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Abstract 

Support vector machine (SVM) has been gaining popularity in classification, for its 

structural risk minimization principle and the usage of kernel function. Traditional SVM 

as well as many improved algorithms treats all features in training data with equal 

weights, even though different features may have different impacts on the final 

classification. To overcome this issue, a new method which combined feature weighting 

with classification was proposed in this paper. Compared with other similar research, the 

major advantage of this method is that it brings no change to the algorithm structure. To 

further improve the performance of SVM classifier, a type-2 fuzzy logic based ensemble 

SVM was proposed. Type-2 fuzzy logic outperforms type-1 fuzzy logic greatly in terms of 

handling uncertainty in the ensemble process. Experiment results validated the 

effectiveness of proposed methods. 

 

Keywords: support vector machine; feature weighting; type-2 fuzzy logic; ensemble 

classifier 

 

1. Introduction 

Support vector machine (SVM) has been widely used for various classification 

application with a high level of classification accuracy as well as great flexibility, 

especially for high-dimensional data classification. Since introduced by Cortes and 

Vapink[1], much research has been conducted to improve the traditional SVM and make it 

feasible to different application. Lin and Wang applied a fuzzy membership to each input 

point of SVM and reformulated SVM into fuzzy SVM(FSVM), in order to attain the goal 

that different input points make different contribution to the learning of decision 

surface[2].Hui Xue et al. applied the structural information of data and developed a novel 

algorithm, termed as Structural Support Vector Machine (SSVM), by directly embedding 

the structural information into the SVM objective function[3]. An interval type-2 fuzzy 

weighted support vector machine (IT2FW-SVM)was proposed in [4], by applying type-2 

fuzzy membership in the computation of penalty coefficient. However, traditional SVM 

and many improved SVM algorithms set the same weight on all features of the original 

data, even though different features may have different impacts on the final classification. 

Thus it is supposed to get more reasonable classification results after assigning different 

weights to different features according to their influence on the classification process. 

Some research has been conducted trying to introduce feature weighting to 

classification or clustering [5-7]. However, those methods integrate feature weighting into 

the classification or clustering algorithms. In other words, the algorithms have to be 

changed, which seriously affects their expandability. Therefore it is desirable to find a 

method to adopt feature weighting in classification or clustering with least change to the 

algorithm. 
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To address this issue, the strategy of data scaling could be introduced. Data scaling is a 

necessary step before data classification. Part 2 of Sarle's Neural Networks 

FAQ[8]explains the importance of data scaling in neural networks and most of these 

considerations also apply to classification algorithm. The main purpose of data scaling is 

to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges, 

especially in some classification algorithms based on statistics distance[9].Usually each 

attribute is scaled to the range [-1, +1] or [0,1]. 

Since main purpose of data scaling before classification is to limit the dominance of 

some attributes, it is supposed to improve the classifier’s performance if the dominance 

relationship in training data was controlled consciously. Thus a new method was proposed 

in this paper which combined the advantages of feature weighting and data scaling. The 

weights of different features were calculated and multiplied to corresponding features of 

training data which has been scaled to the range [-1;+1] or [0;1]. Thus, those features with 

larger effect on classification process were scaled to larger ranges, and less important 

features were scaled to smaller ranges or even zero. Actually, the original dataset was 

transformed for better classification without changing classification algorithm itself. To 

calculate different features’ weights, two feature weighing algorithms, compactness and 

separation coefficient (CSC) algorithm and relief feature weighing algorithm were used.  

Except for features contributing discriminatively in classification, how to select 

appropriate kernel functions and parameters is another practical difficulty, when applying 

SVMs to solve classification problems. One obvious way is to experiment with different 

kernels and parameters and then choose the one working best. Generally, it is 

time-consuming if the training data has a large scale. Ensemble classifier is a good way to 

solve this problem. SVMs with different kernels and parameters could be selected to 

construct an ensemble SVM. The resulting SVM is expected to outperform each of those 

single SVMs since different classifiers could realize mutual complementation. 

Bagging [10] and Boosting [11] are two popular ensemble algorithms. Voting 

combination is a widely used approach of bagging, in which every single SVM’s weights 

are identical. However it may not be desirable since different SVMs usually perform 

discriminatively and are supposed to have different weights in the ensemble SVM. To 

overcome the drawbacks of voting combination, type-1 fuzzy logic is introduced to the 

ensemble classifier [12], which assigns different weights to different single classifiers 

according to classification accuracies. Considering that the SVM classification accuracy is 

easily affected by outliers and noise in training data, thus there exists uncertainty in 

relationships between each single SVM’s classification accuracy and its corresponding 

weight in the ensemble SVM. The type-1 fuzzy logic handles the uncertainty by using a 

crisp membership function (MF) and mapping the accuracy to a crisp value. However, 

once the MF is determined, the uncertainty disappears.Type-2 fuzzy logic outperforms 

type-1 fuzzy logic greatly in terms of handling uncertainty [13, 14]. In this paper, a new 

method which applied type-2 fuzzy logic in the ensemble algorithm is proposed. A type-2 

fuzzy MF between accuracies and weights mapped an accuracy to a fuzzy set instead of a 

crisp value, but still contains uncertainty. A similar research has been carried out in[15], 

but it needs to construct a type-2 fuzzy logic system, which would increase the 

computational complexity in contrast with the method proposed in this paper. 

The remainder of the paper is organized as follows. Section 2 introduces the new 

method combining feature weighting algorithms with classification. Section 3 proposes 

interval type-2 fuzzy logic and its extended approach. Section 4 describes the way to use 

interval type-2 fuzzy logic in the ensemble classifier. Section 5 is devoted to presenting 

the experiments and the results. Finally, Section 6 contains a short discussion and 

conclusion. 
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2. Feature Weighting Algorithms and Application 

Feature weighting usually tries to measure the discriminating ability of a specific 

feature to distinguish the different class labels of the original data[16]. All the algorithms 

proposed for feature weighting could be divided into five categories: distance, 

information (or uncertainty), dependence, consistency, and classifier error rate[17]. As for 

distance, e.g., in a binary classification problem, if feature X induces a greater difference 

between the two classes than feature Y, then it is considered that feature X is preferred to 

feature Y. Information measures typically mean the information gain from a feature. The 

information gain from a feature X is defined as the deviation between the prior uncertainty 

and expected posterior uncertainty after using feature X. Feature X is preferred to feature 

Y if the information gain from feature X is greater than that from feature Y[18]. Two 

feature weighing algorithms involved in this paper are both based on distance strategy. 

 

2.1. Relief Feature Weighting Algorithm  

Relief algorithm was first proposed by Kenji Kira [19]. It requires linear time in the 

number of given features and the number of training instances regardless of the target 

concept to be learned. In a binary classification problem, an instance ix is represented by a 

vector composed of p feature value. 1 2 n={ , , , }X x x x denotes a set of training instances 

with size n.  is a 1p vector denoting the weight of each dimensional feature. In relief 

algorithm, for each instance ix ,L instances which have the closest Euclid distance to ix of 

the same class, are selected as its Near-hit instances [19], denoted by , 1,2,jh j L . L 

instances which have the closest Euclid distance to ix of the different class, are selected as 

its Near-miss instances, denoted by , 1,2,jm j L . _ _diff near hit  is a 1p
vector which represents the difference between 

jh and ix . 

1

| |
_ _

L
i j

j

x h
diff near hit

nu


                                          (1) 

Where nu is a normalization unit to normalize the values into the interval [0, 1], 

usually max( ) min( )nu x x  , where max( )x ( min( )x ) denotes the maximum 

(minimum) element in X. _ _diff near miss  is a 1p vector which represents the 

difference between 
jm and ix . 

1

| |
_ _

L
i j

j

x m
diff near miss

nu


                                          (2) 

Then update the feature weight vector   for each instance. The update formulation is 

given by 

_ _ / + _ _ /new old diff near hit L diff near miss L                         (3) 

 

2.2. CSC Feature Weighing Algorithm 

CSC algorithm is introduced in[5], it is based on the assumption that important feature 

should have smaller within-class difference and bigger between-class difference, and vice 

versa, which is similar to relief algorithm to some extent. 

A binary classification problem is assumed as well to explain CSC algorithm. An 

instance ix is represented by a vector composed of p feature value. 1 2 n={ , , , }X x x x  

denotes a set of training instances with size n.  is a 1p vector denoting the weights of 
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each dimensional feature.
 wD is a N p  matrix, which denotes the difference of 

instances in the same class.  

2

1

1
( , ) ( ( ) ( ))

1

1,2, 1,2, 1,2

m

m m

w i j

jm

D i k x k x k

i n k p m



 

 


  


                                   (4) 

m  denotes the number of instances in class m and 
m

ix denotes the i th instance in 

class m. 

Thus the within-class difference could be measured by _ ( )D in k  
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 bD is an N p  matrix, which denotes the difference of each instance with other 

instances in other classes.  

2
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     (6) 

m

ix is supposed to be the i th instance in class m, and 
n

jx stands for the j th instance 

of class n. 

Then the between-class difference could be measured by  

1
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  (7) 

Finally the weight of the k th feature is denoted by  

_between( )
( ) 1,2,

_ ( )

D k
k k p

D in k
     (8) 

 

2.3 Application of weighing algorithm to classification 

SVM is the basic classification algorithm used in this study. A full introduction to SVM 

could be found in[1, 20]. Suppose the training data set S consist of n vectors, each vector 
d

ix R belongs to either of two classes and is given a label { 1, 1}iy    for 1,2 ,i n . 

1 1 2 2[( , ),( , ), , ( , )]n nS x y x y x y                                          (9) 
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SVM tries to find a separating hyperplane 0x b    that maximizes the margin 

between two classes. Maximizing the margin is a quadratic programming (QP) problem: 

2

,
1

1
min || || C

2

( ) 1 , 0 1,2 ,

n

i
b

i

i i i isubject to y x b for i n


 

  





     


                     (10) 

where C is a constant which determining the tradeoff between maximizing margin and 

minimizing the number of misclassified instances. In practice, instead of solving the 

primal form Eq.(10), we usually solve the follow dual form:  

1 1 1

1

1
min

2

0, 0 1,2 ,

n n n

i j i j i j i

i i i

n

i i i

i

y y x x

subject to y C for i n


 

 

  



 

   

 


                         (11) 

where 
, 1,2 ,i i n 

are Lagrange multipliers. And then the decision function is 

given by: 

1

( ) sgn( )
n

i i i

i

f x y x x b


                                               (12) 

To solve nonlinear classification problems, a kernel function is introduced to replace 

the inner product in Eq.(11)(12). Therefore, the SVM classifier can be represented as 

1

( ) sgn( ( ) )
n

i i i

i

f x y K x x b


                                            (13) 

where ( ) ( ) ( )i iK x x x x    is the kernel function which satisfies Mercer’s theorem. 

Commonly used kernel functions are polynomials and Gaussian radial basic functions, as 

follows: 

( ) ( 1)T dK x y x y                                                      (14) 

2( ) exp( || || )K x y x y                                                (15) 

d is the order of the polynomials and   denotes the scaling factor in the radial basis 

function kernel. 

As for the way to introduce the weights of different features into SVM classification, a 

new method was proposed in this paper which takes advantage of the strategy of data 

scaling. The weights of each features, obtained by algorithms mentioned above or other 

appropriate algorithms according to different training data, are multiplied to 

corresponding features of data which has been scaled to the range [-1, +1]. Therefore 

features with larger contribution to the classification are scaled to a larger range to 

strengthen their influence in the process of classification, and features with smaller 

contribution to the classification are scaled to a smaller range or even zero to weaken their 

influence. The principle that different feature ranges result in different influence to the 

classification is easy to understand. The final decision values (
1

n

i i i

i

y x x b


  in Eq.(12) 
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and 
1

( )
n

i i i

i

y K x x b


  in Eq.(13) ) in SVM depend on the inner products or kernel 

values of feature vectors, and large attribute (feature) values would dominate those 

smaller attribute values in the computational process. The major advantage of this method 

is that it introduces feature weighting into classification, while bringing no change to the 

algorithm structure at the same time. Thus it could be applied to many other classification 

algorithms as well.  

 

3. Interval Type-2 Fuzzy Logic and its Extended Approach 

Type-2 fuzzy logic was first introduced by Karnik et. al., [13]. Aiming at the problem 

of computation complexity increase in comparison with type-1 fuzzy logic, Liang and 

Mendel proposed interval type-2 fuzzy logic [21]. In interval type-2 fuzzy logic, the 

secondary membership functions are interval sets, which simplify the computation 

complexity remarkably. Interval type-2 fuzzy logic is adopted in the ensemble classifier of 

this paper. 

Type-2 fuzzy logic performs much better than type-1 in handling uncertainty. Typically, 

interval type-2 fuzzy logic is adopted for simplifying the computation. There exist two 

memberships in an interval type-2 fuzzy set: the primary membership xJ and secondary 

membership ( )xf u with all secondary grades of the primary memberships equaling to 

one.  

Figure 1 illustrates an example of an interval type-2 fuzzy set where the gray shaded 

region denotes the footprint of uncertainty (FOU). The primary membership of an 

instance 'x is denoted by an interval with an upper bound ( ')x and a lower bound

( ')x .By contrast, the membership in a type-1 fuzzy set is a crisp value instead. The 

vertical slice of 'x shows that the secondary grades of the primary membership is equal to 

one. 

 

Figure 1 (a) an interval type-2 fuzzy set        (b) the vertical slice of instance 'x  

Thus an interval type-2 fuzzy set A could be represented as 

A
{(( , ), ( , )) | , [0,1], ( , ) 1}xA

A x u x u x A u J x u                         (16) 

In the ensemble classifier, with the application of type-2 fuzzy logic, the weight of each 

single classifier iw  is no longer a crisp value but an interval set [ , ]i i iw w w , and then 

the final decision y could be represented as 
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1

1

M

i i

i
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i
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w y
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                                                       (17) 

where 
iy is the result of i th single classifier and M denotes the total number of single 

classifiers. 

The final result y is a type-2 fuzzy set and must be reduced to a type-1 fuzzy set so 

that typical defuzzification could be applied to generate a crisp output, which is called 

type reduction. Type reduction is an additional step different from type-1 fuzzy. There 

exists many kinds of type reduction[22], such as centroid, center-of-set, height and 

modified height. In this paper, center-of sets type reduction was used. To compute the 

type-2 output fuzzy set y , it’s sufficient to compute its upper bound 
ry and lower bound

ly , thus the output y can be expressed as [ , ]l ry y y . Figure 2 displays Karnik-Mendel 

iterative algorithm to compute the upper bound ry . The lower bound could be calculated 

in the similar way except in step 4: set i iw w for i R and i iw w for i R . It has 

been proved that this iterative procedure can converge in at most M iterations to find ry
and ly [23]. 

Defuzzification is applied after type reduction, the final output is set to be the average 

of ry and ly
 

2

r ly y
y


                                                            (18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Karnik-Mendel Iterative Procedure to Calculate ry
 

4. Application of Interval Type-2 Fuzzy Logic in Ensemble SVM 

Different single SVMs with different kernels or parameters may generate different 

separating hyperplanes, and thus may bring about different classification results for the 

1. Arrange iy in ascending order, i.e. 1 2 My y y   ; 

2. Set ( ) / 2i i iw w w   for 1,2,i M and compute 'y by 1

1

'

M

i i

i

M

i

i

w y

y

w









; 

3. Find [1,M 1]R  such that 1'R Ry y y   ; 

4. Set i iw w for i R and i iw w for i R , compute ''y using  

1

1

''

M

i i

i

M

i

i

w y

y
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 ; 

5. Stop if '' 'y y  ,otherwise, set ' ''y y and return to step 3 
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same instance. The strategy of ensemble SVM is based on the assumption that the 

classification results given by several single SVMs have a higher reliability in contrast 

with the single SVM. Just like the diagnosis report based on several doctors’ judgements 

is usually more reliable than the conclusion draw by a single doctor. The strategy of 

assigning different weight to each single classifier is supposed to improve the reliability 

of the final classification results, i.e., high accuracy classifiers own high weight and vice 

versa.  

To handle the uncertainty in the mapping relationship between weight and accuracy, 

type-2 fuzzy logic was introduced into the ensemble process in this paper. The distance of 

a testing instance to a single SVM’s hyperplane was adopted as this single classifier’s 

output instead of its final decision. It is reasonable because the distance contains 

information of final decision as well as its confidence coefficient. Therefore an instance in 

positive class holds a positive distance and vice versa. Figure 3 illustrates the structure of 

ensemble SVM with application of interval type-2 fuzzy logic. 

 

Figure 3. Structure of Ensemble SVM 

In this paper, six single SVMs were combined using type-2 fuzzy logical, and this 

process could be easily extended to arbitrary number of single SVMs.   

In the process above, the mapping relationship (i.e., the membership function (MF)) 

between classification accuracies and weights determines the ensemble classifier’s final 

accuracy. The Gaussian MF of traditional type-1 fuzzy ensemble classifier is shown in 

Figure 4 (a) 

.  

Figure 4. (a) Type-1 Fuzzy MF     (b) Type-2 Fuzzy MF 

As shown in Figure 4(a), once the MF is determined, the uncertainty in mapping 
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relationship disappears. For the sake of maintaining the uncertainty, type-2 fuzzy MF was 

applied as shown in Figure 4(b). Generally speaking, classification accuracies of all single 

SVMs have a scale from 0% to 100%.In order to make the MF more sensitive to the 

changes of accuracies, the minimum and maximum accuracies were valued as the two 

bounds of the domains of the accuracies. 

The MF shown in Figure 4(b) is a Gaussian primary MF with uncertain standard 

deviation, i.e. the Gaussian primary MF has a fixed mean 
maxA and an uncertain standard 

deviation which ranges in [
min ,

max ]. In this paper two bounds were set as 

max min max min
min max

3 2

A A A A
 

 
 

                                (19) 

thus 

2max
min max

1
( ) exp[ ( ) ] , [ , ] 1,2, 6

2

k
k

a A
a k   




                 (20) 

where ka denotes the classification accuracy of k th single SVM; ( )ka denotes the 

weight of k th single SVM. Therefore the upper MF ( )ka is 

max max( ) (A , , )k ka N a                                              (21) 

and the lower MF 
( )ka

is  

max min( ) (A , , )k ka N a                                              (22) 

5. Experiments and results 
 

5.1. Dataset description  

Australian Credit Approval data from UCI machine learning repository was used to test 

the performance of SVM based on feature weighting and ensemble SVM based on type-2 

fuzzy logic proposed in this study. This dataset includes information of credit card 

applications with all attribute names and values have been changed to meaningless 

symbols to protect confidentiality of the data. It is interesting because there is a good mix 

of attributes -- continuous, nominal with small numbers of values, and nominal with 

larger numbers of values. There are 6 numerical and 8 categorical attributes. It’s 

well-known that there exist many factors which influence the credit approval, like 

personal income, property, ages and so on. And it’s acceptable to believe that different 

factors hold their own weights affecting the final process of approval respectively. This 

dataset was chosen in this study to highlight the advantage of the method proposed in this 

paper. 

 

5.2. (a) Experiment Design for SVM based on Feature Weighting 

In this experiment, data scaling was applied to the original data to scale each attribute 

to the range [-1, +1].Then the data was classified in ten-fold cross-validation, for each 

training dataset, two feature weighting algorithms introduced in Section 2 were applied in 

addition.  

For convenience, the “original data” all refers to the data which has been scaled to [-1, 

+1] in the following, and the following abbreviations are used: “SVM” refers to the 
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traditional support vector machine, “Relief-SVM” refers to SVM based on relief feature 

weighting algorithm and “CSC-SVM” refers to SVM based on CSC feature weighting 

algorithm.  

The training datasets applied to SVM, Relief-SVM and CSC-SVM were different 

because the original data was multiplied by different weights in the latter two methods. 
Therefore, different combinations of parameters were experimented for these three kinds 

of SVMs in order to show their best classification performance. Since Gaussian radial 

basis kernel function (RBF) was used here, to reliably optimize 


and C, a 

cross-validation work with 


ranging from 
22
to 

62 and C ranging from 
42
to 

52 , 

both with steps of 
12 , was carried out to obtain the best performance of each classifier. 

When it comes to Relief-SVM, another parameter L should be taken into consideration, 

which denotes the number of instances selected as the Near-hit instances and Near-miss 

instances. The appropriate value of L was selected by comparing classification accuracies 

with different L. 

 

5.2. (b) Result and Discussion of SVM based on Feature Weighting. 

Table 1 shows the weights of 14 attributes in the training data calculated by relief and 

CSC feature weighting algorithms. 

Table 1. Weights of 14 Attributes 

    Weights of attributes 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Relie

f 

1 
6.5

2 

1.2

1 

1.1

4 

1.8

9 

1.5

2 

1.5

7 

1.2

5 

11.

1 

4.9

3 

1.4

5 

10.

3 

1.7

4 

1.2

3 

1.1

2 

2 
5.0

2 

1.3

0 

1.2

5 

1.8

9 

1.4

0 

1.4

7 

1.3

3 

12.

3 

4.1

5 

1.3

8 

15.

4 

2.2

6 

1.1

6 

1.1

1 

3 
5.1

6 

1.3

1 

1.2

2 

2.0

4 

1.4

8 

1.5

3 

1.3

1 

12.

5 

4.4

3 

1.3

8 

8.1

3 

1.8

2 

1.1

9 

1.0

6 

4 
4.9

8 

1.2

5 

1.1

9 

1.9

9 

1.4

8 

1.6

2 

1.2

1 

10.

5 

4.8

6 

1.3

3 

7.6

1 

1.7

9 

1.1

8 

1.0

4 

5 
6.3

5 

1.2

7 

1.2

1 

1.7

4 

1.4

6 

1.5

3 

1.2

3 

10.

4 

4.5

9 

1.4

0 

10.

2 

1.8

3 

1.2

2 

1.1

1 

6 
4.4

6 

1.2

9 

1.2

5 

2.4

0 

1.5

1 

1.4

6 

1.2

1 

10.

4 

3.9

5 

1.3

1 

8.1

4 

2.2

0 

1.2

0 

1.0

8 

7 
7.9

7 

1.2

3 

1.2

4 

1.7

9 

1.4

6 

1.5

5 

1.3

8 

11.

5 

6.7

6 

1.5

3 

11.

1 

1.8

2 

1.2

2 

1.0

3 

8 
5.8

6 

1.2

3 

1.2

8 

1.6

8 

1.4

2 

1.4

1 

1.3

1 

13.

1 

6.0

8 

1.4

3 

8.7

1 

1.7

0 

1.2

1 

1.0

2 

9 
5.4

0 

1.2

8 

1.2

2 

1.8

3 

1.5

5 

1.6

1 

1.3

2 

10.

6 

4.4

3 

1.3

5 

9.2

1 

1.9

0 

1.1

8 

1.1

0 

1

0 

6.1

0 

1.2

0 

1.2

5 

1.6

2 

1.4

3 

1.4

3 

1.2

5 

10.

1 

4.4

6 

1.4

3 

11.

0 

1.7

7 

1.1

5 

1.0

6 

CSC 1 1 
1.0

3 

1.0

6 

1.1

2 

1.3

1 

1.1

7 

1.2

4 

3.0

8 

1.5

4 

1.5

1 
1 

1.0

6 

1.0

1 

1.0

5 
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2 1 
1.0

7 

1.1

0 

1.0

9 

1.2

4 

1.1

0 

1.2

4 

3.0

8 

1.4

8 

1.3

2 

0.9

9 

1.0

3 

1.0

3 

1.0

5 

3 1 
1.0

9 

1.1

2 

1.1

0 

1.3

6 

1.0

9 

1.2

3 

3.5

7 

1.4

3 

1.2

9 
1 

1.0

4 

1.0

2 

1.1

1 

4 1 
1.0

4 

1.0

5 

1.0

9 

1.3

4 

1.1

8 

1.1

8 

3.0

3 

1.6

0 

1.4

3 
1 

1.0

3 

1.0

2 

1.0

5 

5 1 
1.0

4 

1.1

4 

1.0

6 

1.2

8 

1.1

2 

1.1

6 

3.3

3 

1.4

7 

1.2

7 
1 

1.0

4 

1.0

1 

1.0

4 

6 1 
1.0

7 

1.0

6 

1.0

8 

1.3

1 

1.1

1 

1.1

6 

2.9

2 

1.6

7 

1.3

5 

0.9

9 

1.0

7 

1.0

5 

1.0

6 

7 
1.0

1 

1.0

8 

1.0

6 

1.0

7 

1.3

8 

1.1

9 

1.2

9 

3.5

6 

1.4

9 

1.5

6 

1.0

1 

1.0

3 

1.0

1 

1.0

5 

8 
0.9

9 

1.1

0 

1.1

2 

1.0

9 

1.2

5 

1.0

9 

1.2

5 

2.9

2 

1.3

9 

1.3

1 
1 

1.0

1 

1.0

2 

1.0

6 

9 1 
1.0

4 

1.0

5 

1.1

0 

1.4

0 

1.1

0 

1.2

3 

3.4

7 

1.5

2 

1.3

8 
1 1 

1.0

1 

1.0

5 

1

0 

0.9

9 

1.0

3 

1.0

6 

1.0

5 

1.2

8 

1.1

4 

1.1

9 

2.9

7 

1.4

2 

1.4

5 
 1 

1.0

4 
1 

1.0

4 

The weights of 14 attributes based on ten-fold cross-validations show that different 

features or attributes make different contribution to the final classification indeed. In the 

comprehensive analysis of weights calculated respectively by relief and CSC algorithm, 

two roughly similar results were obtained by these two feature weighting algorithms, i.e. 

they both draw a conclusion that feature 8, 9 are of relative importance while feature 

2,3,6,7,13,14 are relatively insignificant or even ignorable in the classification. However, 

these two algorithms’ opinions varied on feature1,4,5,10,11,12 which is acceptable since 

these two are based on different computation process. CSC calculates the difference in the 

same class (between different classes) by going through all the instances in the same class 

(different classes), while relief algorithm just goes through L instances for the purpose of 

simplifying the computation complexity. Thus the relief algorithm might lose some data 

distribution information in exchange. 

Table 2 shows the classification accuracies of three methods (SVM, relief-SVM, 

CSC-SVM) based on ten-fold cross-validation. 

Table 2. Classification Accuracies of Three Methods 

  
Classifier 

    SVM Relief-SVM CSC-SVM 

Classification 

accuracy(%) 

1 87.77 88.49 89.21 

2 86.33 86.33 89.21 

3 84.89 85.61 87.77 

4 83.45 84.17 84.17 

5 84.89 85.61 86.33 

6 89.93 89.21 90.65 

7 83.45 84.89 84.89 
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8 86.33 88.49 90.65 

9 86.33 87.05 89.21 

10 88.49 88.49 90.65 

 

Overall, classification accuracies based on ten-fold cross-validation in Table 2 show 

that feature weighting SVMs, either relief-SVM or CSC-SVM, outperformed the 

traditional SVM without feature weighting. In comparison with relief-SVM, CSC-SVM 

showed an average increase in overall accuracies of around 3%, outperforming 

relief-SVM’s 1%. It’s reasonable because relief algorithm lost some data distribution 

information, which is mentioned before. The result illustrates that the weights calculated 

by CSC algorithm matches the practice better than relief algorithm. Thus one can draw a 

conclusion that the selection of feature weighting algorithm is of great significance when 

applying the method proposed in this paper.  

 

5.3. (a) Experiment design for ensemble SVM based on type-2 fuzzy logic 

To verify the effectiveness of adding type-2 fuzzy logic into ensemble SVM, another 

experiment was designed as well. The fundamental framework of this experiment is 

shown in Figure 3, six single SVMs were combined based on different weights which 

have a type-2 fuzzy relationship with corresponding classification accuracies.  

To obtain the single SVMs’ classification accuracies, the first choice is to use the 

training accuracies. However, it may not be as good as expected since the classification 

hyperplanes were all based on training data, thus there exists over-fitting more or less and 

leads to a high training accuracy but low testing accuracy. Considering that the original 

data was classified in n-fold cross-validation in this classification experiment, it should be 

an acceptable choice to further divided each n-fold training dataset to m-fold to obtain the 

final classification accuracies of single SVMs, as adopted in[15]. Thus, in this experiment 

each single SVM’s classification accuracy was calculated in this manner: the original data 

was classified in six-fold cross-validation, and for each six-fold training dataset another 

six-fold cross-validation was applied to obtain the average classification accuracy of each 

single SVM. Finally the average accuracy will be used for weighting.  

Another point which needs attention is the output of each single SVM. As mention in 

Section 4, the distance of a testing instance to a single SVM hyperplane was adopted as its 

output instead of its final decision in this experiment. The result of first experiment shows 

that SVMs based on CSC feature weighting algorithm outperformed the other two 

methods, therefore, CSC-SVMs were chosen as the single classifiers in this experiment. 

As for the selection of single SVMs, there are two choices: one is to select several SVMs 

with same kernel function but different parameters, and the other is to select several 

SVMs with different kernel functions and different parameters. In order to determine 

which kind of combination would be better, two attempts (denoted as Attempt 1 and 

Attempt 2) based on these two choices were made. For Attempt 1, six combinations of 

parameter were randomly selected for experiment. Table 3 shows the classification 

accuracies (six-fold cross-validation) of the six RBF-based SVMs selected in attempt one. 

For Attempt 2, both polynomial kernel function and radial basis function were used with 

different random parameters. Table 4 shows the parameters and classification accuracies 

(six-fold cross-validation) of single SVMs based on different kernel function. For the sake 

of comparison, ensemble SVM based on type-1 fuzzy logic was implemented as well. The 

mapping relationship between classification accuracies and weights has been introduced 

in Section 4.  

It should be noted that the mapping relationships between classification accuracies and 

weights, both in type-1 and type-2 fuzzy, were based on practical experience, and there 
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might exist some other mapping relationships more suitable. Yet the mapping 

relationships given out is already qualified to verify type-2 fuzzy logic’s capability to 

handle uncertainty in the ensemble SVM. 

Table 3. Parameters and Classification Accuracies of Single SVMs based on 

RBF 

    Parameter   Classification accuracy（%） 

    γ C   1 2 3 4 5 6 Average 

SVM1 
 

1 0.25 
 

86.96 84.06 86.86 84.78 84.78 82.61 85.01 

SVM2 
 

0.25 0.5 
 

84.78 82.61 84.06 82.61 81.16 81.16 82.73 

SVM3 
 

0.25 1 
 

83.33 82.61 84.06 81.88 79.71 80.43 82.00 

SVM4 
 

2 2 
 

86.23 84.06 86.96 84.78 84.78 82.61 84.90 

SVM5 
 

4 4 
 

84.78 84.06 85.51 84.06 84.06 81.88 84.06 

SVM6   8 16   84.78 84.06 85.51 84.06 85.51 81.88 84.30 

Table 4. Parameters and Classification Accuracies of Single SVMs based on 

Different Kernel 

  Kernel  
Parameter   Classification accuracy（%） 

      γ/d C   1 2 3 4 5 6 Average 

SVM1 
 

RBF 
 

1 0.25 
 

84.06 87.68 86.96 87.68 86.23 86.96 86.60 

SVM2 
 

RBF 
 

0.25 0.5 
 

81.88 81.88 82.61 55.07 84.78 81.88 78.02 

SVM3 
 

RBF 
 

8 16 
 

84.78 89.86 86.23 86.96 86.96 87.68 87.08 

SVM4 
 

Polynomial 1 0.25 
 

84.78 89.86 85.51 86.96 86.96 87.68 86.96 

SVM5 
 

Polynomial 2 0.5 
 

85.51 89.13 85.51 60.14 85.51 84.06 81.64 

SVM6   Polynomial 2 1   85.51 89.13 86.23 58.7 85.51 84.06 81.52 

 

5.3. (b) Results and discussion of ensemble SVM based on type-2 fuzzy logic 

Classification accuracies based on six-fold cross-validation (Table 5, Table 6) showed 

that both ensemble SVMs based on type-1 fuzzy logic and type-2 fuzzy logic 

outperformed the average accuracies of six single SVMs. The analysis of ensemble SVM 

based on type-1 and type-2showed that the ensemble SVM based on type-2 outperformed 

type-1. Another important result is that the type-2 based SVM outperformed any of the six 

single SVMs in most cases. 

Further detailed analysis of the results showed that in Table 4, type-2 based SVM 

outperformed the best single SVM in four tests while in test 1 the result is opposite. In 

Table 5, the performance of type-2 based SVM was better, the possible reason is that 

single classifiers with different kernel functions may complement each other better, in 

comparison with classifiers with same kernel functions. What is more, when some of the 

single SVMs performed much badly such as test 1 and test 2 in Table 6, the performance 

of type-1 based SVM was also seriously affected. On the contrary, the type-2 based SVM 

performed well, which means stronger robustness. 

Finally, it can draw a conclusion that type-2 based ensemble SVM has two main 

advantages in comparison with single SVM. Firstly, an increase in classification accuracy 

is obviously obtained. Secondly, it only needs to select several single classifiers to 

construct a type-2 based ensemble classifier to obtain high classification accuracy in 
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practical classification, instead of trying out many different combinations of parameters. 

Table 5. Classification Accuracies of Six Single SVMs based on RBF, 

Ensemble SVMs based on Type-1 and Type-2 Fuzzy 

Test 
Classification accuracy(%) 

SVM1 SVM2 SVM3 SVM4 SVM5 SVM6 Average Maximum Type-1 Type-2 

1 86.96 89.57 86.96 86.96 86.96 86.96 87.40 89.57 88.7 88.7 

2 90.43 87.83 88.7 89.57 90.43 89.57 89.42 90.43 90.43 91.3 

3 82.61 83.48 81.74 82.61 81.74 81.74 82.32 83.48 81.74 83.48 

4 86.96 81.74 86.96 86.96 85.22 85.22 85.51 86.96 86.96 87.83 

5 81.74 80.87 81.74 82.61 81.74 81.74 81.74 82.61 81.74 83.48 

6 86.09 83.48 88.7 86.96 86.96 70.43 83.77 88.7 86.96 89.57 

Table 6. Classification Accuracies of Six Single SVMs based on Different 

Kernel, Ensemble SVMs based on Type-1 and Type-2 Fuzzy 

Test 
Classification accuracy(%) 

SVM1 SVM2 SVM3 SVM4 SVM5 SVM6 Average Maximum Type-1 Type-2 

1 83.48 80 86.96 86.96 83.48 55.65 79.42 86.96 86.09 87.83 

2 53.91 89.57 90.43 90.43 88.7 53.91 77.83 90.43 62.61 90.43 

3 84.35 80 85.22 85.22 82.61 74.78 82.03 85.22 82.61 86.09 

4 86.96 81.74 86.96 86.96 85.22 85.22 85.51 86.96 86.96 87.83 

5 81.74 80.87 81.74 82.61 81.74 81.74 81.74 82.61 81.74 83.48 

6 91.3 86.96 91.3 91.3 90.43 91.3 90.43 91.3 92.17 92.17 

 

6. Conclusion 

In this paper, two methods to improve the performance of SVM classifier were 

proposed. The first method is based on the strategy of feature weighting. The original data 

would be transformed by multiplied corresponding weights for better classification. The 

major advantage of this method is to improve the performance of SVM classifier without 

any change to the original classification algorithm. Therefore, it can be regard as a special 

kind of data preprocessing technique. The second method referred to ensemble classifier 

based on interval type-2 fuzzy logic. With the merit of interval type-2 fuzzy logic, the 

final ensemble SVM could achieve a more reasonable classification result. In short, 

ensemble SVM based on type-2 logic outperformed the traditional SVMs as well as the 

type-1 based ensemble SVM.  
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