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Abstract 

In this paper, we handle the problem of human action recognition by combining 

covariance matrices as local spatio-temporal (ST) descriptors and local ST features 

extracted densely from action video. Unlike traditional methods that separately utilizing 

gradient-based feature and optical flow-based feature, we use covariance matrix to fuse 

the two types of feature. Since covariance matrices are Symmetric Positive Definite (SPD) 

matrices, which form a special type of Riemannian manifold. To measure the distance of 

SPDs while avoid computing the geodesic distance between them, covariance features 

are transformed to log-Euclidean covariance matrices (LECM) by matrix logarithm 

operation. After encoding LECM by Locality-constrained Linear Coding method, in 

order to provide position information to ST-LECM features, spatial pyramid is used to 

partition the video frames, and the average-pooling-on-absolute-value function is 

implemented over each sub-frames. Finally, non-linear support vector machine is used as 

classifier. Experiments on public human action datasets show that the proposed method 

obtains great improvements in recognition accuracy, in comparison to several state-of-

the-art methods. 
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1. Introduction 

Human action recognition has received significant attention in several video analysis 

tasks, mainly because of its applications to content-based video analysis, visual 

surveillance, and human-computer interaction. Many methods have been proposed for 

reliable action recognition based on various feature detectors/descriptors to capture local 

motion patterns. Recently, dense spatial-temporal representation of action videos has 

been recently shown to be promising for the action classification task.  

Covariance matrices as image local descriptors have been successfully applied in 

image classification. In [1], they were firstly proposed by Tuzel et. al., and since then 

they have been employed successfully for pedestrian detection [2], non-rigid object 

tracking [2], face recognition [3], and analyzing diffusion tensor images [4]. Furthermore, 

a ST version of covariance matrix descriptors has shown superior performance for 

action/gesture recognition [5]. 

Using covariance matrix as a region descriptor has several advantages:  

 Firstly, it captures second-order statistics of the local features.  

 Secondly, it is straightforward approach to fusing various features.  

 Thirdly, it is a low dimensional descriptor and is independent of the size of the 

region.  
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 Fourth, through the averaging process in its computation, the impact of the noisy 

samples is reduced.  

 Finally, efficient methods for its fast computation in images and videos are 

available.  

While the above advantages make covariance-based features attractive, using them for 

discrimination purposes can be challenging. Covariance matrices are Symmetric Positive 

Definite (SPD) matrices, the space of which is not a Euclidean space but a smooth 

Riemannian manifold. In the Log-Euclidean framework [6], the SPD matrices form a 

commutative Lie group which is equipped with a Euclidean structure. This framework 

inspires us to compute the logarithms of SPD matrices, which can then be flexibly and 

efficiently handled with common Euclidean operations.  

Our contribution. In the paper, we utilize region covariance matrices as the local 

descriptors to capture the local motion information, and covariance matrices are treated 

as points on a Riemannian manifold. We firstly form ST covariance descriptors, which 

combine image intensity and motion optical flow information, from dense sampling 

motion-based features. The covariance descriptors are then encoded in a Log-Euclidean 

Bag-of-Features (LE-BoF) model. To achieve this, we employ a diffeomorphism and 

form the LE-BoF model by embedding the Riemannian manifold into a tangent vector 

space. The embedding is obtained with flattening the manifold into a corresponding 

tangent space, and Locality-constrained Linear Encoding (LLC) method is employed to 

encode the LE-BoFs. The proposed action recognition system was compared with the 

recent systems proposed by Wang et. al., [15], Messing et. al., [7], and Niebles et. al,. [8], 

and experiment results on two datasets (KTH [9], Activity of Daily Living [7]) show that 

the proposed  approach obtains an impressed performance. 

We organize the rest paper as follows: Section 2 presents ST Log-Euclidean 

Covariance Matrix (ST-LECM). Section 3 shows the framework of our system. In 

Section 4 we compare the performance of the proposed method with previous approaches 

on datasets.  

 

2. Spatio-Temporal Log-Euclidean Covariance Matrix (ST-LECM). 

The space of Symmetric Positive Definite (SPD) matrices is not a vector space but a 

Riemannian manifold (an open convex half-cone). Hence, the conventional Euclidean 

operations, e.g., the Euclidean distance, mean or the statistics do not apply. Two class of 

Riemannian framework have been presented for dealing with SPD matrices: the affine-

invariant Riemannian framework [12] and the Log-Euclidean Riemannian framework [6]. 

The latter has almost the same good theoretical properties as the former, and in the 

meantime enjoys a drastic reduction in computational cost. In the following we first 

introduce briefly the Log-Euclidean Framework and then present the proposed ST-LECM 

features. 

 

2.1. Log-Euclidean Framework on SPD Matrices 

„Matrix exponential and logarithm operations. The matrix exponential and logarithm 

are fundamental to the Log-Euclidean framework. Let ( )SPD n and ( )S n denote the space 

of n n  real SPD matrices and n n  real symmetric matrices, respectively. Any matrix 

( )S nS  can be represented as the eigen-decomposition of the form 
T S U U , where 

U  is an orthonormal matrix and 1Diag( , , )n S is a diagonal matrix composed of the 

eigenvalues i of .S  
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Furthermore, if S is positive-definite, i.e., ( )SPD nS , then 0i  for 1, ,i n . 

The exponential map, exp: ( ) ( ),S n SPD n  is bijective, i.e., one to one and onto. By 

eigen-decomposition, the exponential of a ( )S nS  can be computed as 

1exp(S)=U.Diag(exp( ), ,exp( )).UT

n                                                                             (1) 

For any SPD matrix ( )SPD nS , it has a unique logarithm log( )S in ( )S n : 

 
1log(S)=U.Diag(log( ), ,log( )).UT

n                                                                              (2) 

Vector space structure on ( )SPD n .The commutative Lie group ( )SPD n admits a bi-

invariant Riemannian metric and the distance between two matrices 1 2,S S is 

1 2 1 2( , ) log( ) log( )
F

d  S S S S                                                                                          (3) 

The desirable property of such a vector space structure of ( )SPD n  is that, by matrix 

logarithm operation, the Riemannian manifold of SPD matrices is mapped to the 

Euclidean space. As such, in the logarithmic domain, the SPD matrices can be handled 

with simple Euclidean operations and, if necessary, the results can be mapped back to the 

Riemannian space via the matrix exponential. 

 

2.2.  Spatio-Temporal Log-Euclidean Covariance Matrix (ST-LECM) 

We first present the form of the proposed ST covariance descriptors (Cov3D). 

Commonly used features for action and gesture recognition include intensity gradients 

and optical flow. Previous studies [11] have shown the benefit of combining both types 

of features. Therefore, we combine gradient and optical flow based features in building 

ST-LECM features. More specifically, for a given 3D volume R , we can extract the raw 

feature vector ( , , )x y tf from pixel position ( , , )x y t inside ,R and ( , , )x y tf has the 

following form: 

( , , ) [ , ]Tx y t f g o                                                                                                              (4) 

2 2[ , , , , ,artan ]
y

x y xx yy x y

x

I
I I I I I I

I
 g                                                          (5) 

[ , , , , , ]
u v w

u v w
t t t

  


  
o                                                                                                  (6) 

where the first four gradient based features in (5) represent the first and second order 

intensity gradients at pixel location ( , , )x y t . The last two gradient based features 

correspond to the gradient magnitude and gradient orientation. The optical-flow based 

features in (6) represent, in order: two horizontal component ( , )u v and one vertical 

components ( )w  of the flow vector, and three first-order derivatives of the flow 

components ( , , )u t v t w t       with respect to t . 

The ST covariance descriptor 3 RCov D is computed as follows: 

1
3 ( )( )T

RCov D
S

   F F                                                                                         (7) 

1 1 1

1

1
( ( , , ), , ( , , )), ( , , )

S

S S S i i i

i

x y t x y t x y t
S




  F f f f                                             (8) 
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where
12 SR F is a column vector matrix, and the column vector 

12 1( , , )i i ix y t R f is 

the feature extracted from pixel position ( , , )i i ix y t inside the volume R , is the mean of 

all features. Each descriptor is hence a 12 12  matrix, as ( , , )x y tf  has 12 dimensions. 

We wish to exploit these covariance matrices as fundamental features for vision 

applications. It is known that the Affine-Riemannian framework involves intensive 

computations of matrix square root, matrix inverse, matrix exponential and logarithm. 

Hence, we utilize the Log-Euclidean framework: 3 RCov D  in the commutative Lie group 

( )SPD n is mapped by matrix logarithm to log 3 RCov D  in the vector space of ( )S n . 

log 3 RCov D can then be handled with the Euclidean operations and the intensive 

computations involved in Affine-Riemannian framework are avoided. It also facilitates 

greatly further analysis or modeling of the SPD matrices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the tensor-valued image 3 ( )RCov D SPD n , we compute the logarithm of the 

covariance matrix 3 RCov D according to Eq. (2). log 3 RCov D  is a symmetric matrix of 

Euclidean space. Because of its symmetry, we perform half-vectorization of log 3 RCov D , 

denoted by Vec(log 3 )RCov D , i.e., we pack into a vector in the column order the upper 

triangular part of log 3 RCov D . The final ST-LECM feature descriptor can thus be 

represented as 

V(log 3 ) [log 3 (1,1), ,log 3 (12,12)]T

R R RCov D Cov D Cov D                             (9) 

where V(log 3 )RCov D  is the proposed ST-LECM feature of volume .R   

 

2.3. Encoding ST-LECM Features by LLC Method 

In contrast to the previous coding schemes, LLC coding algorithm [12] has attracted 

much attention due to its impressive properties: 

 Better reconstruction. In VQ (Figure 2.a), each descriptor is represented by a 

single basis in the codebook. Due to the large quantization errors the VQ code for similar 

descriptors might be very different. Besides, the VQ process ignores the relationships 

between different bases. Hence non-linear kernel projection is required to make up such 

information loss. On the other side, as shown in (Figure 2.c) in LLC, each descriptor is 

more accurately represented by multiple bases, and LLC code captures the correlations 

between similar descriptors by sharing bases. 

 Local smooth sparsity. Similar to LLC, SC also achieves less reconstruction error 

by using multiple bases. Nevertheless, the regularization term of 1 norm in SC is not 

smooth. As (shown in Figure 2.b), due to the over-completeness of the codebook, the SC 

 
 

Figure 1. Conceptual demonstration for obtaining a Cov3D spatio-

temporal covariance descriptor. A spatio-temporal volumn R is defined 

inside the input video. For each pixel in R a feature vector
( , , )i i ix y tf

is 

calculated. The feature vectors are then used to compute the covariance 
matrix 3 .RCov D  
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process might select quite different bases for similar patches to favor sparsity, thus losing 

correlations between codes. On the other side, the explicit locality adaptor in LLC 

ensures that similar patches will have similar codes. 

 Analytical solution. Solving SC usually requires computationally demanding 

optimization procedures. Unlike SC, the solution of LLC can be derived analytically such 

that LLC can be performed very fast in practice. 

 

 

 

 

 

 

 

 

 LLC can be formulated by  

 
2 2

2 2
argmin( ), s.t. 1,T

i i    
c

c g Bc d c 1 c                                                            (5) 

1

dist( , )
exp( ), dist( , ) [dist( , ), ,dist( , )] ,Ti

i i i M


 
g B

d g B g b g b                                   (6) 

where the first term is reconstruction error; the second term is the locality constraint 

regularization on code c , and   is a regularization factor; in the second term, denotes 

the element-wise multiplication, and MRd is the locality adaptor that gives different 

weight for each base vector proportional to its similarity to the input feature if ; 

and dist( , )i jf b is the Euclidean distance between if and the 𝑗-th base .jb  is used for 

adjusting the weight decay speed for the locality adaptor. 1T 1 c  is the shift invariant 

constraint according to [23]. 

LLC coding scheme bases on the hypothesis that descriptors approximately reside on a 

lower dimensional manifold in an ambient descriptor space; thus, it reduces the 

quantization error while preserving the consistent encoding ability. 

Assuming that the motion information of video sequence V is represented as a set 

{ , 1, , },i vi N G g ig denotes the i-th ST-LECM feature. In the paper, to reduce 

quantization error and keep the consistent coding, LLC method and a codebook with 

M bases 1 2[ , , , ]MB b b b are employed to encode the ST-LECM features G , and 

obtain its reconstruction coefficients { , 1, , }M

i vR i N  C c . 

 

3. The System Framework 

In this section, we present the framework of our system. Basically, our system consists 

of five stages: 

(1) Gradient and optical flow information { ( , , ) [ , ] }T

i i ix y t f g o  on each pixel 

position in action videoV is extracted. 

(2) Each video is partitioned into several segments with a fixed-length along the 

temporal axis. Covariance matrices as local region descriptors are densely extracted over 

 

Figure 2. Comparison between VQ, SC and LLC. The Selected bases 
for Representation are Highlighted in Black 
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the segments, and transformed to ST-LECM features { , 1, , }i vi N G g by matrix 

logarithm operation.  

(3) Then, the ST-LECM features are encoded with LLC method, and obtain their 

LLC codes { , 1, , }.M

i vR i N  C c      

(4) Each frame is divided into K sub-regions with a spatial pyramid with different 

scales, and the average-pooling-on-absolute-value function is implemented over the LLC 

codes in each sub-region. The average-pooling-on-absolute-value function is defined as 

follows:  

1

1 kN

k ii
kN 

 h c                                                                                                                 (7) 

(5) where { : 1, , }i ki Nc denotes the LLC codes in the k -th sub-region; 
kh  

denotes the polled feature of the k-th sub-region. Next, all pooled features 1{ }K

k kh are 

concatenated to form a high-dimensional feature
VH to represent videoV . 

1 2[ , , , ]V KH h h h                                                                                                            (8) 

(6) Finally, non-linear support vector machines (SVM) with 2 kernel chi2 (.,.K ) and 

intersection kernel 
inter.(.,.K )  are used as action classifiers.    

chi2

1

2( ( ). ( ))
( ,

( ( ) ( ))

S
i j

i j

s i j

s s
K

s s





H H

H H )
H H

                                                                                   (9) 

inter.

1
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S

i j i j

s

K s s


H H ) H H                                                                              (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiments 

In this section, two public video datasets, the KTH [12] and Activity of Daily Living 

(ADL) [13] datasets, are used to evaluate the performance of our recognition system 

based on ST-LECM features. 

In all experiments, to generate covariance matrices, a set of overlapping ST blocks are 

extracted from the image sequence over a spatial grid with different scales. Covariance 

matrices fuse two types of information: gradient vector and optical flow. The former 

describes the local appearance information in video, and the latter depicts the motion 

information in local ST region. 

 

Figure 3. The Flowchart of Action Recognition System based on ST-

LECM Features 
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4.1. KTH  Action Datasets 

The KTH dataset contains six human action classes: boxing, hand-clapping, hand-

waving, jogging, running, and walking,  performed by 25 subjects in 4 scenarios: 

outdoors, outdoors with scale variation, outdoors with varying clothes, and indoors, see 

Figure 4(a) for examples. The videos are recorded with static and homogeneous 

background. However, the camera is not static, i.e., vibration and unknown zooming 

exist. 

On KTH dataset, Laptev et. al., [14] proposed a system where ST interest points are 

detected and described using HOG/HOF descriptors. In order to classify a query video, 

BoF model is utilized in a multi-channel SVM classifier with 2 kernel. Gilbert et. al., 

[13] proposed to use an over-complete set of simple 2D corners in ST area. The extracted 

points are first grouped spatially and temporally using a hierarchical process. The most 

distinctive and descriptive features are learned. And Wang et. al., [15] tracked densely 

sampled points by a median filter kernel and extract aligned shape, appearance, and 

motion features. BoF model is utilized in a 30-channel (5 types of features and 6 

channels) SVM classifier with 2 kernel for classification. 

In our experiment on the KTH dataset, we locate the head position of subjects, and 

move the subject to the center of frames by trimming the frame width and preserving the 

frame height. Then, the trimmed frames are resized to the 120-pixel height while keep the 

ratio of height/width. Each resulting video is divided into several segments with 11-frame 

length. A set of overlapping ST blocks are extracted from the video segments over a 

spatial grid with spacing of 6 pixels, and the size of ST block is set as 

16 16 11( ).x y t     Next, the ST-LECM features of 24 videos belonging to one subject 

are clustered by k-means clustering method, and obtain a codebook containing 250 

codewords.  In the stage of feature coding, the number of selected bases in LLC is set as 

5. Next, frames are partitioned into sub-regions by a spatial pyramid with 1-by-1, 2-by-2, 

1-by-4 and 4-by-1. All pooled features of a video are concatenated to form a high-

dimensional feature with (1 4 4 4) 250 3250     dimensions. 

Leave-one-out cross-validation (LOOCV) strategy is used to evaluate the system 

performance. In each LOO run, we use the videos of 24 subjects for training, and the 

videos of the remaining subject for test, and the recognition rate is the average value of 

the 25 runs. 

In Table 1, we compare our proposed system with the aforementioned systems on the 

KTH dataset. Our system is superior to the method proposed by Laptev et. al., and 

Gilbert et. al., The difference of the performance achieved by SVM on 2 and 

intersection is small, but the time-consumption on the intersection kernel is rather less 

than the 2 kernel, because at each vector entry, comparison operation is implemented for 

one time for the intersection kernel, and three operations (one addition, one multiplication 

and one division) are carried out for 2 kernel. 

 

Figure 4. Example images from the datasets used in our experiments: (a) 
KTH (b) Activity of Daily Living 
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4.2. ADL Datasets 

The ADL dataset consists of 150 videos of 5 subjects performing a series of daily tasks 

in a kitchen environment, acquired using a stationary camera. Sample frames are shown 

in Figure 4(b). 

We compare the proposed ST-LECM method against 3 state-of-the-art human action 

classification systems: Laptev et. al., [14], Matikainen et. al., [17], Messing et. al., [18]. 

In [17], a method for augmenting quantized local features with relative ST relationships 

between pairs of features is proposed. Their discriminative classifier is trained by 

estimating all the cross probabilities for various local features of an action. In [18], 

Messing et. al., tracked Harris3D interest points with a KLT tracker [16] and extract 

velocity history information along the trajectories. Appearance and location features are 

utilized in a mixture model to improve the recognition performance. 

In our experiment on the ADL dataset, since the movement of subjects during 

performing action is small, it is not necessary to local the subjects. All frames are resized 

to the 180-pixel height while keep the ratio of height/width. And each resulting video is 

divided into segments with 25-frame length. A set of overlapping ST blocks are extracted 

from the video segments over a spatial grid with spacing of 4 pixels, and the size of ST 

block is set as 11 11 25 ( ).x y t     Then,  the ST-LECM features of 20 videos (2 action 

videos selected from each class) are clustered by k-means clustering method, and obtain 

the codebook with 250 codewords.  In the stage of feature coding, the number of selected 

bases is set as 5. Next, frames are partitioned into sub-regions by a spatial pyramid with 

scales 1-by-1, 2-by-2, 1-by-6 and 6-by-1.  

Leave-one-out cross-validation (LOOCV) strategy is used to evaluate the system 

performance. In each LOO run, we use the videos of 4 subjects for training, and the 

videos of the remaining subject for test, and the recognition rate is the average value of 

the 5 runs. 

As recommended by [18], we evaluate our results on this dataset using 5-fold 

LOOCV. In each fold, videos from four subjects are considered for training and the fifth 

for testing. 

Table 1. (a) Comparison between the proposed method with previous 
methods on the KTH dataset. (b) The confusion table for the SVM classifier 

on 2 kernel. (c) The confusion table for the SVM classifier on Intersection 

kernel. S1 (boxing), s2 (hand-clapping), s3 (hand-waving), s4 (walking), s5 
(jogging), s6 (running) 
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Table 2 shows that the proposed ST-LECM method outperforms the state-of-the-art 

methods. The difference between ADL and KTH datasets is that the actions in the ADL 

generate much less amount of motion information than the actions in KTH. For example, 

the actions „dialPhone‟,‟answerPhone‟ in the ADL are implemented in a small area, the 

range of them is small; in the KTH dataset, actions „hand-waving‟,‟walking‟ generates 

great amount of motion information.  As a result, classifying the ADL dataset is more 

difficult than classifying the KTH dataset.  Another reason why the ADL dataset is more 

challenging is that the actions in the ADL is not periodic action, and the time duration is 

much longer than the actions in KTH. As we known, classifying periodic actions is much 

easier than classifying non-periodic ones, due to periodic action produces rich amount of 

motion information for building the good action model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In the paper, we combine covariance matrices, dense sampling over video and the 

spatial pyramid method to solve the problem of action recognition. We extend the 

popular BoF model to a special class of non-Euclidean spaces, the space of Symmetric 

Positive Definite (SPD) matrices formed by covariance descriptors of ST features. In 

doing so, we elaborate on how ST-LECM features can be obtained for covariance 

matrices and devise Log-Euclidean BOF, an extrinsic extension of conventional BoF 

using Riemannian geometry of SPD matrices. Benefiting from the good property of the 

proposed ST-LECM features and dense sampling method, our system outperforms the 

classical system published recently.  

 

Table 2 (a) Comparison between the proposed method with previous 
methods on the ADL dataset. (b) The confusion table for the SVM 

classifier on 2 kernel. (c) The confusion table for the SVM classifier on 

Intersection kernel. S1 (answer Phone), s2 (chop Banana), s3 (dial 
Phone), s4 (drink Water), s5 (eat Banana), s6 (eat Snack), s7 (lookup In 

phonebook), s8 (peel Banana), s9 (use Silverware), s10 (write On 
whiteboard) 
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