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Abstract 

The optimization of the sum and difference patterns for monopulse antennas by a 

hybrid real/integer-coded invasive weed optimization (IWO) is introduced in this paper. 

The whole array aperture is divided into several subarrays. The configuration and weight 

of each subarray are optimized. In order to reduce the difficulty of designing the feeding 

networks of the array antenna, the elements of the same subarray stay together. Since 

only the weight and elements number of each subarray is optimized, the number of the 

optimized parameters is reduced significantly which will reduce the complexity of the 

simulation procedure. Several numerical simulations are applied to validate the 

effectiveness of the proposed approach. 

 

Keywords: pattern synthesis, antenna arrays, monopulse antennas, sum and difference 
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1. Introduction 

The sum and difference patterns have to be synthesized in the design of monopulse 

antennas. Considerable attention has been received in the design of the sum and 

difference beam formers for monopulse arrays. A number of methods have been 

developed in order to avoid the difficulty of the completely independent implementation 

of the two arrays [1-6]. 

The synthesis of subarrayed low-side-lobe sum and difference patterns is one of the 

most popular methods in the design of monopulse antennas. The whole array aperture is 

divided into several subarrays and the configuration and weight of each subarray are 

optimized. In [1], a hybrid genetic algorithm optimized the subarray size and subarray 

weights to minimize the maximum sidelobe level. The optimization of difference patterns 

of monopulse antennas is considered in [2]. The problem of synthesizing „optimal‟ sum 

and difference patterns subject to arbitrary sidelobe bounds by means of a simple feeding 

network is dealt with in [3]. In [4], new methods of synthesizing low-side-lobe sum and 

difference patterns for linear arrays are described. The simultaneous optimization of the 

partition in subarrays and the subarray weights is reported in [5]. The maximization of the 

directivity of compromise difference patterns in sub-arrayed monopulse linear array 

antennas with an optimum sum mode is addressed by means of a two-stage excitation 

matching procedure in [6].  

IWO is a global optimization method and has been effectively used in the design of 

antennas [7-8]. Usually, IWO outperforms the other global optimization methods in the 

convergence rate as well as the final error level [9]. In this paper, a hybrid IWO is used in 

the synthesis of sum and difference patterns for the monopulse antennas. Three kinds of 

arrays are considered in this paper. First, the subarray synthesized low-side-lobe sum 
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pattern is optimized. Second, the synthesis of subarrayed monopulse array providing a 

best compromise difference pattern is addressed. Finally, the subarrayed sum and 

difference patterns are synthesized. 

The rest of the paper is organized as follows. The mathematically formulation of the 

synthesis problem is given in Section 2. The optimization steps are given in Section 3. 

The analysis aimed at describing the behavior of the proposed approach is presented in 

Section 4. Eventually, conclusions are drawn. 

 

2. Mathematical Formulation 

A linear array of 2N  elements is considered. For this kind of array structure, the array 

factor ( )AF   is defined by  

0

( ) exp( cos )
N

n n

n N
n

AF a jkx 
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

                                                                                            (1) 

where 
na , , 1,1, ,n N N       , are the excitations of the radiation elements. 2k    is 

the wave number.   is the wavelength. 
nx , , 1,1, ,n N N       , are the positions of the 

array elements.   defines the angle respect to the array axis.  

The required sum pattern is obtained by assuming the excitations to be symmetric 

(i.e.
n na a  , 1, ,n N   ). The array factor can be reduces to  

1

( ) 2 cos( cos( ))
N
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s n n

n

AF a kx 
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                                                                                            (2) 

where s

na , 1, ,n N   denotes the nth excitations for the sum mode which can be obtained 

by using Taylor or Dolph-Chebichev synthesis method.  

In order to obtain a difference pattern, the excitations are anti-symmetric (i.e. n na a   , 

1, ,n N   ). In this case, (1) reduces to 

1

( ) 2 sin( cos( ))
N

d

d n n

n

AF j a kx 
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                                                                                          (3) 

where d

na , 1, ,n N   , denotes the nth excitations for the difference mode. 

 

2.1. Subarrayed Sum Pattern  

 

Figure 1. Configuration of Subarrayed Sum Pattern 

In this section, the whole array aperture is divided into Q  subarrays and sum radiation 

pattern with low-side-lobe level is obtained. Each subarray has the same excitation 

weight. The array structure is as shown in Figure. 1. The thq  subarray has qk , 1, ,q Q   , 

elements. The total element number of the considered array antenna can be given by 
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The sum radiation pattern of this kind of array structure can be given by 

1 1

( ) 2 cos( cos( ))s
n

Q N
s

s q nc q
q n

AF w kx  
 

                                                                                   (5) 

where [0,1]s

qw  , 1, ,q Q   , is the weight of the qth subarray. ij denotes the Kronecker 

function, i.e., 1ij  , if i j , 0ij  , elsewhere. [1, ]s

nc Q , 1, ,n N   , is a positive 

integer which denotes the element n  belongs to the thq subarray, i.e., if s

nc q , the 

thn element belongs to the thq  subarray. The minimum number of elements that are 

allowed in a subarray is represented by 
mink . 

mink  has to be at least greater than or equal to 

1. The maximum number of elements in a subarray is 
maxk  and 

max min( 1)k N Q k    .  

For the sum radiation pattern, 
1 1.0sw  . The elements number of thQ  subarray can be 

determined by 
1

1

Q

Q q

q

k N k




  . So, the optimized parameters vector can be given by 

2 1 1[ , , , , , ]s s

Q Qw w k k      ξ . There are 2 2pN Q   elements in the optimized vector. The 

vector is composed of two parts: one of length 1Q   containing subarray weights and 

another of length 1Q   denoting the number of elements that are allowed in a subarray. 

 
2.2. Subarrayed Compromised Difference Pattern 

 

Figure 2. Configuration of Subarrayed Compromised Difference Pattern 

To fulfill the synthesis of a compromised difference pattern, the array structure is 

depicted in Figure. 2. The best sum radiation pattern is obtained and the sum pattern 

excitations are fixed. Then, the excitations of the difference pattern can be obtained by the 

following relation  

 
1

d
n

Q
d s d

n n qc q
q

a a w


  , 1, ,n N                                                                                               (6) 

Then, the difference radiation pattern can be obtained by (3). The optimization vector 

can be given by 1 1 1[ , , , , , ]d d

Q Qw w k k      ξ . There are 2 1pN Q   elements in the 

optimization vector. 
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2.3. Subarrayed Sum and Difference Patterns 

In this section, the subarrayed sum and the difference patterns are optimized. The 

structure of this kind of array is given in Figure. 3. The two subarrays have the same 

configuration but have different weights. The two array factors can be given by 

1 1

( ) 2 cos( cos( ))
n

Q N
s

s q c q n

q n

AF w kx  
 

                                                                                   (7) 
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                                                                                (8) 

where 
1 1.0sw  . So, the optimization vector can be given by 2[ , , ,s s

Qw w  ξ  
1 , , ,d d

Qw w    

1 1, , ]Qk k    . There are 3 2pN Q   elements in the optimization vector and the vector is 

composed of two parts. The first 2 1Q   elements denote the subarray weights and the last 

1Q   elements denote the group membership of each array element.  

 

Figure 3. Configuration of Subarrayed Sum and Difference Patterns 

3. Optimization Steps 

In order to optimize the sum and difference patterns, the optimization procedure can be 

expressed as follows: 

Step 1. The parameter values of the antenna arrays and IWO are given. The optimization 

vector can be given by  

11 1 1[ , , , , , ]N Qw w k k      ξ , 1, , pi N                                                                                   (9) 

There are 1 1pN N Q    parameters to be optimized. The first 1N  elements denote the 

subarray weights and the last 1Q   elements denote the group membership of each array 

element.  A K-dimensional matrix is chosen as the initial population to be optimized. 

Each dimension of the population can be depicted as k

ir , 1,2, , pi N   , 1,2, ,k K   , and 

[0,1]k

ir  . Let 1iter  . 

Step 2. The first 1N  elements of k

ir  are the subarray weights. Next, the array 

configuration will be determined. Each subarray starts with mink  elements. The remaining 

minrk N Q k    elements are distributed among the subarrays. A new vector introduced 

which are depicted by 
rN . Each element of 

rN  can be determined by  
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(1) 0rN   , 
1 1( ) 0.49 ( 0.98) k

r r N qN q k r  
        , 2, ,q Q                                              

(10) 

Where a    denotes the integer part of a . 
rN  is sorted in ascending order. 

rN  is sorted in 

ascending order and a new vector 
rN  is obtained . ( )rN q , 1, ,q Q   , represents the sum 

of total remaining elements number before the thq subarray, i. e., 
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( ) [0, ]r rN q k . So, the elements number of each subarray can be determined by  
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Step 3. After the subarray weights and configuration are determined, the array factor can 

be obtained by (3), (5), (6), (7) or (8) for different kinds of optimization problems. The 

cost function is given by  

SLL( ) SLL , SLL( ) SLL
( )

0 , elsewhere

d dk k
err k

 
 


, 1,2, ,k K                                              (12) 

Where SLL( )k , 1,2, ,k K   , is the peak side lobe level (PSLL) value corresponding to 

the thk  element of the population. SLLd
is the desired PSLL value. SLL( )k , 1,2, ,k K   , 

can be computed by searching the side lobes outside the main-lobe region.  

The fitness function is given by 

1.0
( )

( )
f k

err k
  , 1,2, ,k K                                                                                              (13) 

The fitness value f   increases with the decrease of cost function value. The optimized 

parameters that can produce best fitness are preserved as the ultimate result. 

Step 4. The optimized parameters k

ir , 1,2, , pi N   , are updated by IWO which has been 

introduced in [9]  and [11].  

Step 5. Let 1iter iter  , if maxititer  , go to step 2, otherwise, terminate iteration, where 

maxit is the maximum iteration steps. 

 

4. Optimization Results 

In order to show the effectiveness and flexibility of the proposed approach, several 

simulation results are performed. As is shown in [9], The IWO parameters are given in 

Table 1. The number of sampling points for   is 1801. A desired sidelobe level should be 

a few dBs lower than it can be realistically hoped. So, the desired sidelobe level SLLd  is 

chosen as -40dB. A linear array that the elements spaced d  along the x -axis is 

considered. The position of each element can be given by ( 0.5)nx n d  , 1, ,n N   . d  

is chosen as 2  in this paper. The algorithm is repeated 10 times and the best result is 

preserved.  

Table 1. IWO Parameter Values 

itmax Pmax Smax Smin K n initial SD final SD 

3000 30 10 0 10 3 0.1 0.001 
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4.1. Simulation of Subarrayed Sum Pattern 

As the first example, the subarrayed sum pattern is synthesized. Since the array is 

symmetric, only the right hand side of the array is considered. The number of the array 

elements is 64N   and the number of the subarrays is chosen as 8Q  . So, as is shown 

in Section 2.1, the total number of the optimized parameters is 14.  

By using the approach proposed above, the sum radiation pattern and the behavior of 

the cost function are depicted in Figure. 4. The PSLL of the optimized radiation pattern is 

-37.5dB. The optimized number of elements in each subarray along with the optimized 

subarray weights is given in Table. 2. From Table. 2, it can be found that 
min 5k  . For 

comparison, the same array configuration is synthesized in [1]. The minimum number of 

elements in each subarray is 
min 4k   and the PSLL is -35.9dB. The PSLL optimized by 

the method proposed in this paper is with an improvement of nearly 1.6dB in terms of 

PSLL with respected to [1]. Also, the minimum elements number of subarrays increases 

by 1.  

 

 

Figure 4. Simulation Result for Subarrayed Sum Pattern (Q=8): (a) Sum 
Radiation Pattern; (b) Behavior of the Cost Function 

Table 2. Subarray Structure and Weights (Sum Pattern) 

Subarray Number 1 2 3 4 5 6 7 8 

Element Number 14 5 7 7 5 10 7 9 

Subarray Weights 1.0 0.883 0.789 0.652 0.524 0.352 0.209 0.113 

 

4.2. Simulation of Compromised Difference Pattern 

In this example, the subarrayed compromised difference pattern is synthesized. The 

mathematical theory is depicted in Section 2.2 .Considering the symmetry of the antenna 

array, the number of the array elements is 50N   The number of the subarrays is chosen 

as 6Q  . The total number of the optimized parameters is 11.  
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Figure 5. Simulation Result for Subarrayed Compromised Difference Pattern 
(Q=6): (a) Difference Radiation Pattern; (b) Behavior of the Cost Function 

Table 3. SubArray Structure and Weights (Compromised Difference Pattern) 

SubarrayNumber 1 2 3 4 5 6 

Element Number 1 2 2 33 7 5 

Subarray Weights 0.196 0.416 0.737 0.951 0.747 0.237 

The sum pattern excitations s

na , 1, ,n N   , are chosen to produce a Taylor pattern [10] 

with 12n   and PSLL=-35dB. Figure. 5 (a) shows the optimized compromised difference 

pattern. Figure .5 (b) reports the plot of the cost function during the optimization 

procedure. The PSLL of the optimized compromised difference pattern is -36 dB. The 

optimized number of elements in each subarray along with the optimized subarray 

weights is given in Table. 3. A similar array structure is optimized in [2-3]. The number 

of the subarray is chosen as 4 and the optimized PSLLs are -30dB and -33dB, 

respectively. Using the method proposed in this paper and choosing the subarray number 

as 4, the PSLL is optimized as -32.5dB. Although the PSLL is 0.5dB higher than that of 

calculated in [3], the elements of the same subarray stay together which will reduce the 

difficulty of designing the feeding networks of the array antenna significantly. 

 

4.3. Simulation of Sum and Difference Patterns 

 

Figure 6. Simulation Result for Subarrayed Sum and Difference Pattern 
(Q=8): (a) Sum Radiation Pattern; (b) Difference Radiation Pattern 
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For the last example, the simulation result of subarrayed sum and difference patterns 

are given. The number of the array elements is 64N  . The number of the subarrays is 

chosen as 8Q  . The total number of the optimized parameters is 23.  

The synthesized sum and difference patterns are shown in Figure. 6 (a) and Figure. 6 

(b), respectively. The PSLLs for the sum and difference patterns are -30.4dB and -30.4dB, 

respectively. Figure. 7 gives the plot of the cost function during the optimization 

procedure. The elements number and weight of each subarray are depicted in Table. 4. 

 

Figure 7. Behavior of the Cost Function for Sum and Difference Patterns 

Table 4. Subarray Structure and Weights (Sum and Difference Patterns) 

Subarray Number 1 2 3 4 5 6 7 8 

Element Number 6 6 6 16 7 8 6 9 

Subarray Weights 

(Sum Parrern) 
1.0 0.953 0.896 0.701 0.450 0.292 0.171 0.113 

Subarray Weights 

(Difference Pattern) 
0.191 0.497 0.726 0.979 0.900 0.708 0.476 0.296 

 

5. Conclusions 

In this paper, the optimization of sum and difference radiation patterns is considered. A 

hybrid real/integer invasive weed optimization is used into the considered synthesis 

problem. The whole array aperture is divided into several subarrays and low side lobe 

level patterns are obtained. Compared with other relevant papers, the subarray structures 

optimized by the proposed method reduce the difficulty in designing the feeding networks 

of the array antenna.  
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