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Abstract 

Developing a variational model that is capable of restoring both smooth (no edges) 

and non-smooth (with edges) images is still a valid challenge at the image processing. In 

this paper, we present two methods for image denoising problems based on the use of the 

LLT model (see [14]) and TV model (see [20]). The idea of our methods is, add the 

texture which is separated from the cartoon and noisy, back to the original noisy image or 

the texture plus noisy part, and the sum then processed. In order to obtain the texture, we 

first separate texture plus noise from cartoon by LLT model, and then use TV model to 

remove some noisy from texture. Numerical experiments show our method is able to 

maintain some important information such as small details in the image, and at the same 

time to get a better visualization. 

 

Keywords: Image denoising, staircasing effect, iterated regularization, cartoon and 

texture, image decompose. 

 

1. Introduction 

A “quality" image is essential for further image processing tasks such as edge 

detection, pattern recognition, and object tracking, etc. Image denoising is one of the tasks 

to extract a “quality" image u  from the noisy image f  by the degradation model  

 ,),(),,(),(=),(  yxyxyxuyxf                                                  (1) 

where   is a bounded convex region of 2
  and   is an additive noise term. 

Many different variational techniques are proposed to obtain an estimate of u  (see 

[25], [14], [16], [10] for details). The total variation (TV) model by Rudin, Osher and 

Fatemi in [20] is an effective and well known method, which consists of solving the 

following problem:  
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Here ||   is the Euclidean norm in 2
 ,   is the norm in )(

2
L ,   is a positive 

parameter controlling the trade-off between goodness of fit-to-the-data and variability in 

u . The corresponding Euler Lagrange partial differential equation (PDE) is  
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with homogeneous Neumann boundary condition 0=/ nu


 . Here   is a small positive 

parameter, and n


 is the normal vector of boundary. Equation (3) is second order, and 

there are many fast and efficient methods (see [20, 23, 7, 17, 6, 9, 18]). Furthermore, this 

model can preserve shape edges and boundaries with a high quality recovery. But for 
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images without edges (jumps), the solution to this model has the undesirable staircasing 

effect. In order to remedy the staircase effects, some effort has been made ([14, 15, 17, 19, 

4, 21, 8, 11, 27, 12, 3]). In [14], Lysaker, Lundervold and Tai (LLT) proposed a second 

order functional minimization by the following formula:  

                                           ,
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where 
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uuuuuD . The use of fourth order derivatives 

damps out high frequency components of the image, so (5) can recover smoother surfaces 

and produce better approximation to the nature image. However such models cannot 

preserve sharp features such as jumps; it is a challenge for a single model to restore both 

smooth and non-smooth images. 

Zhu and Chan [27] try to find a piecewise smooth surface to approximate the image 

surface by incorporating the corresponding geometric quantities – mean curvature into the 

processing of denoising  
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Here   is the mean curvature of the image which is defined by  
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and the function   is defined either as |=|)(  , 2
=)(   or a combination of both. 

Although the mean curvature model can avoid the staircase effect, the fourth order 

partial differential equations (PDE) arising from (6) is  
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where 22

2


 I  is the identity matrix. The construction of stable numerical schemes for 

the above PDE is very difficult due to high nonlinearity and stiffness. In [26], Yang, Chen 

and Yu used a homotopy idea to devise a feasible method. But an equation of type (8) has 

to be solved several times. 

In recent years, among others, researchers have turned to the combination TV model 

and LLT model (see [16, 10]). Lysaker and Tai [16] suggested a convex combination of 

the respective two solutions from (3) and (5). Specifically, with fw =
0 , a new iteration 

1k
w  is generated by the convex combination  

                                 ,0,1,2=)(1=
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where 1k
v  and 1k

u  are respectively obtained by the k th time marching iteration of TV 

model and LLT model with k
w  as their old iteration. Here the parameter k

  which is 

applied to control the combination depends on k
w . There are some other combination 

methods, such as the TGV method by Bredies K., Kunisch K. and T. Pock ([2]), a 

weighted H1 seminorm regularization method by Lin and Yang ([13]) and some methods 

included in [1] by P. Blomgren, T. Chan, and P. Mulet . 

The above convex combination solution (9) reduces to the TV solution in regions 

where || u  is large (near edges) or to the LLT solution where || u  is 0  (flat regions). 
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It would be better to use the TV solution when 0||  u , and also one may wish to solve a 

single PDE (from a combined optimization) instead of solving two separate PDEs. This is 

the idea taken up in [10] by Chang, Tai and Xing who proposed a new combination of the 

TV model and the LLT model in the form  

],
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                       (10) 

where   is the variable parameter. 

Numerical results show these algorithms can inherit the advantages of the TV model 

and the LLT model, and avoid the disadvantages of both models in some degree. 

However, as far as the restored smooth parts are concerned, theirs are not as well as that 

for the LLT model, and the restored edges are not as well as that for TV model. 

In this paper, we intend to restore effectively both smooth images (with no clear jumps) 

and blocky images (of piecewise constant intensities) by the iterated regularization of 

LLT model and TV model. Note that the advantages of the LLT model and the TV model, 

our procedure would use these two models to decompose the original noisy image f  into 

three components, including the piecewise-smooth component u , the oscillatory 

component v  and the third represents noisy  , and add v  back to the original noisy 

image f  or uf  , the sum then proceed. 

The rest of this paper is organized as follows. In Section 2, we first review the iterated 

total variation refinement. In Section 3, we describe our method in detail. Finally, 

numerical results of  the proposed algorithms on several tests are given in Section 4. 

 

2. Iterated regularization method  

The ideal result of the denoising method would be decompose f  into the true signal u  

and the additive noise   without any signal. In practice, this is not fully attainable. Take 

the TV model for example, the removed noise is treated as an error, some details, such as 

texture will be swept as an error. Some effort has been made to extract more meaningful 

signals from the noise part   (see [19, 22]). In [19], Osher, Martin, et al. proposed an 

iterated regularization procedure to preserve some details from the removed noise part. 

They added the removed noise computed by TV model back to the original noise image 

f , and the sum then processed by the total variation method. This regularization 

procedure is repeated as follows:  

Step 1.  Set 0=0,=
0

k .  

Step 2.  Compute 
1k

u  as a minimizer of the modified TV model,  
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and set 1:= kk , then return to step 2.  

It is enough to proceed iteratively until the result gets noisier or the distance 2
 uu

k
  

gets smaller than 2
 , where u  is the original image and   is the standard deviation of 

the added noise. 

 

3. Iterated regularization methods based on LLT model and TV model  

In the ideal denoising case, ideal methods would be restoring effectively both blocky 

images (of piecewise constant intensities) and smooth images (with no clear jumps). As in 
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the above discussion, we know a smooth primal sketch u  can be obtained by the LLT 

model, and the removed part uf   is texture plus noise, which is also a noisy image, and 

can be denoised by the TV model and the mean curvature model. 

Here we consider a decomposition  vuf = , where u  represents piecewise-

smooth (cartoon or structure) component of f , v  represents the oscillatory components 

of f , i.e. texture, and   represents residual (noise). The idea of our method is, add the 

texture v  back to the original noisy image f  or the remove part uf  , and the sum is 

processed. In order to obtain the texture v , we first separate texture plus noise from 

cartoon by LLT model, and then use TV model to remove some noisy from uf  . In this 

section, we will introduce two algorithms for image denoising. 

 

3.1.   Algorithm 1 

 Our algorithm 1 is constructed by adding the texture v  back to the original noisy 

image f , and obtianing the sum vf   by the LLT model. The details of our algorithm 

are given in the following 

1.  First, separate the cartoon u  from texture plus noise by the original LLT model  
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 and obtain the texture plus noise uf  .  

2.  Second, remove some noisy from uf   by the TV model  
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 and obtain the texture v  (maybe plus little noisy).  

3.  Add the texture v  back to the original noisy image f .  

4.  Finally, the sum vf   is proceed by the LLT model  
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 and obtain the recovered image u .  

Here 
0

  and 
1

  are regularization parameters. 

 

3.2.   Algorithm 2 

 Clearly, the noise uf   computed by the LLT model contains some details, such as 

texture, and we can treat this part as the noisy image. Since the cartoon is separated, we 

consider use the improved iterated total variation procedure to extract some more signals 

from uf  . The details of our algorithm are given in the following  

1. First, decompose the original image f  into the cartoon u  and the texture plus noise by 

the LLT model  
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 and obtain the texture plus noise uf  .  

2. Second, remove some noisy from uf   by the TV model  
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 and obtain the texture 
0

v  (maybe plus little noisy).  

3.  Add the texture 
0

v  back to uf  .  
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4.  The sum 
0

vuf   is proceed by the TV model  
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5.  Finally, add the texture v  back to the cartoon u , then vuu =  is the recovered 

image.  

 
4. Numerical experiments and discussions 

 In this section, we present some of the results  by comparing our algorithms with some 

other classical denoising methods. We use the signal to noise ratio (SNR), and the 

difference between a digital image and its denoised version to measure the quality of the 

restored images. They are defined by  
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where u  and u
~  are the original image and the restored image, respectively. 

 

4.1.   Comparisons of our algorithms with the TV model and the LLT model 

Below we compare our methods with the TV model and LLT model. Since the TV 

model does well in “blocky" images and LLT model works almost perfectly for smooth 

images, we choose the standard “Lena" image as the test image which is composed of flat 

subregions, subregions with a smooth change in intensity value and jumps. The original 

and noisy images are shown in Figure 1. From the restored results of Figure 2 and Figure 

3, we see that the recovered images by the LLT model and our algorithms are visually 

better than the TV model, and images denoised by the TV model and our methods 

preserve the edges better than the LLT model. 

To highlight our algorithms can restore effectively both smooth images (with no clear 

jumps) and blocky images (of piecewise constant intensities), we extract the flat 

subregions and the smooth subregions of the original, noisy and restored images of 

“Lena" (see Figures 4-7). It is remarkable that both the recovered flat subregions and the 

recovered smooth subregions by our algorithms are qualified as well as the TV model and 

the LLT model. We can also see the strengths and weakness about both TV model and 

LLT model.  

 

Figure 1. Left Plot: The original “Lena" image. Right Plot: Noisy image of 
“Lena" (SNR=20.97). 
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Figure 2. Left Plot: Image recovered by TV model with SNR=25.39. Right 
Plot: By LLT model with SNR=24.81 

   

Figure 3. Left Plot: Image recovered by algorithm 1 with SNR=26.18. Right 
Plot: By algorithm 2 with SNR=26.19 

  

Figure 4. Left and Middle Plot: The flat subregions of original “Lena" image 
and noisy image. Right Plot: The subregion recovered by TV model 

  

Figure 5. Left and Middle Plot: The flat subregions recovered by LLT model 
and algorithm 1. Right Plot: by algorithm 2 
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Figure 6. Left and Middle Plot: The smooth subregions of original “Lena" 
image and noisy image. Right Plot: The subregion recovered by TV model 

 

Figure 7. Left and Middle Plot: The smooth subregions recovered by LLT 
model and algorithm 1. Right Plot: by algorithm 2 

4.2. Comparison of Algorithm 1 with the Mean Curvature Model 

Our next test uses an image containing both a human face and some textures (see 

Figure 8). The challenge with this image is to maintain both texture details and smooth 

transitions in the human face during processing. As a high order model, Mean curvature 

model is known to yield satisfying results for restoring small details and enhancing the 

recovery of smooth subsurfaces contained in the image. In this section, we compare this 

method with algorithm 1. The difference images tell us that both methods can restore 

textures on the scarf in a proper way, but the background and human feature like a hand, 

shoulder, and face are visually better by our algorithm (see Figure 9 and 10). 
 

 

Figure 8. Left Plot: The original “barbara" image. Right Plot: Noisy image of 
“barbara" (SNR=22.04) 
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Figure 9. Left Plot: Image recovered by mean curvature model with 
SNR=24.89. Right Plot: The difference image 

 

Figure 10. Left Plot: Image recovered by algorithm 1 with SNR=25.40. Right 
Plot: The difference image 

4.3. Comparison of Algorithm 1 with the convex combination method 

Image restoration combining total variation minimization and a second-order 

functional ([10]) can restore effectively both the blocky subregion (of piecewise constant 

intensities) and smooth subregion (with no clear jumps) of an image. The above two 

numerical examples show our method also inherit the advantages of the TV model and the 

LLT model. The third example concerns an “Aircraft" image, which is corrupted with 

zero mean Gaussian random noise (see Figure 11). Both the convex combination method 

([10]) and our method obtain a good visualization, but the difference images tell us that 

our method works better on preserving small details (see Figures 12 -13). 

 

   
Figure 11. Left Plot: The original “Aircraft" image. Right Plot: Noisy image 

of “Aircraft" (SNR=21.76) 
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Figure 12. Left Plot: Image recovered by the convex combination method 
with SNR=26.69. Right Plot: The difference image 

   

Figure 13. Left Plot: Image recovered by algorithm 1 with SNR=28.64. Right 
Plot: The difference image 

4.4. Comparisons of Algorithm 1 with some other methods 

The final example concerns a “Pepper" image which contains some smooth transitions 

(see Figure 11). The purpose of this test is to show our algorithm is qualified with 

maintaining the smooth transitions. Here we refer to some improved TV models such as 

the split bregman anisotropic and isotropic total variation denoising methods ([12]) and 

the spatially dependent parameter selection method ([3]), and high order models like the 

mean curvature model and TGV model. Numerical results (see Figures 15-17) show the 

visualization by the TGV method and our method are better, and the SNR obtained by our 

method is the highest of all.  

   
Figure 14. Left Plot: The original “Pepper" image. Right Plot: The noisy 

image 
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Figure 15. Left Plot: Image recovered by split Bregman anisotropic total 
variation denoising method with SNR=27.34. Right Plot: By split Bregman 

isotropic total variation denoising method with SNR=27.88 

  

Figure 16. Left Plot: Image recovered by the spatially dependent parameter 
selection method for TV model with SNR=27.98. Right Plot: By mean 

curvature model with SNR=27.99 

  

Figure 17. Left Plot: Image Recovered by the TGV method with SNR=27.90. 
Right Plot: By Algorithm 1 with SNR=28.54 

4. Conclusions 

Image denoising combining total variation minimization and a second-order functional 

can restore effectively both the blocky subregion (of piecewise constant intensities) and 

smooth subregion (with no clear jumps) of an image. In this paper, we proposed two new 

methods to inherit the advantages of the TV model and the LLT model. Our methods are 
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constructed by adding the texture which is separated from the cartoon and noisy back to 

the original image or the texture plus noisy part, and the sum then proceed. The procedure 

for getting the texture is simple. Firstly, we make full use of the advantages of the LLT 

model to separate the cartoon. Then, we try to remove some noisy from the remain part by 

the TV model. With these approaches, most of the texture plus less noisy are extracted. If 

we reject using the LLT model in the first step, other models which can separate a smooth 

cartoon is all right. Numerical experiments substantiate that our methods inherit the 

advantages of the TV model and the LLT model better than the convex combination 

methods.  
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