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Abstract 

In this paper, we consider a cognitive radio network in which the sensing ability of 

cognitive radio is limited and the channel statistics are not known as a priori information 

in the opportunistic spectrum access(OSA) framework. It is a special challenge to design 

a joint spectrum sensing and access strategy for secondary users with diverse service 

requirements of heterogeneous applications, i.e. the real-time applications and best-effort 

applications. We formulate the spectrum decision problem as a decentralized multi-armed 

bandit problem and propose slot structures for cognitive radio network to cope with 

collisions between heterogeneous applications. The proposed scheme is proved achieving 

logarithmic regrets in time asymptotically and simulation results show that each user 

orthogonalizes into their rank-optimal channels according to their pre-allocated 

priorities, which indicates efficient spectrum utilization while satisfying service 

requirements. 

 

Keywords: Cognitive radio, multi-armed bandit, opportunistic spectrum access, 

distributed algorithms, heterogeneous applications. 

 

1. Introduction 

Cognitive radio (CR) has recently emerged as a promising technique to improve the 

utilization of the existing statically allocated spectrum [1]. Meanwhile, traditional 

wireless communication networks like WSNs equipped with cognitive radio will benefit 

from its potential advantages [2]. One of key challenges in CR is to achieve the 

coexistence of primary users (PUs) and secondary users (SUs), accessing the same part of 

the spectrum. PUs have priority in accessing spectrum while SUs must sense spectrum 

before accessing. It is viable to sense all channels before deciding which channel to access 

based on accessing strategy in an ideal condition. However, it is difficult to sense the 

whole operating spectrum band in a given period of time because of wide-band spectrum 

and hardware constraints. At the same time, the spectrum statistical information as a priori 

knowledge may not always be securable in a decentralized network, i.e. it is partially 

observed and priori unknown to the SUs. 

The spectrum sensing and accessing problem is a topic of extensive research. Zhao et 

al. [3-4] formulated a partially observable Markov decision process (POMDP) framework 

under Markovian channel model. Liu et al. [5] figured out POMDP framework could also 

be viewed as a restless MAB process for independent channels and proposed a restless 

bandit formulation based on Whittle’s Index Policy, which built a connection between 

cognitive medium access and the multi-armed bandit problem. However, above works 

assumed channel transition probabilities were known to SUs. Meanwhile, the multiple 

distributed players of this problem regardless of any prior knowledge about channel 

statistics raised a wide range of interest. Liu et al. [6] proposed a family of distributed 
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learning and access policies known as time-division fair share (TDFS). Anandkumar et al. 

[7] proposed the distributed P R E
  policy under pre-allocation order based on the 

r d-g e e y
n

  policy. Recently, Gai et al. [8] proposed a general SL(K) policy under which 

SUs will orthogonalize into their rank-optimal channels according to their pre-allocated 

priorities. Then the prioritized access policy(DLP) and fair access policy(DLF) based on 

SL(K) can be easily established. 

Although all these works enabled CR users to explore and exploit channel availability 

effectively, the problem in a heterogeneous spectrum environment has not been fully 

investigated. Generally, CR networks have multiple available spectrum bands over a wide 

frequency range that show different channel characteristics, and need to support 

applications with diverse service requirements, such as real-time applications and best-

effort applications [9]. For real-time applications, they require minimum delay-based 

channels and for best-effort applications, maximum capacity-based channels are required. 

This introduces new critical issues in the above framework. In this paper, we investigate 

the prioritized access policy based on SL(K) policy in a CRN hybridizing with real-time 

applications and best-effort applications. We proposed slot structures for both applications 

to cope with the collisions between them and extended the finding of existing SL(K) 

policy whose results show that each user orthogonalizes into their rank-optimal channels 

according to their pre-allocated priorities and achieving logarithmic regrets in time 

asymptotically. 

The rest of this paper is organized as follows: Section II describes the system model 

with multiple secondary users with different QoS requirements and formulates the 

problem. In Section III, we present our scheme for real-time applications and best-

applications based on SL(K) policy, respectively. Section IV examines the proposed 

scheme through simulation. Finally, the paper concludes with summary in Section V. 

 

2. System Model and Problem Formulation 

We consider a cognitive system with C  independent and orthogonal channels licensed 

to a primary network whose users communicate following a synchronous slot structure 

illustrated in Figure 1. At the beginning of each slot, the secondary user chooses a channel 

to sense the availability. Once the sensed result indicates the channel is idle, SUs transmit 

pilot to receiver to probe the channel state information (CSI). The CSI is fed back through 

a dedicated error-free feedback channel without delay. After data are transmitted, the 

receiver acknowledges every successful or unsuccessful transmission as 
,

( ) 0
i j

Z k   for 

collision occurred, otherwise 
,

( ) 1
i j

Z k  . 

 

Figure 1. Basic slot structure 

The cognitive network is composite of M  secondary users of real-time applications 

and N  secondary users of best-effort applications, where M N C  . We assume there 

exists a network head like the cluster head in WSNs, which is responsible for collecting 

statistics of the number of users and their application types and then dispatching the pre-

allocated ranks to the users. For simplicity, we assume the priority of 
j

S U  with the same 

application type is ranked by j , i.e. the priority of 
p

S U  is higher than 
q

S U  if p q  for 
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either type of application. The minimum information is prior to learning and transmission 

processes and will not be changed afterwards. 

We model the channels as Rayleigh fading channels with additive white Gaussian 

noise (AWGN), whose SNR 
i

  is exponentially distributed with mean value 
i

    [10]: 

1
( ) e x p ( )

i

i i

f



 

   

and the channel availability 
i

W  is modeled as i.i.d Bernoulli process with mean value 

i
   : ~ ( )

i i
W B  . The channel model can be illustrated in Figure 2. 

 

Figure 2. Slotted channel model 

Blind spectrum selection for SUs of homogeneous applications can be regarded as a 

Decentralized-MAB problem [6][7][8][11][12]. Taking the real-time application as an 

example(in the same way we can formulate the policy performance of best-effort 

application), we denote 
j

  as the decentralized policy for user j  and ,1{ }
j

j M     

as the set of policies of all users. Arm i  yields reward ( )
i

X t  at slot t  according to the 

distribution of diverse QoS requirement with expectation 
i

 (in this paper, the terms 

“arm” and “channel” are interchangeably used). The performance of the decentralized 

policies can be defined as the regret of all SUs with real-time applications: 

* 1

;( [ ( ]) )

M

T

i

t

M

i

R ST T t
 






    E

O

                                      (1) 

where *

M
O  is the set of M  arms with M  largest expected rewards and 

( )
( )

t
S t


 is the sum 

of the actual reward obtained by all SUs with real-time applications at time t  under policy 

 , which is: 

,

1 1

( ) ( ) ( )
i i j

C M

i j

S t X t t


 

   I                                              (2) 

where 
,

( )
i j

tI  is defined to be 1 if user j  is the only one to play arm i , and 0 otherwise. 

This problem is widely studied and a typical policy named SL(K) which achieves 

logarithmic regret is proposed [8]. The SL(K) policy is a key subroutine of decentralized 

learning policies based on UCB1 policy in classical MAB [13]. The advantage of this 

policy compared to P R E
  policy [7] is that it does not require prior information about the 

minimum difference between arms but achieves logarithmic regret in the same way. So 

we mainly investigated the general SL(K) policy of this problem in a CRN with 

heterogeneous applications. 

Since real-time applications are sensitive to delay and jitter, SUs with these 

applications have priorities over best-effort applications. In our framework, the objective 
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of real-time applications is to maximize the channel availability according to SUs’ 

priorities, while the objective of best-effort applications is to maximize the channel 

capacity. That means the reward ( )
i

X t  yielded by channel i  for real-time applications is 

( )
i

W t  and ( ) ( )
i i

W t t  for best-effort applications. And thus, we denote the expectation of 

rewards 
i

  for real-time applications as r

i i
   and b

i i i
    for best-effort 

applications.  

Generally, if the SL(K) policy is applied to the two types of applications separately, 

they cannot guarantee the collisions avoidance in the long term between the two 

applications because of the common channel availability, i.e. * *

M N
 O O . Hence, we 

proposed a scheme to ensure * *

M N
 O O , which is illustrated in the next section. 

 

3. Heterogeneous Applications Framework 

First, based on above discussion, we assume the channel capacity always meet the 

requirement of real-time applications because real-time applications require low channel 

capacity and bad channels can be excluded in spectrum sensing stage. And the real-time 

applications always have priority over best-effort applications. Based on these 

assumptions, we design the slot structures for real-time applications as showed in Figure 3 

and for best-effort applications as showed in Figure 4. SUs with best-effort applications is 

silent while the SUs with real-time applications sensing, which ensures the priority of the 

real-time applications. Noting that the access of the real-time applications alters the 

channel statistics for best-effort applications, which means the rewards distribution will 

be non-stationary, we examine the suitability of SL(K) policy for best-effort applications 

in subsection 2. 

 

 

Figure 3. slot structure of real-time applications  

 

Figure 4. slot structure of best-effort applications 
 

3.1. CRN with Real-time Applications 

The SL(K) can be applied to the CRN with real-time applications directly, in which 

each user selects an channel with the -thK  largest expected channel availabilities. The 

policy is described as Algorithm 1.  

According to Theorem 1 in [8], the expected number of times S U
K

 of real-time 

applications access any channel 
K

i  A  after T  time slots ][ ( )
i

n TE  is at most: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.9, No.2 (2016) 

 

 

Copyright ⓒ 2016 SERSC  461 

2

2

,

2
1

3

8 ln

K i

T 
 


                                                               (3) 

where 
K

A  is the arm of the -thK  largest expected reward and 
,

| |
r r

K i K i
    , r

K
  is the 

-thK  largest expected reward for real-time applications. Hence, the expected regret 

)( ;
M

R T


  grows as ( ( 2 ) ln )O M C M T   according to Theorem 2 in [8]. 

Algorithm 1: SL(K) policy for the user with rank ,  1, ,K K M  

// Init: play each arm once 

For 1 to  t C   

    Play arm i t  and let ( ) 1
i

n t  , ( )ˆ ( )
i i

t tX   

EndFor  

// Main loop 

For 1 to  t N T   

Step1: Select the set 
K

O contains arms with the K  highest index values. 

 
2 ln

ˆ

1)
1)

(
(

i

i

t
t

n t
  


                                                (4) 

Step2: Play the arm with the minimal index value in 
K

O  according to. 

 
2 ln

ˆ

1)
1)

(
(

i

i

t
t

n t
  


                                               (5) 

Step3: Update ( 1( 1) )
k k

n tt n    and 
( 1) ( 1) X ( )

( )

ˆ

)

ˆ

(

k k k

k

k

t n t t
t

n t




  
  

EndFor 

 

3.2. CRN with Best-effort Applications 

Since the SUs with best-effort applications always sense the channel after the SUs with 

real-time applications do according to the slot structures we design above, the statistics of 

channel capacities have been altered. Hence, the rewards to them should be remodeled. 

According to Eq.(3), the expected number of times the SUs with real-time applications 

access any channel *

M
i  O  after T  time slots is at most: 

1

2

2

,

8 ln 2
( 1 )

3

M

k K i

T 



 


                                                           (6) 

which alters the statistics of channel state of CRN with best-effort applications: 
2

2

,1

( ) [ )]
3

1 8 ln 2
( 1

b

i i i

K i

M

k

T
T

T


  



   


                                             (7) 

which means the reward to SUs with best-effort applications is non-stationary. It has the 

form: 

a n
( )

l
b b i i

i i
T

T

T b
  


                                                        (8) 
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where ,
i i

a b  are constants. 

Now we provide an expected upper bound of the SL(K) policy for best-effort 

applications described below: 

Theorem 1: If policy SL(K) running on arbitrary arms with non-stationary rewards has 

the form as Eq.(8), and denoting 
,i j

N  as the solution of ( ) ( )
b b

i j
t t  , then the expected 

number of times that we pick any arm 
K

i  A  after * *

, , ,
, m ax{ }

i j i j i j
j

T N N N   time slots 

][ ( )
i

n TE  is at most: 
2

8 ln

m in
j

i j

C
T


 . 

Proof: see Appendix. 

Corollary 1: The expected regret under policy SL(K) for SUs with best-effort applications 

in our scheme grows logarithmically in time slots. 

Proof: for each user k , the regret arises due to two cases: (1) user k  plays arm *

N
i  O  

and (2) other user l k  plays arm 
k

A . Hence, the regret of user k  is upper bounded 

according to Theorem 1: 

*

,,
; )( ( ) ( )[ ] [ ]

N

k ik

li

k kk li

k

R Tn TT n


 



    E E

O

                                      (9) 

Then the regret for SUs with best-effort applications is bounded: 

*

1

,,

m a x

,

1

2

( (

( ) (

; ) ; )

( [ ] [ ] )

8 ln
( 2 )(

m n
)

)

i

N

k i

l ki

i

N

N k

k

N

i l

i
j

k k k

k

j

T T

n n

T
N C

R R

T T

CN

 

 







 

  



  








  E E

O

 

where m ax
m i

i
a x

  . Hence Corollary 1 is proved. 

The above result states that in our framework, the SL(K) policy running for best-effort 

applications can also achieve logarithmical regret in time slots and each user 

orthogonalizes into different channels from real-time applications. 

 

4. Numerical Results 

In this section, we present simulation results for the scheme proposed in this work. In 

the simulations, we assume 9C   channels with channel availabilities B=[0.5, 0.2, 0.8, 

0.6, 0.9, 0.03, 0.4, 0.1, 0.7], channel capacities Σ= 

[0.45,0.15,0.6,0.55,0.1,0.25,0.35,0.05,0.25] and 3M N   SUs. 

Figure 5 shows the simulation results of the three secondary users with real-time 

applications averaged over 50 runs. As expected, the expected regret of the policy grows 

logarithmically in time slots. And the actions of all the users converge to their rank-

optimal channels, i.e. *
{5, 3, 9}

M
O . 

Figure 6 shows the average channel capacities over 50 runs for best-effort applications 

after the access of real-time applications. The expected rewards of channel *

M
i  O  
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decrease and the others increase to the maximum values, which is consistent with the 

results of rewards statistical analysis for best-effort applications, i.e. Eq.(7). 

Figure 7 shows the results of the three secondary users with best-effort applications. 

The expected regret grows logarithmically generally. Furthermore, *
{4 ,1, 7}

N
O  has no 

intersection with *
{5, 3, 9}

M
O , which proves the feasibility of the proposed scheme. 

Meanwhile, the results also indicate the policy has enough stability as well as the original 

application of SL(K) (Figure 5) from the percentiles’ curves. 

 

 

Figure 5. The regrets and actions of SUs with real-time applications 

 
Figure 6 The non-stationary rewards for best-effort applications 
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Figure 7. The regrets and actions of SUs with best-effort applications 

5. Conclusion 

In this work, we study the spectrum sensing and accessing problem of cognitive radio 

under coexistence of two types of applications, the real-time applications and the best-

effort applications, which have different QoS requirements. We have made two key 

contributions to this problem. First, we design the slot structures of both applications for 

collision avoidance. Second, we prove the SL(K) policy can work under the non-

stationary rewards whose expectation has the form of Eq.(8). Through simulations, the 

results show that the proposed scheme achieves logarithmical regrets for both 

applications. 

 

Acknowledgments 

The work presented in this paper was supported by the International S&T cooperation 

Program of China under grand No. 2013DFA12460 and the work of Hang Qin was 

supported by the Natural Science Foundation of China under grant No. 61440023. 

 

Appendix 

Proof of Theorem 1: 

Denote the index value of UCB1 Eq.(4) as 
,

( ) ( 1)ˆ
i

i t ni
I t t C    and Eq.(5) as 

,
( ) ( )ˆ 1

i
i i t n

I t t C    , where 
,

2 ln

( 1)
i

t n

i

t
C

n t 
  and ( )

i
n t  is the number of times that arm 

i  was played in time slot t . We note the solution of ( ) ( ), t 0
ji

t t    is 
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, j 0
( e x p ( / ))

i j i j

i i j i j

i j i j

a
W b a

a
N




  if exists or otherwise we just let  

, j
1

i
N   , where 

0
( )W   is 

the Lambert W function[14] and , ,
ij i ij i ij j j i j

a a a b b b        . Obviously, the 

horizon * *

, , , j
, m ax{ }

i j i j i
j

T N N N   should be considered. Then, for any arm 
K

i  A : 

 
1

1

( )] 1 { ( ) }

1 { ( ) | } {

[

( ) | }

T

t

i

i K i K

C

T

t C

n T A t i

A t i A t i   

 

 

  

      





E

          (10) 

where ( )A t  denotes the action of 
K

S U  at time t  under the policy SL(K). 

For 
i K

  , arm i  is picked at time t  means one of the two cases happened: 
,i K

t N  

or there exists an arm *

K
j  O  but 

K
j  O  at time t  in the Step 1 in Algorithm 1. The 

former will never happen when sufficient plays, and to the latter, the following inequality 

holds: ( ) ( )
ij

I t I t . Then we have: 

 

*

,

*

,

*

, , ,

1 1

1

( ) ] { ( ) | , ( 1) , }

P r{ ( ) | ( 1) , }

P r{ ( ) ( )

[

)

ˆ , }

(

ˆ
i

j

j

i

T

t l

T

t l

t t

j

t l n n

i i K i i j

j i i i j

t n i t n i j

l

n T l A t i n t l l N

l I t n t l l N

l t t t

t I

C C N

 

 





  

  

      

    

    





  

E

                  (11) 

, ,
( ( )ˆ)ˆ

j i
t n ij t n

t tC C    implies that at least one of the following must be true: 

 
,

( ) ( )ˆ
j

j nj t
t t C                                                            (12) 

 
,

( ) ( )ˆ
i

i i t n
t t C                                                             (13) 

 
,

( ) ( ) 2
i

i t nj
t t C                                                           (14) 

According to the Chernoff-Hoeffding bound, we can find the upper bound of Eq.(12) 

and Eq.(13): 

 
2

,

( 2 ( ))

ln 2 ln
ˆ ˆP r{ {

( )

( 2 (

( ) ( ) } P r ( ) }

P r ( ) }
)) ln

ˆ{
( )

j

j

j j j j

j

j j

j

j j

t n

tj

a t b t
C

t n t

t t

n t

t t t

t t


   


 

 


    

  




              (15) 

 
2

,

( 2 ( ))

ln 2 ln
ˆ ˆP r{ {

( )

( 2 ( )) ln
ˆ{

(

( ) ( ) } P r ( ) }

P r ( ) }
)

i

j

i i

i i i i

i

i i

t n

i

i

t

a t b t
C

t n t

t t

n t

t t t

t t


   


 

 


   

  






                     (16) 

where ( ) n /l )2 (
i i i

t a t b t   . 
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And if 2
ln

8 ln / ( )
ij ij

i j

a T
T

T

b
l 



 

 
 

, 

, ,

ln
( ) ( ) 2 2 0

i
j ji

ji ji

i t n t l

a T
t C Ct

b

T
      


, which means  Eq.(14) not holds for 

2
ln

8 ln / ( )
ij ij

i j

a T
T

T

b
l 



 

 
 

. 

So we get 

2 2

1 1

1

, ,

( 2 ( )) ( 2 ( ))

2

1 1

1

2

( ) ] P r{ ( ) ( ) }

( )

ˆ ˆ[

l

8 ln / m in

n
8 ln / ( )
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function. 

For 
i K

  , arm i  is picked at time t  means one of the two cases happened: *

K K
O _ O  

or *

K K
O _ O . Here we assume *

,i j
t N  according to above derivation. 

If *

K K
O _ O , it implies the Step 2 in Algorithm 1 picks arm i  wrongly at time t  which 

gives : ( ) ( )
i K
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If *

K K
O _ O , it implies at least one arm *

K
j  O  but 

K
j  O . So we have ( ) ( )
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So, we can conclude both cases for 
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Similar analysis can be conducted to ( ) ( )
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Hence, theorem 1 is proved. 
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