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Abstract 

Finite mixture model (FMM) with Gaussian distribution has been widely used in many 

image processing and pattern recognition tasks. This paper presents a new Student's-t 

mixture model (SMM) based on Markov random field (MRF) and weighted mean 

template. In this model, the Student's-t distribution is considered as an alternative to the 

Gaussian distribution due to the former is heavily tailed than Gaussian distribution, thus 

providing robustness to outliers. With the help of the weighted mean template, the spatial 

information between neighboring pixels of an image is considered during the learning 

step. In addition, the proposed method is able to impose the smoothness constraint on the 

pixel label by using MRF. Furthermore, an efficient energy function and a novel factor 

are applied in current model to decrease the computational complexity. Numerical 

experiments are presented on simulated and real world images, and the results are 

compared with other FMM-based models. 
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1. Introduction 

Segmentation is one of the most difficult problems in image processing [1] and pattern 

recognition [2]. The purpose of image segmentation is to cluster all image pixels into 

non-overlapped groups with respect to some real world objects. One of the most 

commonly used clustering methods is finite mixture model (FMM). Due to the ease of 

implementation, the standard Gaussian mixture model (GMM) has been selected most 

widely as a particular case of FMM. Applying GMM had good segmentation results on 

images without noise. However, its accuracy in noisy images is not enough mainly 

because the prior probability πj is not related to pixel i so that the spatial relationship 

between neighboring pixels is not taken into account. For this reason, the segmentation 

result of GMM is extremely sensitive to noise. To reduce the sensitivity of the noise in 

segmented image, the finite Student's-t mixture model (SMM) has been recently 

introduced in [3] as an alternative to GMM. It is because that the Student's-t distribution 

has heavily tailed than Gaussian distribution. Compared to the GMM, each component of 

the SMM has one more parameter called the degrees of freedom v. However, both GMM 

and SMM don't consider the fact that spatially adjacent pixel points most likely should 

belong to the same cluster. Recently, Markov Random Field (MRF) has been applied to 

impose spatial smoothness constraints on the image segmentation. But one main 

difficulty concerning the use of MRF as smoothness constraints is their high 

computational complexity. 

In this paper, we present a new finite Student's-t mixture model, based on MRF and 

weighted mean template. In this model, the M-step of the EM algorithm [4] can be 
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directly applied for the maximization of the log-likelihood with respect to the parameters. 

The proposed model is easy to implement and compared with the existing MRF model, 

require lesser number of parameters. In addition, the factor Gij defined in [5] is used as 

multiplication of both posterior probabilities and prior distributions, which lead to the 

proposed method is easy to implementation. To accurately evaluate the influence of the 

neighboring pixels during the learning step, the proposed method incorporate the 

weighted mean template into the model. Hence, it improves segmentation results, 

particularly when an image is corrupted by high levels of noise. Experimental results 

obtained on synthetic, real world grayscale images, and magnetic resonance (MR) images 

demonstrate the robustness, accuracy and effectiveness of the proposed approach in 

image segmentation. 

The rest of the paper is organized as follows: Section 2 briefly reviews the related 

works. In Section 3, the proposed method and the parameter estimation will be discussed 

in detail. Section 4 presents the parameter learning. The experimental results are shown 

in Section 5. Finally, in the last section we summarize our results and conclude this paper. 

 

2. Standard Finite Mixture Model 

Let xi, i = (1, 2,..., N), with dimension D, denote an observation at the i-th pixel of an 

image. To classify N pixels of an image into K labels, it is assumed that xi is independent 

of the label Ωj. The density function  ,if x   at each pixel xi can be expressed by 

   
1

,
K

i ij i j

j

f x x


     ,                                                                                           (1) 

where πij is the prior probability of xi belong to label Ωj and satisfies the 

following constraints: 
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According to (1), we can derive the joint conditional density of the data set X=(x1, 

x2,…, xN )  

   
1 1 1

( , ) ,
N N K

i ij i j

i i j

p X f x x
  

 
        

 
   ,                                                      (3) 

where  i jx  is the Student's-t distribution. 
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where the D-dimensional vector μj is mean and vj is the degree of freedom. The 

D×D matrix ∑j are the covariance. 
  1, ; ( ) ( )T

i j j i j j i jx x x       
is squared 

Mahalanob is distance, and Г is the Gamma function. Figure 1 illustrates Student's-t 

distribution with different degrees of freedom v for the same mean μ and covariance 

∑. Comparing to the Gaussian distribution, their overall shapes are very similar, 

however, the Student's-t distribution provides a longer tail. With the number of 

degrees of freedom v growing, the Student's-t distribution tends to the Gaussian 

distribution. 
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Figure 1 Plot of the 1-D distributions (zero mean and variance one).  
Left:  Student’s t-distribution; Right: Gaussian distribution. 

3. Proposed Methods 

For standard finite mixture model, the spatial relationship between the neighboring 

pixels is not integrated into the segmentation procedure. To impose spatial smoothness 

constraints among neighboring pixels, this paper proposes a new density function 

 ,if x   at each observation point xi given by 
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where Ni is the neighborhood of the i-th pixel (including itself), and p is a non-zero 

real number. The weighting factor ωm is used to control the influence of neighbor's term 

depending on their distance from the central pixel. With the decreasing of the distance 

between neighborhood pixel and the central pixel, the value of ωm should increase. 

Therefore, ωm can be expressed as a function of spatial Euclidean distance dmi. 
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Here q stands for the neighborhood window size. Ri is a normalized parameter of the 

form 

i

i m
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Based on Bayes’ rule, the posterior probability density function can be represented by 

     , ,p X p X p      .                                                                                      (8) 

According to (5), the new joint conditional density in (8) can be rewritten as 
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Based on the theorem of Hammersley-Clifford [6], a given random field can be 

defined as an MRF if and only if its probability distribution is a Gibbs distribution. Thus, 
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where Z is a normalizing constant, T is a temperature constant. In current paper, a new 

smooth prior U(Π) is chosen to incorporate the spatial correlation as 
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where t is the iteration step. For easy implementation purpose, a novel factor Gij is 

defined by 
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Substituting (11) into (10) yields 
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Thus, the log-likelihood function of (8) can be written as follows. 
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(14) 

After applying the complete-data condition, the optimization problem of  ,L X  is 

equivalent to maximizing the following objective function. 
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4. Parameter Learning 

Due to the high computational complexity of (15), it cannot be calculated directly. In 

order to overcome these disadvantages, the Jensen's inequality [7] is applied, which states 

that, given a set of numbers λi ≥ 0 and Σ λi=1, one has log (Σλixi) ≥ Σλi log (xi). For 

simplicity purpose, the parameter Z and T are always set as one. Thus, considering 

ωm/Ri≥0 and Σm∈Ni ωm/Ri=1, we can derive the new objective function as follows. 
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In E-step, the posterior probability of the hidden variables can be calculated as 
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Due to there is no analysis solution for maximizing the log-likelihood under a 

Student's-t distribution, in this paper, Student's-t distribution can be regarded as a mixture 

of Gaussian distribution with the same mean uij and scaled covariance. 
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In order to calculate the means μj at the (t+1) iteration step, setting the partial 

derivative of (16) with respect to 
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Similarly, let ( 1)/ 0t

jS    . One can obtain the covariance ( 1)t
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If the derivation of (16) with respect to 
 1t

jv


is equated to zero, we can obtain the 

degrees of freedom 
 1t
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where ( ) { ( ) / ( )}/ ( )x x x x      is the digamma function. Taking the constraint of 

the prior probability (2) into account, we obtain the following expression by using the 

Lagrange's multiplier λi. 
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To obtain the prior probability 
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So far, for maximizing the objective function, the steps of proposed method based on 

weighted mean template and MRF are finished. The various steps of the proposed 

algorithm can be summarized as follows. 

Algorithm:  

Step 1. Initialize the parameters: using fuzzy c-means method, we obtain the initial 

means μj, the covariance Σj, the freedom of degree vj, and the prior probability πij, 

respectively. Setting β=12. 

Step 2. In E-step, calculate the posterior probability zij using (17); evaluate the weight 

uij using (18); update the novel factor Gij using (12). 
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Step 3. In M-step, calculate the means μj, the covariance Σj, and the freedom of degree 

vj using (19), (20), and (21), respectively. Update the prior probability πij using (23). 

Step 4.. Compute the log-likelihood function using (14). If the convergence of (14) is 

satisfied, terminate the iteration. Otherwise, t=t+1 and go to step 2. 

 

5. Experimental Results 

In this section, three experiments are conducted to evaluate the effectiveness of the 

proposed methods, and the results are compared with the GMM, SMM, and ACAP [8]. 

 

5.1. Data Clustering 

We begin with experiments on a set of noisy data to investigate the robustness of the 

proposed approach in noisy environment. The results obtained by using the standard 

GMM, SMM, ACAP and proposed method (β=6) are demonstrated in Figure 2. In this 

experiment, the sample with 2500 simulated points from five bivariate Gaussian 

distribution is shown in Figure 2. These data points are corrupted by 150 noise points 

(outliers) drawn from a bivariate uniform distribution, with each of its components in the 

interval [-0.4, 1.4]. The means of Gaussian distributions are μ1=(5.1291,7.0924)
T
, 

μ2=(4.6048,1.1597)
T
, μ3=(3.5040,0.7808)

T
, μ4=(0.9505,3.6925)

 T
, and μ5=(4.3367,0.3363)

 

T
, respectively. The covariances are Σ1～Σ5 =(1.5, 0; 0,1.5). To evaluate objectively and 

compare the performance of the proposed method, we illustrate the simulated data points 

along with the contours of the clusters obtained using the evaluated algorithms. As can be 

seen in Figure 2, compared to GMM, SMM, and ACAP, we find that our method is very 

robust to the effect of the outliers. It is because that the proposed method takes the 

influence of the neighborhood pixels 

 

(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure 1. Noisy Data Clustering. (a) GMM; (b) SMM; (c) ACAP; (d) Proposed 
Method 
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5.2. Segmentation of Real World Images 

In the second experiment, four real world images from the Berkeley image dataset are 

selected randomly to compare different methods. To evaluate the performance of the 

proposed method, the probabilistic rand (PR) index [9] is used. The value of PR index 

ranges from 0 to 1. The higher the value is, the better the segmentation results are. The 

segmentation results using different methods are illustrated in Table 1. The number of 

class K is set according to human vision system characteristics. As can be seen in Table 1, 

the segmentation accuracy of GMM and SMM, along the objective boundaries is 

modestly poor. Table 2 lists the PR index. From Table 2, we can find that the proposed 

method has the highest PR values. It indicates that the proposed method yields the best 

segmentation results. 
 

5.3. Segmentation of MR Images 

In the last experiment, four real MR images from the Internet Brain Segmentation 

Repository (ISBR07, 256×256) are used to test the effectiveness of our methods. We 

apply GMM, SMM, ACAP, and the proposed method to segment the whole brain. The 

segmentation results are shown in Table 3. As can be seen from this table, the effects of 

noise on the final segmented images of GMM and SMM are high. The proposed method, 

on the other hand, can better classify with more robust to this noise. The quantitative 

results are illustrated in Table 4. As can be seen, the proposed method has the highest PR 

values for the segmented images. 

Table 1. Real World Images Segmentation 

Test 

Images 

    

GMM 

    

SMM 

    

ACAP 

    

Proposed 

Models 
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Table 2. Comparison of Different Methods for Test Images (PR index) 

Images K GMM SMM ACAP Proposed Models 

135069 2 0.9733 0.9732 0.9760 0.9860 

238011 3 0.8170 0.8199 0.8264 0.8361 

106025 3 0.8114 0.8357 0.8379 0.8597 

55069 4 0.8778 0.8820 0.8854 0.8943 

 

6. Conclusions 

In this paper, we proposed an effective fuzzy clustering method for grayscale 

image segmentation. The novel approach incorporates the weighted mean template 

and MRF into the standard SMM model. The advantage of such a model is that it 

considers the spatial relationship among neighboring pixels. Furthermore, an 

efficient energy function and a novel factor Gij are used so as to the EM algorithm 

can be directly applied to calculate the new objective function. Thus, the proposed 

approach is simple and easy to implement. The proposed method was tested with 

simulated, real world grayscale and real MR images, demonstrating excellent 

performance in noisy conditions, compared to other mixture model-based 

approaches. 
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Table 3. MR Images Segmentation 

Test 

Images 

    

GMM 

    

SMM 

    

ACAP 

    

Proposed 

Models 
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Table 4. Comparison of Different Methods for MR Images (PR Index) 

Images K GMM SMM ACAP Proposed Models 

Skull1 3 0.7862 0.8089 0.7856 0.8092 

Skull2 3 0.7867 0.8101 0.7857 0.8097 

Skull3 3 0.8037 0.8201 0.8049 0.8183 

Skull4 3 0.8216 0.8367 0.8220 0.8347 
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