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Abstract 

In this paper, a machine-learning approach called Sparse Representation-based 

Classification (SRC) is used for automatic chord recognition in music signals. We 

extracted different Pitch Class Profile (PCP) features from raw audio and achieved 

sparse representation of classes via 1 -norm minimization on feature space to recognize 

24 major and minor triads. This recognition model is evaluated on MIREX’09 dataset 

including the Beatles corpus. Our method is compared with various methods that entered 

the Music Information Retrieval Evaluation eXchange (MIREX) in 2014 towards the 

audio chord estimation of MIREX’09 dataset in Audio Chord Estimation task of MIREX. 

Experimental results demonstrate that our method has good accuracy rate in recognizing 

maj-min chords. 

 

Keywords: Chord recognition, Music Information Retrieval, PCP, Sparse 
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1. Introduction 

In music, a chord is a set of three or more notes that is played simultaneously. 

Automation of chord labeling is also called chord recognition, which finds many 

applications such as music segmentation, cover Song identification, audio matching, 

music similarity identification, and audio thumb nailing[1]. Because of these reasons, 

automatic chord recognition has been one of the main fields of interest in musical 

information retrieval (MIR) in the last few years.  

In chord recognition, the features used may not identical. But in most cases, the most 

used features is variants of the Pitch Class Profile (PCP) introduced by Fujishima 

(1999)[2]. PCP is also called chroma vector, which is often a 12-dimensional vector. The 

calculation of an audio file into a chroma representation is based either on the short-time 

Fourier transform (STFT) in combination with binning strategies [3] or on the constant Q 

transform (CQT)[4]. One of the limitations of the STFT is that it uses a fixed–length 

window. In music signal processing, chromagram is defined as the succession of these 

chroma vectors over time. And the musical content of audio musical signals can be well 

described with the chromagram. 

The chord recognition is the chord labeling of each chord. Our chord recognition 

system is based on the sparse representation-based classification (SRC) [5] which has 

been proposed with amazing identification capability in recent years. Based on a giving 

12-dimensional PCP features, SRC discriminately selects the subset that most compactly 

expresses the input signal and rejects all other possible but less compact representations. 

This classification has been applied into many applications and achieved perfect 

performance. This is the first time that we apply SRC into chord recognition; empirical 
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experiments demonstrate that its perfect discrimination capability compared with other 

classifications. 

The remainder of this paper is organized as follows: Section 2 reviews previous the 

related work on this area; Section 3 gives a description of our construction of the feature 

vector; Section 4 detailedly describes our sparse approach; Section 5 gives results on a 

data corpus and a comparison with the other methods; Finally we will draw some 

conclusion and give possible developments about further work. 

 

2. Related Work 

The feature of pitch class profile (PCP) has almost without exception as the feature of 

the chord recognition system. In [2], Fujishima developed a real-time chord recognition 

system, where used discrete fourier transform (DFT) of the music audio and obtained a 

12-dimensional pitch class profile, then determined chord type based on pattern matching. 

Lee [6] also used pattern matching based on binary chord templates, determined the 

24major/minor triads. A new feature called Enhanced Pitch Class Profile (EPCP) is 

introduced. E. Gómez and P. Herrera [7] used a Harmonic Pitch Class Profile (HPCP) as 

the feature vector, which is based on Fujishima’s PCP, and correlated it with a chord or 

key model adapted from Krumhansl’s cognitive study. 

Besides templates-fitting methods, it is widely used machine-learning methods such as 

Support Vector Machine(SVM) [6] and hidden Markov Model (HMM) [8] for this 

recognition process. A. Sheh and D. P. Ellis proposed a statistical learning method for 

chord segmentation and recognition[8]. J. P. Bello and J. Pickens also used the HMMs 

with the EM algorithm, but they considered the inherent musicality of audio into the 

models for model initialization[9]. 

 

3. Feature Vectors 

First of all, the recognition system extracts a sequence of suitable feature vectors from 

the audio signal. In our system, the feature vectors is PCP. 

Like most chord recognition systems, a chromagram or a PCP vector is used as the 

feature vectors. Müller and Ewert propose feature vectors 12-dimensional Quantized 

PCP[10] which avoids a possible frequency resolution and is sufficient to separate 

musical notes of low frequency comparing with others. 

The calculation of feature vectors PCP can be divided into the following steps: 

(1)Using the constant Q transform to calculate the 36-bin chromagram; (2)Mapping 

spectral chromagram to a particular semitone; (3) segmenting the audio signal with beat 

tracking algorithm; (4)Reducing the 36-bin chromagram to 12-bin chromagram based on 

beat-synchronous segmentation. (5)Logarithm and normalization of 12-bin 

chromagram.Refer to [9] for more detailed steps on how to calculate chromagram. 

(1)36-bin chromagram calculation. Using the constant Q transform, it can get  cqtX k  

of a audio signal  x m : 

     
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where k is the bin position,  
kNw m is the hamming window and its length /k k sN Qf f . 

And kf  is the center frequency of the k bin and sf  is the sample frequency. In this paper, 

the music signal is down-sampled to 11025Hz. 

By adding all  cqtX k that correspond to a particular frequency，then it get 36-bin 

chromagram of each frames. The specific formula is as follows: 
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Where M is the total number of octaves and b is the number of bins per octave. 

(2)Chromagram tuning. In the 36-bin chromagram, 3 bins represent one note in the 

octave. Each spectral components of 36-bin is maped to a particular semitone. The 

mapping formula is as follows: 

 2 0( ) 36 log mod36s kp k f N k f                                                                                    (3) 

(3)beat-synchronous segmentation. In our system, it use the beat tracking with dynamic 

programming method proposed by Daniel P.W. Ellis [11]. This approach has been found 

to work very well in in many types of music. Segmenting the audio signal with beat 

tracking algorithm has additional advantage that the chroma feature is a function of beat 

segments, rather than time. 

(4)12-bin chromagram reduction. Finally, averaging the each spectral components of 

36-bin in beat segments and summing them in semitones, thus the dimension of 

chromagram is reduced to 12 from 36. Then the chromagram of audio music can 

represented with these 12 dimensional vectors. 

(5)Logarithm and normalization of 12-bin chromagram.  12QPCP p  is the 12-bin 

chromagram. It can get the normalized value with p-norm and logarithm. The formula is 

as follows: 

   log 10 12log ( 1)QPCP p C QPCP p                                                                                    (4) 

   log log/normQPCP p QPCP p QPCP                                                                                  (5) 

If it performs the Logarithm and normalization, the chromagram is called Log PCP. In 

step (5), if it has only normalization, it is called PCP. 

 

4. Sparse-Based Classification 

In recent years, the sparse representation become an important research focus in the 

field of pattern recognition, and has attracted wide attention in areas such as machine 

vision, machine learning, pattern recognition. The earliest in the field of signal sparse 

representation has been proposed[12, 13]. Its core idea is that the test sample is the linear 

representation of labeled training samples which the test sample belongs to. Obviously, 

only a few of the linear coefficient are zero, that is to say the coefficient vector is sparse. 

Our chord recognition system is based on the sparse representation-based classification 

(SRC) [5]. Labeled samples by this algorithm can directly be used as the classifier 

training samples, saving lots of time and system resources. The following sections outline 

the method. 

(1)Test Samples as a sparse linear combination of training samples. 

At first, we define a matrix 1 2 1,1 1,2 ,[ , , ] [ , , ]
k

m n

k k nD D D D u u u R     by collecting n 

classifier training samples of all k classes, where m  is the dimension of the feature set. 

For a given test sample my R  form subject i, can be rewritten in terms of all training 

samples as: 

0

my Dx R                                                                                                                         (6) 

where 
0x ${x_0}$ is a coefficient vector whose entries Ideally the coefficient vector 

0 ,1 ,2 ,[0, ,0, , , , ,0, ,0]
i

T n

i i i nx a a a R   are mostly zero except the values corresponding 

to the i-th class are non-zero and other coefficient values should be 0. 
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As coefficient vector 
0x  can identify the test sample y, it can be obtained by solving 

the linear equation (6). 

(2)Sparse solution via 1 -Minimization. 

Recent development in the emerging compressed sensing theory and sparse 

representation reveals that if the solution 0x  sought is sparse enough, the solution to the 

system of equation (6) is equivalent to the following 1 -minimization problem:  

1 1
 ̂ argmin   subject to  x x y Dx                                                                                          (7) 

(3)Classification based on sparse representation. 

According to these non-zero coefficient 
1x , it can quickly know the test sample belongs 

to the class. Actually, because of noise and model errors, some of entries with multiple 

object classes is small nonzero values. For each class i, t he given test sample y can be 

approximated as  1
ˆ ˆ

i iy D x , where : n n

i R R  is the characteristic function which 

selects the coefficients associated with the i-th class. We then calculate the residual 

between y and ˆ
iy : 

   1 2
ˆ

i ir y y D x                                                                                                              (8) 

At last, we classify y based on these approximations by assigning it to the object class 

that minimizes the residual, as follow: 

   argmini iidentity y r y  (9) 

The resulting SRC algorithm is summarized below. 

Algorithm 1: Recognition via Sparse Representation Classification (SRC) 

1: Input: B is a matrix of classifier training samples, 
1 2[ , , ] m n

kD D D D R    for k classes, a test 

sample my R . 

2: Solve the following 1l -minimization problem:
1̂ argx 

1
min x    subject to y Dx  

3: Compute the residuals    1 2
ˆ

i ir y y D x  , for 1,...,i k  

4: Output:    argmini iidentity y r y  

 

5. Evaluation 

5.1. Corpus 

For evaluation, we use the MIREX’09 dataset in Audio Chord Estimation task of 

MIREX. The dataset consists of 12 Beatles albums (180 songs, PCM 44 100Hz, 16 bits, 

mono). Besides the Beatles albums, in 2009, an extra dataset was donated by Matthias 

Mauch which consists of 38 songs from Queen and Zweieck.  

This database based been extensively used for the Audio Chord detection task at 2014. 

The evaluation is realized thanks to the chord annotations of the Beatles albums kindly 

provided by Harte and Sandler[14]. 

The chord dictionary used in this work is the set of 24 major and minor triads, one each 

for all 12 members of the chromatic scales: C Major, C minor, C# Major, C# minor ... B 

Major, B minor. Each triad contains 50 labeled musical fragments which select from the 

Beatles albums. 

To evaluate the quality of an automatic transcription, a transcription is compared to 

ground truth created by one or more human annotators. Since 2013, MIREX typically 

uses chord symbol recall (CSR) to estimate how well the predicted chords match the 

ground truth: 

total duration of segments where annotation equals estimation
CSR

total duration of annotated segments
                        (10) 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 4 (2016) 

 

 

Copyright ⓒ 2016 SERSC  189 

Because pieces of music come in a wide variety of lengths, we will weight the 

CSR by the length of the song when computing an average for a given corpus. This 

final number is referred to as the weighted chord symbol recall (WCSR).  

5.2. Experiment 

In order to verify the impact of different dimensions of the feature space on the results, 

it first tests the algorithm of SRC using different samples. The results are presented in 

Table 1. 

Table 1. Recognition Rates of SRC on the Bealts Corpus 

Number of Samples  5 10 20 30 40 50 

PCP[%] 57.6 60.3 61.7 63.8 66.6 67.0 

 

We compared recognition rate of the PCP chromagram with some popular features. 

(1)Short Time Fourier Transform STFT chromagram features (STFTC), which is 

implemented by the MIR toolbox[15]. (2)Chroma DCT-reducedlog Pitch features 

(CRP)[10], which is the logarithmized pitch representation like MFCC. (3)Loudness 

based chromagram as described in [16] (denoted by LBC). 

The results are presented in Table 2. 

Table 2. Comparison of Recognition Rates using Different Chromagram 

Chromagram PCP STFTC CRP LBC Log PCP 

Recognition Rates [%] 67.0 59.7 42.6 64.9 73.9 

 

The recognition rates computed for this corpus confirm these observations: 

(1)The performances of Log PCP features exceed the performances of classical feature 

PCP. More specifically speaking, the recognition rate for the Log PCP is better, 73.9%, 

compared to 67.0% for that of PCP. 

(2)By imposing sparsity via 1 -minimization, the recognition rates of all features 

improve gracefully as the number of samples increases from 5 to 50. The performance of 

PCP features gracefully increased from 55.2% to 67.0%. 

From the observations 1) and 2), we can draw a conclusion that the choice of a good 

combination of features and samples number indeed makes some difference for SRC 

classification. These experimental results have verified the theoretical analyses of 

compressed sensing in this paper. The result is bad if the training data (feature dimension 

or samples number) of a single subject do not span a subspace. 

5.3. Comparison with the Previous Methods 

Our method is now compared to the following methods that entered MIREX 2014. 

(1)KO1: Maksim Khadkevich & Maurizio Omologo [17];  

(2)CM3: Chris Cannam, Matthias Mauch [18]; 

(3)JR2: Jean-Baptiste Rolland [19]; 

More details about these methods can be found from the corresponding MIREX 

websites - http://www.music-ir.org/mirex/wiki/MIREX_HOME. 

Results of the comparison with the state-of-the-art are presented in Table 3. 

Table 3 shows the chord recognition rates of these methods on the Beatles corpus. The 

recognition rates show that our SRC (Log PCP) method is not the highest, but slightly 

higher than many other methods. More specifically, the recognition rate we uses with 

LPCP features is 8.3% lower than the best method (KO1) in MIREX 2014. But it only 

needs some labeled fragments and doesn’t train the temporal correlation of music. 

http://www.music-ir.org/mirex/wiki/MIREX_HOME


International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 4 (2016) 

 

 

190   Copyright ⓒ 2016 SERSC 

Table 3. Comparison With the Previous Methods 

  Recognition 

Rates 

SRC methods 
SRC (PCP) 67.0 

SRC (Log PCP) 73.9 

MIREX 2014 

Maksim Khadkevich, Maurizio Omologo (KO1) 82.2 

Chris Cannam, Matthias Mauch (CM3) 75.4 

Jean-Baptiste Rolland (JR2) 51.1 

 

6. Conclusion 

In this paper, we have presented a new machine learning model-SRC for chord 

recognition. In our method, the chord samples are treated as a dictionary D in formula (6). 

Based on MIR development and combined our research, the following work is 

proposed. First, this paper only involved chord recognition which is a part of chord 

transcription task. Future work will consider adding recognition of more complex 

chords to our work. Second, in this work we take the effect of feature dimension 

into account in SRC, the results of Table 1. show that recognition rate increased 

along with numbers of features. We could add appropriate other features in the 

feature. Finally, we can use the SRC method when considering the temporal 

correlation of music. 
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