 0.1899  | 0.2891                      | 0.3704                      |                | MAE         | 0.0602                      | 0.0867                      | 0.1153                      | 0.1464         |  |
|          | NCD        | 0.1564   | 0.2202  | 0.2892                      | 0.3563                      |                | NCD         | 0.1834                      | 0.2883                      | 0.3863                      | 0.4766         |  |
| CDE      | PSNR       | 57.9695  | 55.4855 | 53.6743                     | 52.4955                     | FVMF           | PSNR        | 58.2878                     | 57.2988                     | 56.4812                     | 55.7570        |  |
| SBF      |            | 0.1038   | 0.1839  | 0.2790                      | 0.3660                      |                | MSE         | 0.0965                      | 0.1211                      | 0.1462                      | 0.1727         |  |
| SBF      | MSE        |          | ///     |                             |                             | 1              |             | 0.0965                      | 0.1211                      | 0.1462                      | 0.1727         |  |
| SBF      | MSE<br>MAE |          |         | 0.2790                      | 0.3660                      |                | NAE         | 0.0900                      | 0.17.11                     | 0.1402                      |                |  |
| SBF      | MAE        | 0.1038   | 0.1839  | 0.2790                      | 0.3660                      |                | MAE<br>NCD  |                             |                             |                             |                |  |
| TF       |            |          |         | 0.2790<br>0.2608<br>53.7117 | 0.3660<br>0.3261<br>52.4849 | Proposed       | NCD<br>PSNR | 0.0903<br>0.2583<br>73.3915 | 0.1211<br>0.3453<br>71.9852 | 0.1402<br>0.4197<br>70.6346 | 0.4896 69.1445 |  |

# Table 7. For Different Kinds of Noises

|          | MSE     | 0.1026    | 0.1829   | 0.2766   | 0.3669  | MSE | 0.0334 | 0.0041 | 0.0056 | 0.00 |
|----------|---------|-----------|----------|----------|---------|-----|--------|--------|--------|------|
|          | MAE     | 0.1026    | 0.1829   | 0.2766   | 0.3669  | MAE | 0.0334 | 0.0370 | 0.0413 | 0.04 |
|          | NCD     | 0.1774    | 0.2317   | 0.2932   | 0.3617  | NCD | 0.0837 | 0.0941 | 0.1112 | 0.13 |
| Proposed | PSNR    | 69.4315   | 66.2854  | 63.7292  | 61.5834 |     |        |        |        |      |
|          | MSE     | 0.0667    | 0.1075   | 0.0276   | 0.1951  |     |        |        |        |      |
|          | MAE     | 0.0667    | 0.1075   | 0.0276   | 0.1951  |     |        |        |        |      |
|          | NCD     | 0.1451    | 0.1910   | 0.2450   | 0.3033  |     |        |        |        |      |
| Mixed n  | oise (G | aussian - | + impuls | e+poisso | n)      |     |        |        |        |      |
| Proposed | PSNR    | 69.6158   | 66.2339  | 63.6126  | 61.6922 |     |        |        |        |      |
|          | MSE     | 0.0071    | 0.0155   | 0.0283   | 0.0440  |     |        |        |        |      |
|          | MAE     | 0.0647    | 0.1078   | 0.1515   | 0.1927  |     |        |        |        |      |
|          | NCD     | 0.1421    | 0.1910   | 0.2474   | 0.3026  |     |        |        |        |      |

# (4) Academy256:

## Table 8. For Different Kinds of Noise

| Gaussia  | n noise: |          |         |         | Impulse noise: |                               |      |         |         |         |         |
|----------|----------|----------|---------|---------|----------------|-------------------------------|------|---------|---------|---------|---------|
|          | σ        | 5        | 10      | 15      | 20             |                               | σ    | 5       | 10      | 15      | 20      |
| PGA      | PSNR     | 60.3367  | 57.8561 | 56.0292 | 54.6434        | AMF                           | PSNR | 55.3736 | 54.0322 | 52.8423 | 50.4269 |
|          | MSE      | 0.0602   | 0.1065  | 0.1622  | 0.2232         |                               | MSE  | 0.0024  | 0.0051  | 0.0085  | 0.0118  |
|          | MAE      | 0.0602   | 0.1065  | 0.1622  | 0.2232         |                               | MAE  | 0.0024  | 0.0051  | 0.0085  | 0.0118  |
|          | NCD      | 0.1452   | 0.1887  | 0.2395  | 0.2893         |                               | NCD  | 0.0112  | 0.0228  | 0.0356  | 0.0500  |
| FVMF     | PSNR     | 58.0199  | 57.8015 | 57.6714 | 57.7962        | VDF                           | PSNR | 59.7719 | 58.5082 | 57.3805 | 56.5237 |
|          | MSE      | 0.1026   | 0.1079  | 0.1112  | 0.1080         |                               | MSE  | 0.0685  | 0.0917  | 0.1189  | 0.1448  |
|          | MAE      | 0.1026   | 0.1079  | 0.1112  | 0.1080         |                               | MAE  | 0.0685  | 0.0917  | 0.1189  | 0.1448  |
|          | NCD      | 0.2975   | 0.2625  | 0.2287  | 0.1972         |                               | NCD  | 0.1721  | 0.2688  | 0.3565  | 0.4296  |
| BF       | PSNR     | 59.4866  | 57.6149 | 56.0045 | 54.7606        | VMF                           | PSNR | 60.3124 | 58.6664 | 57.4693 | 56.4088 |
|          | MSE      | 0.0732   | 0.1126  | 0.1632  | 0.2173         |                               | MSE  | 0.0605  | 0.0884  | 0.1165  | 0.1487  |
|          | MAE      | 0.0732   | 0.1126  | 0.1632  | 0.2173         |                               | MAE  | 0.0605  | 0.0884  | 0.1165  | 0.1487  |
|          | NCD      | 0.2435   | 0.2642  | 0.2944  | 0.3322         |                               | NCD  | 0.1778  | 0.2927  | 0.3889  | 0.4807  |
| FBF      | PSNR     | 59.5130  | 57.6353 | 55.7921 | 54.3345        | FVMF                          | PSNR | 59.1891 | 58.0724 | 57.1156 | 56.3435 |
|          | MSE      | 0.0727   | 0.1121  | 0.1713  | 0.2397         |                               | MSE  | 0.0784  | 0.1014  | 0.1263  | 0.1509  |
|          | MAE      | 0.0727   | 0.1121  | 0.1713  | 0.2397         |                               | MAE  | 0.0784  | 0.1014  | 0.1263  | 0.1509  |
|          | NCD      | 0.1260   | 0.1721  | 0.2252  | 0.2771         |                               | NCD  | 0.1925  | 0.2920  | 0.3799  | 0.4540  |
| ABF      | PSNR     | 60.5250  | 57.8884 | 55.9962 | 60.5991        | PGA                           | PSNR | 61.9974 | 61.3277 | 60.8662 | 60.2612 |
|          | MSE      | 0.0576   | 0.1057  | 0.1635  | 0.0566         |                               | MSE  | 0.0411  | 0.0479  | 0.0533  | 0.0612  |
|          | MAE      | 0.0576   | 0.1057  | 0.1635  | 0.0566         |                               | MAE  | 0.0411  | 0.0479  | 0.0533  | 0.0612  |
|          | NCD      | 0.1509   | 0.1923  | 0.2424  | 0.1510         |                               | NCD  | 0.0643  | 0.0985  | 0.1453  | 0.2026  |
| JBF      | PSNR     | 58.7404  | 57.2192 | 56.0890 | 55.1740        | FBF                           | PSNR | 60.1299 | 60.0004 | 59.8300 | 59.6282 |
|          | MSE      | 0.0869   | 0.1234  | 0.1600  | 0.1976         |                               | MSE  | 0.0631  | 0.0650  | 0.0676  | 0.0708  |
|          | MAE      | 0.0865   | 0.1228  | 0.1593  | 0.1960         |                               | MAE  | 0.0631  | 0.0650  | 0.0676  | 0.0708  |
|          | NCD      | 0.1232   | 0.1563  | 0.1892  | 0.2186         |                               | NCD  | 0.1224  | 0.1562  | 0.1855  | 0.2121  |
| SBF      | PSNR     | 59.4983  | 57.6253 | 55.8555 | 54.5360        | SBF                           | PSNR | 60.7488 | 60.7185 | 60.6557 | 60.5486 |
|          | MSE      | 0.0730   | 0.1123  | 0.1689  | 0.2288         |                               | MSE  | 0.0547  | 0.0551  | 0.0559  | 0.0573  |
|          | MAE      | 0.0730   | 0.1123  | 0.1689  | 0.2288         |                               | MAE  | 0.0547  | 0.0551  | 0.0559  | 0.0573  |
|          | NCD      | 0.1594   | 0.2032  | 0.2505  | 0.2951         |                               | NCD  | 0.0777  | 0.0852  | 0.0933  | 0.1017  |
| TF       | PSNR     | 59.9347  | 57.6415 | 55.9278 | 54.5774        | TF                            | PSNR | 62.0538 | 61.5447 | 61.1541 | 60.8374 |
|          | MSE      | 0.0660   | 0.1119  | 0.1661  | 0.2266         |                               | MSE  | 0.0405  | 0.0456  | 0.0499  | 0.0536  |
|          | MAE      | 0.0660   | 0.1119  | 0.1661  | 0.2266         |                               | MAE  | 0.0405  | 0.0456  | 0.0499  | 0.0536  |
|          | NCD      | 0.1664   | 0.2037  | 0.2482  | 0.2951         |                               | NCD  | 0.0707  | 0.0912  | 0.1071  | 0.1202  |
| proposed | PSNR     | 69.4361  | 66.     | 64.     | 62.            | proposed                      | PSNR | 74.2217 | 71.1501 | 69.6657 | 68.4261 |
| • •      |          |          | 3128    | 7176    | 4361           |                               |      |         |         |         |         |
|          | MSE      | 0.0067   | 0.0118  | 0.0245  | 0.0350         |                               | MSE  | 0.0025  | 0.0050  | 0.0070  | 0.0093  |
|          | MAE      | 0.0660   | 0.1012  | 0.1266  | 0.1801         |                               | MAE  | 0.0290  | 0.0375  | 0.0434  | 0.0488  |
|          | NCD      | 0.1254   | 0.1658  | 0.1986  | 0.2290         |                               | NCD  | 0.0576  | 0.0805  | 0.0989  | 0.1269  |
| Mixed n  | oise(Ga  | ussian + | impulse |         |                | Mixed noise(poisson+ impulse) |      |         |         |         |         |
|          | σ        | 5        | 10      | 15      | 20             |                               | σ    | 5       | 10      | 15      | 20      |
| PGA      | PSNR     | 60.0345  | 57.5867 | 55.7913 | 54.5536        | FPGA                          | PSNR | 61.8570 | 61.0293 | 60.3144 | 59.4035 |

| MSE<br>MAE<br>NCD<br>FVMF PSNF<br>MSE | 0.0645<br>0.0645<br>0.1585<br>57.2297<br>0.1231<br>0.1231 | 0.1133<br>0.1133<br>0.2177<br>56.3120<br>0.1520 | 0.1714<br>0.1714<br>0.2879<br>55.6165 | 0.2279<br>0.2279<br>0.3582 |          | MSE<br>MAE | 0.0424<br>0.0424 | 0.0513  | 0.0605  | 0.0746  |
|---------------------------------------|-----------------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------|----------|------------|------------------|---------|---------|---------|
| NCDFVMFPSNFMSE                        | 0.1585<br>57.2297<br>0.1231                               | 0.2177<br>56.3120                               | 0.2879                                | 0.3582                     |          |            | 0.0424           | 0.0513  | 0.0605  | 0.0746  |
| FVMF PSNF<br>MSE                      | 57.2297<br>0.1231                                         | 56.3120                                         |                                       |                            |          |            |                  |         |         | 0.0740  |
| MSE                                   | 0.1231                                                    |                                                 | 55.6165                               | <b>FF</b> (1)( <b>F</b>    |          | NCD        | 0.1068           | 0.1372  | 0.1749  | 0.2248  |
|                                       |                                                           | 0.1520                                          |                                       | 55.6165                    | VDF      | PSNR       | 58.2627          | 57.4767 | 56.7152 | 56.1098 |
| MAE                                   | 0.1231                                                    | 0.1520                                          | 0.1784                                | 0.1784                     |          | MSE        | 0.0970           | 0.1163  | 0.1385  | 0.1593  |
| MAE                                   | 0.1251                                                    | 0.1520                                          | 0.1784                                | 0.1784                     |          | MAE        | 0.0970           | 0.1163  | 0.1385  | 0.1593  |
| NCD                                   | 0.3632                                                    | 0.3882                                          | 0.4121                                | 0.4121                     |          | NCD        | 0.2822           | 0.3579  | 0.4223  | 0.4803  |
| FBF PSNF                              | 59.3930                                                   | 57.5607                                         | 55.8236                               | 54.4246                    | VMF      | PSNR       | 60.3455          | 58.6228 | 57.4273 | 56.4256 |
| MSE                                   | 0.0748                                                    | 0.1140                                          | 0.1701                                | 0.2348                     |          | MSE        | 0.0601           | 0.0893  | 0.1176  | 0.1481  |
| MAE                                   | 0.0748                                                    | 0.1140                                          | 0.1701                                | 0.2348                     |          | MAE        | 0.0601           | 0.0893  | 0.1176  | 0.1481  |
| NCD                                   | 0.1506                                                    | 0.1979                                          | 0.2456                                | 0.2890                     |          | NCD        | 0.1766           | 0.2894  | 0.3895  | 0.4791  |
| SBF PSNF                              | 59.4806                                                   | 57.6630                                         | 55.8749                               | 54.5381                    | FVMF     | PSNR       | 58.7626          | 57.7752 | 56.8408 | 56.0974 |
| MSE                                   | 0.0733                                                    | 0.1114                                          | 0.1681                                | 0.2287                     |          | MSE        | 0.0865           | 0.1085  | 0.1346  | 0.1597  |
| MAE                                   | 0.0733                                                    | 0.1114                                          | 0.1681                                | 0.2287                     |          | MAE        | 0.0865           | 0.1085  | 0.1346  | 0.1597  |
| NCD                                   | 0.1658                                                    | 0.2134                                          | 0.2621                                | 0.3090                     |          | NCD        | 0.2806           | 0.3587  | 0.4331  | 0.4957  |
| TF PSNR                               | 59.6311                                                   | 57.4673                                         | 55.7074                               | 54.4390                    | Proposed | PSNR       | 71.5152          | 70.5853 | 69.6474 | 68.3453 |
| MSE                                   | 0.0708                                                    | 0.1165                                          | 0.1747                                | 0.2340                     |          | MSE        | 0.0046           | 0.0057  | 0.0071  | 0.0095  |
| MAE                                   | 0.0708                                                    | 0.1165                                          | 0.1747                                | 0.2340                     |          | MAE        | 0.0398           | 0.0435  | 0.0474  | 0.0539  |
| NCD                                   | 0.1818                                                    | 0.2258                                          | 0.2745                                | 0.3214                     |          | NCD        | 0.0861           | 0.0982  | 0.1144  | 0.1464  |
| Proposed PSNR                         | 68.6859                                                   | 66.1393                                         | 63.9407                               | 62.1186                    |          |            |                  |         |         |         |
| MSE                                   | 0.0088                                                    | 0.0158                                          | 0.0262                                | 0.0399                     |          |            |                  |         |         |         |
| MAE                                   | 0.0693                                                    | 0.1046                                          | 0.1412                                | 0.1757                     |          |            |                  |         |         |         |
| NCD                                   | 0.1466                                                    | 0.1812                                          | 0.2220                                | 0.2582                     |          |            |                  |         |         |         |
| Mixed noise (                         |                                                           |                                                 |                                       |                            |          |            |                  |         |         |         |
| Proposed PSNF                         |                                                           | 66.0514                                         | 64.0136                               | 62.2536                    |          |            |                  |         |         |         |
| MSE                                   | 0.0096                                                    | 0.0161                                          | 0.0284                                | 0.0391                     |          |            |                  |         |         |         |
| MAE                                   | 0.0695                                                    | 0.1049                                          | 0.1389                                | 0.1724                     | 1        |            |                  |         |         |         |
| NCD                                   | 0.1567                                                    | 0.1871                                          | 0.2224                                | 0.2580                     |          |            |                  |         |         |         |

### 6. Conclusion and Future Scope

In this paper, a novel mechanism is proposed to de-noise image corrupted with impulse, Gaussian and poisson noise. The following important inference can be drawn from the proposed technique as follows:

In terms of picture quality, the best results are obtained for the proposed technique for all the noises.

The value of PSNR decreases with increase of noise density.

The proposed technique provides good PSNR, NCD and MAE value for all noise densities in comparison to other methods used in this paper.

## References

- [1] Y. Shen and K. E. Barner, "Fuzzy Vector Median-Based Surface Smoothing", in the proceedings of IEEE transactions, vol. no 10, issue no.3, (2004).
- [2] J. Astola, P. Haavisto and Y. Neuvo, "Vector Median Filters", in the Proceedings of IEEE, vol.78, no. 4,(1990).
- [3] B. P. Lamichhane, "Finite element techniques for removing the mixture of Gaussian and impulsive noise", in the proceedings of IEEE Transactions on Image Processing, vol. 57, no. 7, (2009) Jul., pp. 2538-2547.
- [4] F. Luisier, T. Blu and M. Unser, "Image Denoising in Mixed Poisson–Gaussian Noise", IEEE Transactions on Image Processing, vol. no 20, Issue no. 3, (2011) March, pp. 696 708.
- [5] J. Liu, Z. Huan and H. Huang, "Image restoration under mixed noise using globally convex segmentation", in Journal of Visual Communication and Image Representation, vol. 22, no.3, (2011), pp. no 263-270.
- [6] S. Setzer, G. Steidla and T. Teuber, "Deblurring Poissonian images by split Bregman techniques", in the Journal of Visual Communication and Image Representation, vol. 21, no. 3, (2010) April, pp.193–199.
- [7] R. Lukac and K.N. Plataniotis, "A taxonomy of color images filtering and enhancement solutions", in Advances in Imaging and Electron Physics, P.W. Hawkes, Elsevier, no. 140, (**2006**), pp. 127-264.
- [8] S. Durand, J. Fadili and M. Nikolova, "Multiplicative Noise Removal Using L1 Fidelity on Frame coefficients", Journal of Mathematical Imaging and Vision, Springer, vol. 36, (2009), pp. 201-226.

- [9] G. Hewer, C. Kenney, L. Peterson and A. Van Nevel, "Applied partial differential variational techniques", in Proceedings of International Conference on Image Processing, vol. 3, (1997), pp. 372-375
- [10] J. Y. F. Ho, "Peer region determination based impulsive noise detection", Proceedings of International Conference on Acoustics, Speech and Signal Processing ICASSP'03,vol. 3, (**2003**), pp. 713-716.
- [11] Y. Xiao, T. Zeng, J. Yu and M. K. Ng, "Restoration of images corrupted by mixed Gaussian-impulse noise via 11 – 10 minimization", Pattern Recognition, vol. 44, no. 8, (2011) Aug., pp. 1708-1720.
- [12] S. Morillas, V. Gregori and A. Herv'as, "Fuzzy peer groups for reducing mixed Gaussian impulse noise from color images", in the proceedings IEEE Transactions on Image Processing, vol. no. 18, issue no. 7, (2008) July, pp. 1452-1466.
- [13] R. Garnett, T. Huegerich, C. Chui, W. He, "A universal noise removal algorithm with an impulse detector", in the proceedings IEEE Transactions on Image Processing, vol. 14, no. 11, (2005) Nov., pp. 1747-1754
- [14] J. Liu, Z. Huan and H. Huan, "Image restoration under mixed noise using globally convex segmentation", Journal of Visual Communication and Image Representation, vol. no. 22,issue no. 3, (2011), Apr., pp. 263-270.
- [15] X. Zeng and L. Yang, "Mixed impulse and Gaussian noise removal using detail-preserving regularization", Optical Engineering, vol. 49, issue no. 9, (2010) Sep., pp. 097002-1-097002-9.
- [16] R. Liu, S. Fu and C. Zhang, "Adaptive mixed image denoising based on image decomposition", Optical Engineering Letters, vol. 50, no. 2, (2011) Feb., pp. 020502-1-020502-3.
- [17] O. Ghita and P.F. Whelan, "A new GVF-based image enhancement formulation for use in the presence of mixed noise", Pattern Recognition, vol. 43, no. 8, (2010) Aug., pp. 2646-2658.
- [18] G. Plonka and J. Ma, "Nonlinear regularized reaction-diffusion filters for denoising of images with textures", IEEE Transactions on Image Processing, vol. 17, no. 8, (2007) Aug., pp. 1283-1294.
- [19] Z. Ma, H.R. Wu and D. Feng, "Partition Based Vector Filtering Technique for Suppression of Noise in Digital Color Images", IEEE Transactions on Image Processing, vol. 15, no. 8, (2006) Aug., pp. 2324-2342.
- [20] Z. Ma, H.R. Wu and D. Feng, "Fuzzy Vector Partition Filtering Technique for Color Image Restoration", Computer Vision and Image Understanding, vol.107,no. 1-2,(2007) July-Aug., pp. 26-37.
- [21] E. L'opez-Rubio, "Restoration of images corrupted by Gaussian and uniform impulsive noise", Pattern Recognition, pp. 1835-1846, vol. 43, no. 5, (2010) May.
- [22] D. Keren and A. Gotlib, "DenoisingColor Images using regularization and correlation terms", Journal of Visual Communication and Image Representation, vol. 9, issue no. 4, (1998) Dec., pp. 352-365.
- [23] O. Lezoray, A. Elmoataz and S. Bougleux, "Graph regularization for color image processing", Computer Vision and Image Understanding, vol. 107, no. 1-2, (2007) July-Aug., pp. 38-55.
- [24] A. Elmoataz, O. Lezoray and S. Bougleux, "Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing", in the proceedings of IEEE Transactions on Image Processing, pp. 1047-1060,vol.17,issue no. 7, (2008) July.
- [25] P. Blomgren and T. Chan, "Color TV: total variation methods for restoration of vector-valued images", in the proceedings of IEEE Transactions on Image Processing, vol.7,no. 3, (1998) Mar., pp. 304-309.
- [26] D. Tschumperl'e and R. Deriche, "Vector-valued image regularization with PDEs: A Common framework from different applications", in the proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27 no. 4.
- [27] R. Sharma and J. Ali, "A Comparative study various types of noise and efficient noise removal techniques", in IJARCSSE, vol. 3, no. 10, (2013), pp. 617-622.
- [28] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images", in the proceedings of 6th IEEE International conference on computer vision, (**1998**), pp no.834-846.
- [29] Garimagoyal, "Impact and analysis of improved bilateral filter on TEM images", in International journals of science and research, vol. 3. issue 6, (2014).
- [30] N. Himayat and S.A.Kassam, "Approximate performance analysis of edge preserving filters", in the proceedings of IEEE Transaction, (**1993**), pp. 2764-77.
- [31] Buyue Zhang and J.P. Allebach, "Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal", in the proceedings of IEEE transactions, vol. 17, no. 5, (2008), pp. 664-678.
- [32] D. Barash, "A fundamental relationship between bilateral filtering, adaptive smoothing and the non linear diffusion equation:, in the proceedings of IEEE transactions, vol. 24, no. 6, (2002) June, pp. 844-847.
- [33] R.Garnett, T.Huegerich, C. Chui and W.He, "A universal noise removal algorithm with an impulse detector", in the proceedings of IEEE transactions, vol.17, no. 7, (2008) July, pp.1109-1120.
- [34] M.Zhang and B.K. Gunturk, "Multiresolution bilateral filtering for image denoising", in the proceedings of IEEE transcations, vol. 17, no. 12, (2008) Dec., pp. 2324-2333.
- [35] C.-H. Lin, J.-S. Tsai and Ching-Te Chiu, "Switching bilateral filter with a texture/noise detector for universal noise removal" in the proceedings of IEEE transactions on the image processing, vol. 19, no. 19, (2010), pp.2307-2320.

- [36] A. K. Nain, S. Gupta and B. Bhushan, "An extension to switching bilateral filter for mixed noise removal from color images" in the proceedings of Int. J. Signal and Imaging Systems Engineering, vol. X, no. Y, (2014).
- [37] O.U.NirmalJith and R. VenkateshBabu "Joint bilateral filtering based non local means image denoising", in the proceedings of IEEE transactions on image processing, (2014).
- [38] G.Petschnigg, R. Szeliski, M.Agrawala, M.cohen, H.Hoppe and K.Toyama, "Digital photography with flash and no flash image pairs", in ACM SIGGRAPH, pp. 664-672,2004.
- [39] K. Malik and B. Smolka, "Improved bilateral filtering scheme for noise removal in color images", in International Conference on Informatics and Applications, (2004), pp. 118-130.
- [40] M.1 Elad, "On the Origin of bilateral filter and ways to improve it", in the processing of IEEE transactions, vol. 11, no. 10, (2002).
- [41] M. Nagao and T.Matusuyama, "Edge preserving smoothning", in the proceedings of IEEE transactions, (1979), pp. 394-407

### Authors

**Mr. Shailender Gupta** is working as an Assistant Professor in YMCA University of Science and Technology, Faridabad, Haryana, India. He has teaching experience of seven years. His research interest is in Image processing.

**Ms Sweety Deswal** is an M.tech student in branch Electronics and communication engineering in YMCA University of Science and Technology, Faridabad, Haryana, India.

Ms Surbhi Singhania is a Phd student in branch Electronics and computer engineering in Carnegie Mellon University, Pittsburgh,US.

**Ms Pranjal Garg** is an M.tech student in branch Electronics and communication engineering in YMCA University of Science and Technology, Faridabad, Haryana, India.