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Abstract 

In this paper, we propose a novel face recognition method based on fusing the near 

infrared and visible images of face images with distributed compressive sensing. The near 

infrared image and visible image of one same subject constitute an ensemble. Both 

images in one ensemble share a common sparse component while each individual image 

has an innovation component. To better capture the complementary information of the 

ensemble, the distributed compressive sensing is used to obtain the common component 

and the innovation component of near infrared and visible image. The obtained common 

component contains the complementary information of near infrared and visible image 

effectively. So the sparse coefficients of the common component obtained by distributed 

compressive sensing can better capture the intrinsic structures of each image and 

therefore can obtain better performance than that of only using near infrared image or 

visible image. The experimental results on several benchmark datasets demonstrate the 

effectiveness of proposed method. 
 

Keywords: distributed compressive sensing, information fusion, face recognition, joint 

sparse representation 

 

1. Introduction 

Face recognition has a wide range of applications such as surveillance, information 

security, access control, identity fraud and so on. A typical face recognition system 

involves two main steps: feature extraction and classification. Subspace representation is 

the commonly used feature extraction method, such as principle component analysis 

(PCA) [1], linear discriminant analysis (LDA) [2] and so on. By using the extracted 

features, one can build classifiers based on various rules, such as nearest subspace method 

[3] and support vector machines [4] to perform face recognition. However, it is still a 

challenge problem to deal with face variations, such as expression, illumination and pose 

variation [5], for the above mentioned feature extraction methods.  

Face recognition based on visual images have attracted many interests. 

However, the visible images are sensitive to illumination changes [6]. For the 

simple illumination and pose variations problem in visible images, some improved 

algorithms [7] have been proposed. However, these methods cannot overcome the 

complex environments without considering spectra images. Fortunately, some 

problems can be avoided using different types of sensors. For example, infrared 

sensors are less sensitive to ambient light as they capture the temperature of the 

body [8]. As a result, by using the infrared spectrum information of the infrared 

images, face recognition can potentially offer simpler but more robust solutions, 

improving the recognition performance in uncontrolled environments [8, 9].  

In general, the infrared sensors are less sensitive to ambient light as they 

capture the temperature of the objects. However, the infrared images often lose 

information related to the texture of the face. In contrast to infrared images, the 
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visible images are known more robust to the expression and pose variation but 

very sensitive to illumination changes. In this sense, we can simultaneously use 

different types of sensors to improve the robustness of the algorithms. Since the 

near infrared (NIR) and visible image can capture intrinsically different 

characteristics of the observed faces, intuitively, a better face description of 

images in a specific object could be constituted by utilizing the complementary 

information presented in the two spectra.  

A more recent development for face recognition is based on the compressive 

sensing theory and has demonstrated good performance on robust face 

recognitions [10]. In this paper, under the sparsity assumption that an image can 

be expanded by a small number of training images of the same class, we propose a 

new method by fusing the information of the near infrared and visible images 

based on the recently emerged distributed compressive sensing (DCS) theory. The 

distributed compressive sensing is an improved compressive sensing theory for 

multi-signal ensembles with correlation structures that can recover the signals [11]. 

Particularly, in this paper, as the near infrared and visible images can be regarded 

as two different signals in DCS with the complementary characteristics provided 

by different sensors, DCS is applied to enhance the discriminating power for 

stable classifications by assembling the complementary structures of the near 

infrared and visible images. It is worth mentioning that, the condition for DCS 

method is the same as the compressive sensing methods. That is, if the training 

number of images is small, a least-square problem can be solved without the 

sparsity consideration. If the training number of images is large, the solution of an 

1  regularized problem is necessary. However, DCS outperforms compressive 

sensing in the sense that it considers more intrinsic structure information of the 

face images.  

The rest of this paper is organized as follows. In Section 2, we briefly review 

the compressive sensing and distributed compressive sensing. In Section 3, we 

illustrate the details of the proposed method. The empirical studies on some 

benchmark datasets are presented in Section 4. Finally, we draw the conclusions in 

Section 5. 

 

2. Compressive Sensing and Distributed Compressive Sensing 

Compressive sensing aims to solve the problem of acquiring an 1n  discrete 

time signal f  that is K -sparse or compressible in some sparsity basis matrix Ψ  

(where each column is a basis vector j ). K -sparse means that only K n  of 

the expansion coefficients x  representing f = Ψx  are nonzero. By compressible, 

the representation f = Ψx  has just a few large coefficients and many small 

coefficients. Candès et. al. demonstrate that the K-sparse or compressible signal 

can be recovered from m cK  non-adaptive linear projections through the 

measurement matrix Φ , where c  is a small constant [12]. Furthermore, the 

condition of exact recovery is that the matrix Φ  is incoherent with Ψ . The 

coherence between Φand Ψ  can be computed by 

1 ,
1

( , ) : max ,i j
i m
j N

N
 
 

   Φ Ψ                                                                                   (1) 
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Rather than directly measuring the n-point signal f , compressive sensing only 

samples a much compressed signal y  via a linear projection over the original 

signal f . More specifically, let k nR D =ΦΨ  and y =Φf =ΦΨx Dx . 

Since K n , recovering the signal f  from the measurements y  is ill-posed 

problem. However, with the additional assumption of signal sparsity under the 

basis Ψ , we can make the exact recovery under some conditions. In mathematics 

view, x  can be recovered by solving the linear inverse problem through 

0 optimization problem 

0
min s.t. x x y Dx                                                                                                (2) 

According to Candès’ study [12], we only need ( log( / ))m O K n K  

measurements, and then we can reconstruct the original signal f  by f = Ψx , 

where x  is the sparse solution of the 0 -sparsest problem (2). And the problem 

(2) is commonly transformed to 1  optimal problem and solved by linear 

programming. Compressive sensing (CS) enables a sparse or compressible signal 

to be reconstructed from a small number of non-adaptive linear projections, thus 

significantly reduces the sampling and computation costs [12]. CS has many 

promising applications in signal acquisition, compression and medical imaging. 

Baron et. al. introduced a model for jointly sparse signals and proposed the 

corresponding joint reconstruction algorithms [13], known as the distributed 

compressive sensing (DCS) theory which is related to the joint sparsity of a signal 

ensemble. They demonstrated that the exact reconstruction of signals in DCS, 

while the sensors operate entirely without collaboration. It has dramatic savings 

relative to the measurement features required for separate CS decoding. As in the 

jointly sparse model [11], all signals could be decomposed into two parts. All 

signals share a common sparse component Cz  while each individual signal 

contains a sparse innovation component , {1,2,..., }j j Jz , that is, 

, {1,2,..., }j C j j J  y z z ,                                                                                          (3) 

where
0

,C C C CK z Ψθ θ  and 
0

,j j j jK z Ψθ θ . Moreover, Cz  is the 

common component to all of the jy  and has sparsity CK  in basis Ψ . The jz  are 

the unique portions of the jy  and have sparsity jK  in the basis Ψ . In addition to 

substantially reduced measurement rates in the process of applications, the DCS-

based distributed source coding schemes share many of the attractive and 

intriguing properties of CS, particularly when we employ random projections at 

the sensors. As in CS, random measurement bases are universal in the sense that 

they can be paired with any sparse basis. Random coding is also robust. Thus they 

allow a progressively better reconstruction of the data as more measurements are 

obtained.  

 

3. The Proposed Method 

Using different types of sensors simultaneously could improve the robustness of 

the algorithms to most of complex circumstances. Since NIR and visible image 

can capture intrinsic characteristics of different component, in this paper, the 
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complementary information in the two spectra can be utilized to enhance the 

stability. The framework of the proposed method is illustrated in Figure 1. 
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Figure 1. The Structure Chart of the Proposed Method 

Specifically, we represent a NIR image and a visible image as 1-D column 

vector n NRy  and v NRy , respectively. We assume that there are K  distinct 

classes (i.e., subjects), with each class having kJ  training images, 1,2,...,k K . 

Let the images of class k  be represented as an ensemble , ,{ , }, 1,...,n v

k j k j kj Jy y . 

Hence, such an ensemble can be represented as T

1 2[ ... ]
k k

n v n v

k k kJ kJY y y y y . 

Notice that all signals in , ,{ , }, 1,...,n v

k j k j kj Jy y  for a given class k are highly 

inter-correlated, we can represent the j-th training image in the class k as the sum 

of a common component and an innovation component by =n c ni

kj kjy z z  and 

=v c vi

kj kjy z z , respectively. Furthermore, let Ψ  be the matrix representation of 

some orthonormal basis (e.g., DCT, wavelet) that can sparsely represent the 

training images, so that coefficients of signal y  can be written as, 

,=n c ni c ni

kj kj k k j  y z z Ψθ Ψθ ,                                                                                            (4) 

and  

,=v c vi c vi

kj kj k k j  y z z Ψθ Ψθ    .                                                                                          (5) 

Here c

kθ  is the common component to all the kJ  training images of class k  and 

, ,, ( 1,..., )ni vi

k j k j kj Jθ θ  are the innovation component to NIR image and visible 

image respectively. Under this model, let the common and innovation components 

of class k  be jointly represented by the vector 

,1 ,1 , ,[ ... ]
k k

c ni vi ni vi T

k k k k k J k JW θ θ θ θ θ .                                                                                       (6) 

app:ds:structure


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 4 (2016) 

 

 

Copyright ⓒ 2016 SERSC  285 

The sparse vector kW  can be found by solving the following 
0
 

minimization problem, 

0
min s.t.k k W W Y DW  ,                                                                             (7) 

where 

0 0

0 0

0

0 0 0

 
 
 
 
 
 

Ψ Ψ

Ψ Ψ
D

Ψ Ψ

. 

To solve problem (7), different algorithms can be used in practice, such as 

iterative soft thresholding algorithm (IST) [14] and gradient projection for sparse 

reconstruction (GPSR) algorithm [15]. In this paper, we select the GPSR method 

[15] to solve problem (7) due to its effectiveness and efficiency. 

The coefficients c

kθ , which gathered the common component of the near 

infrared and visible image, is obtained by (6). Then, the test object is classified 

based on the approximations by assigning it to the object class that minimizes the 

distance between c

kθ  and c

kθ : 

2
arg min c c

k k kq  θ θ .                                                                                     (8) 

In order to reduce the computing complexity of the algorithm, the images are 

divided into small blocks, and the algorithm is performed on these small blocks. In 

the end, we identify the class by the minimum sum of the distance. Algorithm 1 

below summarizes the complete recognition procedure.  

 

Algorithm 1: Face recognition based on distributed compressive sensing  

Input: The near infrared image and visible image. Orthonormal basisΨ , (e.g., 

DCT). 

1: Represent the near infrared image and visible image as 1-D column vector 

, 1,...,n N

kj kR j J y  and , 1,...,v N

kj kR j J y , respectively. 

2: Represent the j-th training image of near infrared image and visible image 

as the sum of a common component and an innovation component 

respectively as follows, =n c ni

kj kjy z z  and =v c vi

kj kjy z z . 

3: Let the common and innovation components of class k  be jointly 

represented by the vector ,1 ,1 , ,[ ... ]
k k

c ni vi ni vi T

k k k k k J k JW θ θ θ θ θ , which can be found 

by solving the 0  minimization problem (7). And c

kθ  is obtained by (6). 

4: Do the same transformations on test images as in step 2, 3, 4, obtaining c

kθ  

for test images. 

5: Classify the test object based on these approximations by assigning it to the 

object class that minimizes the distance between c

kθ  and c

kθ  by (8), and 

return class label q . 

Output: Class label q . 
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Furthermore, since we focus on the classification rather than the exact 

reconstruction of signals, we can extract the low dimension features to decrease 

the computation complexity. Let the dimensionality reduction matrix be 
M NR Φ  (Φ  can be random or any matrix highly incoherent with Ψ ), then, the 

low dimensional projection of the test image can be calculated as MR c Φc . 

Therefore, the low dimensional versions of the training features c

kz  and i

kz  are 

computed by , ,c c i i M

k k k k R  z Φz z Φz . Then, the problem of (7) is computed 

using the modified problem as follows 

0
min s.t.k k W W Y DW , 

where

0 0

0 0

0

0 0 0

 
 
 
 
 
 

ΦΨ ΦΨ

ΦΨ ΦΨ
D

ΦΨ ΦΨ

. 

The recognition of the testing image can then be determined as algorithm 1. The 

process of solving the sparse coefficient feature can be shown as distributed 

compressive sensing and it substantially reduces the measurement rates in multi-

signal application. 

 

3. Experiments 

 

 

 
(a) The original images 

    

    
(b)The cropped and normalization images 

Figure 2. Some Samples of Near Infrared and Visible Face Database from 
University of SURREY 
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This section assesses the performance of the proposed method by using the near 

infrared and visible face database from the University of SURREY [16] and 

Harbin Institute of Technology Shenzhen Graduate School (HITSZ) [17]. In 

SURREY database, there are 1080 visible face images and 1080 NIR faces of 23 

subjects. The NIR images are corresponding to the visible images for each object. 

The background in the SURREY face database was detected and cropped by 

SMQT algorithm [18]. The cropped face is then normalized to 100 100  pixels. 

Considering on testing the effectiveness of the algorithm in complex environments, 

we did not register images for this database. Figure 2 shows some samples of NIR 

and visible face database from university of SURREY. Figure 2 (a) is the original 

images, and (b) is the cropped and normalized face images. The above row is the 

visible images, and the near infrared images are at the bottom. 

 

A．Experiments on SURREY Database 

In order to reduce the computing complexity of the algorithm, the images are 

divided into 10 10  small block. We process the small blocks, and identify the 

class by the minimum sum of the distance. In the algorithm 1, the problem (7) is 

solved by GPSR algorithm and the parameter   of GPSR is set as suggested in 

[14]. We set   to 0.005 T


D y . In this paper, 4, 8, 12, 16, 20 images of each 

individual were selected randomly and used for training. The rest of the images 

were used for testing. All the experiments are repeated 10 times independently and 

the recognition rates are the mean of the 10 times. 

In order to choose orthonormal basis Ψ  for the algorithm 1, we compare the 

recognition rates with DCT basis and Haar wavelet basis in the first experiment. 

The recognition rates are shown in Table 1. From Table 1, we know that the 

recognition rates with DCT basis are better than Haar basis. So in the following 

experiments, DCT basis is used as the orthonormal basisΨ . 

Table 1. The Recognition Rates with Different Orthonormal Basis (%) 

Training Number DCT Haar 

4 84.17 84.12 

8 91.13 89.51 

12 91.81 90.61 

16 94.08 93.26 

20 94.35 94.67 

Table 2. Recognition Rates of the Proposed Method Compare with Using 
Visible Images and NIR Image (%) 

Training Number Visible Image 
Near Infrared 

Image 
DCS 

4 63.88 82.98 84.79 

8 77.81 89.49 91.03 

12 74.64 91.81 92.28 

16 78.20 93.02 93.15 

20 84.02 93.84 93.92 
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In the second experiment, we perform the experiment to test the 

complementarities of NIR image and visible image. We compare our method with 

the face recognition with only visible image or near infrared image. In algorithm 1, 

the distance between sparse coefficients of the face images according to (8) is 

applied for face recognition. If we only use the visible or near infrared image, the 

distance of the face images is computed for face recognition.  For this experiment, 

the average recognition rates of the considered methods on university of SURREY 

face database are shown in Table 2. In Table 2, we notice that the recognition rate 

of the proposed DCS method is higher than using only visible images or near 

infrared images. It demonstrates that visible and near infrared images have some 

complements. There is an enormous enhancement of the DCS method compared 

to the method with only visible image. And the recognition rates of the proposed 

DCS method are better than the method with only NIR images slightly. 

Table 3. Recognition Rates with 10 Objects on University of SURREY Face 
Database (%) 

Training  

Number 
LBP PCA 2DPCA SRC LDA 

Gabor-

LDA 
DCS 

4 87.16 82.25 91.20 83.00 90.87 92.27 92.20 

8 93.75 90.55 93.56 88.75 93.15 94.97 95.00 

12 96.27 90.75 95.41 95.00 94.45 96.07 96.58 

16 96.25 91.00 95.63 95.00 94.56 96.21 98.25 

20 97.57 92.75 96.25 97.50 95.25 98.16 98.25 

Table 4. Recognition Rates with 23 Objects on University of SURREY Face 
Database (%) 

Training 

 Number 
LBP PCA 2DPCA SRC LDA 

Gabor-

LDA 
DCS 

4 84.57 54.87 79.13 71.96 79.21 85.61 84.79 

8 91.03 63.72 87.01 75.49 81.60 88.76 91.03 

12 89.13 68.12 91.19 77.75 85.75 91.96 92.28 

16 92.39 70.87 92.34 83.91 87.64 92.74 93.15 

20 91.31 76.41 92.61 88.26 90.45 93.54 93.92 

 

In the third experiment, the results of the proposed DCS method are compared 

with local binary pattern (LBP) method [19], PCA method [1], 2DPCA method 

[20], sparse representation based face classification algorithm (SRC) [10], linear 

discriminant analysis (LDA) [21] and Gabor-LDA method [22]. Form Table 2, we 

can observe that the recognition rate of NIR images can be significantly higher 

than the visible images. Therefore, in the following experiments, we use the NIR 

images for the single component experiments. The 2  distances between LBP 

histograms are used for LBP feature based face recognition. In PCA method, we 

choose 30 discriminant features for the representation of each face image and use 

Euclidean distance to compare the face. In order to improve the recognition rate of 

SRC, the images were first segmented into blocks of size 10 10 pixel, and the 

blocks are used for the recognition. We present the recognition performance with 

variation in number of training images and training objects. Table 3 and Table 4 

list the average recognition rates of the considered methods on SURREY database 
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with 10 and 23 training objects, respectively. We list the results with respect to 

different numbers of training images for each table. From Table 3 and Table 4, we 

can see that the recognition rate increases with the increasing of training images 

number. What’s more, for different size of the training images, the recognition rate 

is different. LBP and SRC method show good performance when the training 

number is relatively small. However, their performance becomes worse than DCS 

method when the training number of images becomes large. Although the LDA 

and Gabor-LDA method perform well when training number of images is 4, their 

performance becomes worse than DCS method when the training number is 

increasing.  

To demonstrate the performance of our algorithm in low dimensional feature 

space, we apply linear random measurement on training images and test images to 

retain only 50% of the original features (feature space of 50 points). We compare 

the recognition rates with 10 objects and 23 objects, respectively. The average 

recognition rates are shown in Figure 3 and Figure 4. From these figures, we can 

observe that the performance of the proposed DCS method can be also very stable 

when the low dimension features are used.  

 
Figure 3. Recognition Rates in Low Dimensional Feature Space for 10 

Objects  

 

Figure 4. Recognition Rates in Low Dimensional Feature Space for 23 
Objects  
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B．Experiments on HITSZ Database 

HITSZ near infrared and visible face database includes two datasets. In our 

paper, we use Lab2, which contains visible and near-infrared images of the 50 

volunteers (subjects). There are 20 visible face images and the same number of 

near-infrared face images for each subject. These images were acquired under 

different illumination conditions.  Figure 5 shows some NIR and visible samples 

from HITSZ. The top row shows the near infrared images, and the bottom shows 

the visible images. We perform two experiments on this database. The parameters 

are set to the same as the experiments on SURREY database. We perform two 

experiments on this database. The first experiment is to test the performance of the 

DCS method on original features. The second one is to demonstrate the 

performance of the DCS method in low dimensional feature space. Both the 

experiments are repeated 10 times independently and the recognition rates are the 

mean of the 10 times. 

 

 

Figure 5. Some Samples of Near Infrared and Visible Face Database from 
HITSZ Database 

Table 5. Recognition Rates on HITSZ Face Database (%) 

Training  

Number 
LBP PCA 2DPCA SRC LDA 

Gabor-

LDA 
DCS 

5 83.24 74.34 79.37 77.36 78.32 85.34 85.31 

10 84.19 78.17 84.53 80.84 83.69 87.64 88.49 

15 86.75 81.68 86.94 87.83 84.53 88.37 89.92 

 

For each subject, we randomly select 5, 10, 15 images from one subject for 

training, and the rest for testing, respectively. For comparison, we implemented 

the following seven methods: LBP [19], PCA, 2DPCA [20], SRC [10], LDA [21] 

and Gabor-LDA [22]. Table 5 presents the experimental results. From Table 5, 

although, the recognition accuracy of Gabor-LDA method is higher than others 

when the training number of images is 5, the recognition accuracy of the proposed 

DCS method can be significantly higher than other methods when the training 

number is 10 or 15. 

Furthermore, to demonstrate the performance of our algorithm in low 

dimensional feature space, we applies linear random measurement on training 

images and test images to retain only 50% of the original features (feature space of 

50 points). Experimental results are shown in Table 6. We can observe that, the 

recognition accuracy of Gabor-LDA method is higher than others when the 

training number is 5, while the recognition rate of the proposed DCS method is 

much higher than other methods when the training number is 10 or 15. On two 
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databases, SURREY dataset and HITSZ dataset , although the LDA and Gabor-

LDA method can obtain better performance when the training number is relatively 

small, when the training number is increasing, the recognition rate of the DCS 

method can be much higher than them.  

Table 6. Recognition Rates of HITSZ Face Database in Low Dimensional 
Feature Space (%) 

Training 

 Number 
LBP PCA 2DPCA SRC LDA 

Gabor-

LDA 
DCS 

5 81.62 73.75 78.73 76.43 77.82 84.74 84.39 

10 82.75 76.92 83.95 79.47 82.56 86.59 87.73 

15 84.43 80.94 85.75 87.93 83.47 87.63 88.47 

 

5. Conclusions 

In this paper, we propose a novel face recognition method based on the 

distributed compressive sensing. In this method, visible and NIR images are fused 

by distributed compressive sensing for face recognition. The sparse coefficients 

extracted according to the distributed compressive sensing method can well 

assemble the common component of visible and NIR image, which can better 

utilize the information of the two component images. Experiments on SURREY 

and HITSZ face database show that the proposed method outperforms state-of-the-

art methods in terms of recognition rate.  
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