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Abstract 

Modulation type is one of the most important characteristics used in signal recognition. 

An algorithm to realize signal modulation identification is proposed in this paper. We 

applied wavelet transformation and STFT to the signal, and then used manifold learning 

method to reduce the high dimension and extracted the recognition feature. The proper 

threshold value was set as the classifier to achieve the purpose of recognizing 4 kinds of 

signals (MASK, MFSK, MPSK,QAM) in Gauss white noise environment. The algorithm 

requires priori signal information no other than signal-to-noise rate. Simulation result 

indicates the algorithm achieves good performance. 

 

Keywords: Digital signals identification, Feature extraction, Manifold learning 
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1. Introduction 

Digital signals are widely used both in commercial and military fields. To analysis the 

information transferred by the source, the signal mode needs to be figured out by 

selecting the appropriate features. Feature selection is the process of choosing a subset of 

the original predictive variables by eliminating redundant and uninformative ones. By 

extracting as much information as possible from a given data set while using the smallest 

number of features, we can save significant computing time and often build models that 

generalize better to unseen points. 

Among all the signal parameters, in-pulse characteristics have very special effects. 

Many in-pulse characteristics have been used on signal recognition such as entropy 

analysis, short time Fourier transformation, wavelet transformation, complexity feature 

and so on. For example, Swami and Sadler [3] proposed a wavelet transform-based signal 

identification method, with which the success rate of 98% at signal-to-noise ratio (SNR) 4 

dB was reported. Zhang [4] proposed a support vector machine-based classifier to 

classify the signals according to the proposed features. The types of the signals have been 

identified with a success rate of about 90% for 0<SNR<5 dB. A digital modulation 

classification system was proposed by Xu et al. [5] for CR using only temporal waveform 

features. They reported a success rate of 95% at SNRs ranging from 10 to 80 dB. In [6], 

the authors presented a high-performance multi-layer perception neural network with 

resilient back propagation learning algorithm. In [7], a signal classification approach 

based on neural network ensembles was proposed, which enables dynamic spectrum 

access. From the research works mentioned above, it can be found that: (a) most of the 

proposed methods can only recognise low-order and limited digital signals; (b) most of 
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methods require high SNRs; (c) machine learning-based methods may have higher 

performance. 

This paper focuses on the study of feature extraction part to realize the identification in 

lower SNRs. Manifold learning[1,2] procedures can realize the visualization by 

embedding the high-dimension data into 2 or 3dimensions while preserving as much as 

possible the metric in the natural feature space, which makes observation and analysis 

easier. Recently, manifold learning algorithms are increasingly used in intelligent 

cognitive system [8-11]. New types of signals can be automatically detected, classified, 

and identified in a cognitive environment. The manifold learning algorithms overcome 

the limitations of existing linear methods such as principal component analysis (PCA) 

and independent component analysis [12]. They have been successfully applied in signal 

and image processing and pattern recognition. 

 

2. Isomap Method 

To commence, suppose R is a nonempty set [13]. The whole topological space is 

defined by a set of topologically equivalent objects. A manifold M is a topological space 

that is locally Euclidean, i.e. There is a neighborhood around every point of M that is 

topologically the same as the open unit ball in
dR , so M is a d- dimensionality 

topological manifold. In general, any object that is nearly flat on small scales is a 

manifold. An open line segment, a circle and a knotted circle are 1-manifold (d = 1) that 

are mapped in one-, two- or three-dimensional space, respectively. This means that, 

although the mapping spaces of these samples are different, but they have similar 

intrinsic dimensions.  

The Isomap algorithm is based on multidimensional scaling (MDS). The data is 

mapped from a high-dimensional input space to the low-dimensional space of a nonlinear 

manifold depending on global invariants. Follow the steps outlined in Figure 3. 

Neighborhood 

selection

Calculate  

geodesic 

distance

Dimensionality 

reduction

 

Figure 3. Isomap Method 

(1) Find the k-nearest neighbor or  - neighborhood of each point of data 

space 
1

l

i i
x


. Where k represents the number of points chosen, or  is the area radius. 

Concatenate each point with its neighborhood to constitute the proximity graph. Use the 

Euclidean distance as the weight of each edge. 

(2) Calculate the geodesic distance of the data in the proximity graph as the shortest 

distance using standard graph search methods like Dijkstra’s algorithm and Floyd’s 

algorithm. The latter one is chosen because it fits more to the computer simulation. The 

basic idea of Floyd’s algorithm is that, there are no more than two ways to find the 

shortest path between point A and B, from A directly to B or through several points. 

Assume dis(AB) is the shortest distance between  point A and B, X is arbitrary point. If 

   ( )dis AX dis XB dis AB  , A X B   is the shortest path. 

(3) Reduce the dimension with the classical metric MDS using the geodesic distance. 

Assume Y is a d-dimensionality space, ( 1,2, )iy i N is the coordinate vector of the 

points in Y, error is the loss during the embedding. 

 

2( ) ( )G Y L
error D D                                                                         (1) 
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Where 
2

{ ( , ) }G G i j L
D d i j y y   represents the Euclidean distance matrix of 

high- dimensionality, while 
2

={ ( , ) }Y Y i j L
D d i j y y   is the same matrix of low- 

dimensionality, and the operator  transforms the calculation of distance into inner 

product operation. 
 

( ) / 2D  HSH                                                                    (2) 

 

Where 
2{ }ij ijS S D   is square distance matrices, { 1/ }ij ijH H N    is center 

matrices. 

Our procedure should minimize error. Presume i  is the ith eigenvalue of ( )GD with 

iy  being the corresponding ith eigenvector. Sort i  from the lowest to the highest, iy  

rearranged with it. The element in row i and column j of Y is i ijy . 

To obtain the feature of set  
1

l n

i i
X x R


   in n-dimensionality space, we need to 

estimate the intrinsic dimensionality d̂ and the optimal neighborhood size k̂ . If d is 

valued too small, the disconnected parts would be mapped into one area; if it is 

overvalued, the manifold would contain too much redundant information. Once k is 

valued too small, the entire data set would be mapped into a local neighborhood rather 

than global mapped; while if it is too small, imagine the points ought to be mapped into 

one area separated apart, the manifold would be obviously false without representing the 

global property of the original data. 

The intrinsic dimensionality d̂  can be obtained by the drawing curve of the error 

shown in Figure 4. Tenenbaum purposed a method estimating the optional d̂  of Isomap
[2]

 

with finding the “elbow” of the error curve, where the curve stops falling sharply. 

According to Fig. 4, the error is small enough to maintain the data integrity when 2d  . 

We choose ˆ 2d   in order to visualize the result, make the progress easier to analyze. 

Experiment results indicate that the manifold of the data is always integrated when k=8, 

so we choose the optimal neighborhood size ˆ 8k  .  

   

3. Recognition 

3.1. Signals Representation 

A digitally modulated signal can be represented as 

 

 ( 2 ( ) ( ))( ) Re ( ) ( ) j f t ts t A t g t e                                                                                        (1) 

 

In which ( )A t  is the amplitude, ( )g t  is the response of the symbol pulse shaping 

filter, ( )f t  is the carrier frequency and ( )t  is the phase. FSK, ASK, PSK and QAM 

signals can be represented as followed: 
 

2 ( )

MFSK

2
S (t) Re ( )c kS j f f t

S

kS

E
e g t kT

T

  
  

 
                                                            (2) 

 

in which  1 2 , 0,1, , 1k s sf k M f k M         , ( )g t  is the pulse shaping 

function, cf  is the carrier frequency, sM  is the number of states, sT  is symbol period 

and period and sE is energy per symbol, 
k

f  denotes the symbols. 

 

2
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2
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In which 2 1, 0,1, , 1k s sA k M k M     , 
kA  denotes the symbols. 

 

2

MPSK

2
S (t) Re ( )cS j f t

k S

kS

E
e g t kT

T

 
   

 
                                                                (4) 

 

In which
2

, 0,1, , 1cj f t

k se k M

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Where ( )Tu   is unit impulse with period T . 

 

3.2. STFT Manifold 

The short time Fourier transform (STFT) expression of the signal can be expressed as 

(6) 

 

* 2( , ) ( ) ( ) j f

xSTFT t f x g t e d   





                                                                        

(6) 

 

Where ( )x   is the signal, ( )g t is the window function, 
*( )g t is the conjugate of ( )g t . 

The main idea of the STFT is to add window function to signal. Assume that the signal 

within the window length is stationary, then fourier transforming the windowed signal. 

The length of the window function directly affects the signal resolution in time domain 

and frenquency domain, consequently, the recognition result of radio signals are affected. 

Select proper length of the window function can achieve good identification effect. 

As shown in Figure 1, the different signals Isomap embedding varies in distribution 

obviously, so we can identify the signal type by manifold variance feature (MVF). In this 

case, threshold value method is available as the classifier, which will be represented in 

chapter 4. 

 

3.3. WT Manifold 

WT is chosen to analysis the signal because the signal WT domain contains the 

information both in time and frequency domain, and it seems to be less influenced by 

noise. The wavelet transform of signal ( )f t  is defined as following.  

    *

, ,, , ( )d , 0f a b a bW a b f f t t t a 




  
                                                                 (5)  

Where a represents the scale parameter, b represents the translation parameter (time 

shifting), and the basis function 
, ( )a b t  is obtained by scaling the mother wavelet 

( )t at time b and scale a,  

,

1
( ) ( )a b

t b
t

aa
 




 

For each scale, we get a set of data, so the result is a-dimension matrix. We need to 

extract the basis information from the intricate data, as introduced in next part. 
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Figure 1. 4 Digital Signals Isomap Embedding 

3.4. Signal Identification 

We realized the signal identification as the processer followed shown in Figure 2:  

(1) After STFT, high-dimension data is obtained. The signal can be roughly 

identified by the MVF. If the signal belongs to MQAM, then we have to analysis it with 

the second step. If not, the signal type is already identified. 

(2) To figure out the received signal is 16QAM, 64QAM or 128QAM, WT is applied 

to it. The MVF indicates the modulation of the signal obviously this time. 

Received signal

MQAM

STFT 

manifold

WT manifold

MASK MPSK MFSK

16QAM 64QAM 128QAM

 

Figure 2. Basic Flow of the Signal Identification System 

4. Simulation  

In this section, we provide some experiments for our methods. Using the algorithm 

proposed, the identification of 4ASK, 2PSK, QPSK, 2FSK, 16QAM, 64QAM, 128QAM 

are carried out in the MATLAB simulation platform, and simulation results show the 

effectiveness of the algorithm.  
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 Figure 3. STFT Manifold Variance Feature of Digital Signals 

Simulation condition is: signal carrier frequency is 0.1MHz; sampling frequency is 

20MHz; the range of signal-to-noise rate is from -10~5 dB.  

An experiment result is shown in Figure 3. The STFT MVF of 5 kinds of signals can 

be separated clearly, so we choose appropriate thresholds as the classifier of signals type. 

But MQAM (16 QAM, 64 QAM, 128QAM) signals can not be identified by this method. 

To solve this problem, we apply WT manifold method to MQAM signals. The result is 

shown in figure 4. 

0 1 2 3 4 5 6 7 8

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

5 variance feature snr=-20

 

 
16QAM

64QAM

128QAM

 

Figure 4. WT Manifold Variance Feature of MQAM Signals 

100 experiments are applied to get the range of each kind of signals referred. With the 

noise influencing, the thresholds would be vague, so the recognition rate would fall 

sharply at a specific point.  

To compare our method with the SIEMAP method [14], the recognition rate is shown 

in Figure 5 and 6. Our method is obviously more effective in lower SNR environment, 
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when SNR>-5dB, the recognition rate is nearly 100%, which implied the good 

performance of the method based on STFT and WT manifold. 
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Figure 5. Recognition Rate of STFT Combing with WT Manifold 
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Figure 6. Recognition Rate of Method based on SIEMAP 

4. Conclusion 

In this paper, we proposed a digital signals identification method based on manifold 

learning method. We combine STFT and WT with Isomap method, then extract the 

variance feature as the identify feature to achieve our goal. We applied our method to 

MASK, MPSK, MFSK and MQAM signals. The simulation shows when SNR>-5dB, the 

recognition rate is nearly 100% which proves the validity of the method in very low SNR 

condition. 

Compared with other methods, this method does not require high sampling rate, it 

achieves better recognition rate in Gauss white noise environment. The disadvantage of 

the method is that, it takes more time to reach the high percentage of correct 

identification, this problem would surely be solved with the development of the hardware 
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and related software. In addition, a more efficient classifier might be used for improving 

the recognition rate. 
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