
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.9, No.12, (2016), pp.261-270

http://dx.doi.org/10.14257/ijsip.2016.9.12.25

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2016 SERSC

Research on Embedded Image Edge Detection Algorithm

Gang Li1 and Ruixiang Huang2

1Department of Computer Science, Jining Normal University, Ulanqab, China
2Department of Mechanical and Electrical Technology, Ulanqab Vocational

College, Ulanqab, China

jnsfxylg@126.com

Abstract

With the development of embedded technology, the embedded image processing

algorithms are becoming more and more complex. Edge detection is the basic algorithm

of image processing, which is used in the extraction of information from the image.

Laplacian operator is useful for the edge detection. Especially, the operator can be

determined by the zero crossing point of the two differential positive and negative peaks.

In order to meet the fast hardware implementation of embedded image processing, this

paper presents the hardware acceleration of Laplacian operator by Zynq-7000. Using

HLS method, the complex image algorithm is automatically translated into hardware

language, and the function of the algorithm can be quickly completed. The experimental

results show that, the embedded hardware accelerated image based on Zynq-7000 can not

only realize software programming and hardware programmable combination, but also

improve the embedded system flexibility, scalability, and accelerate embedded image

processing product design time.

Keywords: Embedded system; Image Processing; Edge Detection

1. Introduction

With the continuous development of embedded system technology, embedded image

processing technology is becoming more and more complex [1-3]. Consequently, an

embedded system is usually designed to perform one specific task, or a small range of

specific tasks, often with real-time constraints. An obvious application of an embedded

image processing system is a digital camera. There the imaging functions include

exposure and focus control, displaying a preview, and managing image compression and

decompression. Embedded image processing is also useful for smart vision, where the

camera not only captures the image, but also processes it to extract information as

required by the application. Examples of where this would be useful are intelligent

surveillance systems, industrial inspection or control, robot vision, and so on.

A requirement of many embedded image processing systems is that they need to

be of small size, and light weight. Many run off batteries, and are therefore required

to operate with low power. Even those that are not battery operated usually have

limited power available. However, acquisition speed of embedded image processing

system is slow based on ARM in the front-end, and the image processing algorithm

is not easy to use FPGA hardware acceleration. Therefore, in order to improve the

acquisition speed of t image processing, Zynq chip is used as an embedded image

processing algorithm in order to accelerate the FPGA hardware. In the context of

Zynq devices, this means moving code from the ARM dual-core Cortex-A9

processor to the FPGA logic for acceleration [4].

The other parts of the paper are organized as follows: In Section 2, we introduce

Zynq-7000 all programmable soc system and its advantages in embedded system

design. Section 3 discusses Laplacian operator of image edge detection algorithm is

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

262 Copyright ⓒ 2016 SERSC

preferred which is most trustworthy and gives an efficient output in the field of

image and video processing for the extraction of object edges. The main

contribution of this paper is presented in Section 4, where edge detection algorithm

is designed and verified using Zynq-7000. Finally, Section 5 summarizes the main

conclusions of this work.

2. Introduction of Zynq-7000 All Programmable SoC

The Zynq-7000 family is based on the Xilinx All Programmable SoC architecture [5-

6]. These products integrate a feature-rich dual-core ARM Cortex-A9 based processing

system (PS) and Xilinx programmable logic (PL) in a single device and the basic structure

is shown in Figure 1. The Cortex-A9 CPUs are the heart of the PS and also include on-

chip memory, external memory interfaces, and a rich set of peripheral connectivity

interfaces. The Zynq-7000 architecture enables implementation of custom logic in the PL

and custom software in the PS. It allows for the realization of unique and differentiated

system functions.

Figure 1. Zynq-7000 AP SoC Processing System Structure Block Diagram

The application processing unit (APU) consists of two ARM Cortex-A9 processor

with a snoop control unit (SCU), which is responsible for maintaining the cache

coherency between the two processors. Each processor has its own 32 KB level-one

(L1) instruction and data caches, memory management unit (MMU), and separate

media processing engine (NEON). L1 caches include two parts: instruction-side

cache (I-Cache) and data-side cache (D-Cache). I-Cache is responsible for providing

an instruction stream to the Cortex-A9 processor. D-Cache is responsible for

holding the data used by the Cortex-A9 processor. The MMU in the ARM

architecture involves both memory protection and address translation. The MMU

works closely with the L1 and L2 memory systems in the process of translating

virtual addresses to physical addresses. NEON is co-processor and extends the

javascript:void(0);

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

Copyright ⓒ 2016 SERSC 263

Cortex-A9 to provide support for the ARM v7 advanced single instruction multiple

data and vector floating-point instruction sets.

The PL is derived from Xilinx 7 series FPGA technology. The PL is used to

extend the functionality to meet specific application requirements. The PL includes

many different types of resources including configurable logic blocks, port and

width configurable block RAM, DSP slices with a 25 x 18 multiplier, 48-bit

accumulator and pre-adder, a user configurable analog to digital converter, clock

management tiles.

3. Edge Detection

Edge detection is a fundamental image processing operation used in many computer

vision solutions [7-8]. The goal of edge detection algorithms is to find the most relevant

edges in an image or scene. These edges should then be connected into meaningful lines

and boundaries, resulting in a segmented image containing two or more regions.

Subsequent stages in a machine vision system will use the segmented results for tasks

such as object counting, measuring, feature extraction, and classification.

Edge detection is a hard image processing problem. Most edge detection solutions

exhibit limited performance in the presence of images containing real-world scenes, that

is, images that have not been carefully controlled in their illumination, size and position

of objects, and contrast between objects and background. Consequently, it is common to

precede the edge detection stage with preprocessing operations such as noise reduction

and illumination correction. Edge detection methods usually rely on calculations of the

first or second derivative along the intensity profile. The first derivative has the desirable

property of being directly proportional to the difference in intensity across the edge;

consequently, the magnitude of the first derivative can be used to detect the presence of

an edge at a certain point in the image. The sign of the second derivative can be used to

determine whether a pixel lies on the dark or on the bright side of an edge. Moreover, the

zero crossing between its positive and negative peaks can be used to locate the center of

thick edges.

This is known as a discrete Laplacian. The laplacian has the advantage over first

derivative methods in that it is an isotropic filter; this means it is invariant under rotation.

That is, if the laplacian is applied to an image, and the image then rotated, the same result

would be obtained if the image was rotated first, and the laplacian applied second [9].

This would appear to make this class of filters ideal for edge detection. However, a major

problem with all second derivative filters is that they are very sensitive to noise, and the

results of edge function are shown schematically in Figure 2.

(a) The edge (b) First derivative (c) Second derivative (d) Absolute values

Figure 2. Second Derivatives of an Edge Function

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

264 Copyright ⓒ 2016 SERSC

The Laplacian of an image f (x, y) is defined as

 
   2 2

2

2 2

x, y x, y
x, y

x y

 
  

 
 (1)

Where the second derivatives are usually approximated, and are given by

 
     

2

2
1 1 2

x, y
f x , y f x , y f x, y

x


    


 (2)

and

 

     
2

2
1 1 2

x, y
f x, y f x, y f x, y

y


    


 (3)

Results in a convenient expression for the Laplacian expressed as a sum of

products:

           2 1 1 1 1 4x,y f x ,y f x ,y f x,y f x,y f x,y          (4)

The Laplacian operator of image edge detection algorithm [10-12] is showed in Figure

3. Figure 3 (a), gives primitive template, and expand template is showed Figure 3 (b).

Equation (4) can be implemented by the convolution mask, which is shown in Figure 3(c).

An alternative digital implementation of the Laplacian takes into account all eight

neighbors of the reference pixel in the input image and can be implemented by the

convolution mask in Figure 3 (d).

0 0

0 0

1

11
1
-4

1 1

1 1

1

11
1
-8

(a) Primitive Template (b) Expand Template

0 0

0 0

-1

-1-1
-1
4

-1 -1

-1 -1

-1

-1-1
-1
8

(c) Implementation Template (d) Implementation Template

Figure 3. Laplacian Operator Template

We can see from Figure 3, if a bright spot appears in the dark area of the image, then

the bright spot will become brighter using the Laplacian operator. This is because the

edge of the image is the occurrence of gray jump area, so the Laplacian sharpening

template is useful for the edge detection. General enhancement techniques are difficult to

determine the position of the edge lines for steep edges and slowly varying edges.

However, the operator can be determined by the zero crossing point of the two differential

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

Copyright ⓒ 2016 SERSC 265

positive and negative peaks. Therefore, the operator is especially suitable for the purpose

of isolated points and isolated lines in the image. Figure 4, shows how MATLAB

functions are used to implement the Laplacian operator.

(a) Original image (b) Laplacian "edge" (c) Sharpened image

Figure 4. Edge Sharpening Using the Laplacian Operator

4. Edge Detection Algorithm Hardware Accelerator via Zynq-7000

The Vivado HLS tool provides a methodology for migrating algorithms from a

processor onto the FPGA logic. In the context of Zynq devices, this means moving code

from the ARM dual-core Cortex-A9 processor to the FPGA logic for acceleration. The

code implemented with the HLS tool in hardware represents the computational bottleneck

of the algorithm.

Image input is generated by the image sensor from ON Semiconductor, which is

configured for 1080p60 resolution. The raw Bayer sub-sampled image is converted to an

RGB image by an image processing pipeline implemented using Laplacian operator that

remove defective pixels, de-mosaic, and color-correct the image. An image buffer is

implemented in the processing system (PS) DDR3 memory, making images accessible to

the ARM processor cores via the AXI Video Direct Memory Access (VDMA). The image

frame buffer is not required for the operation of the image processing pipeline, but is

included in the design to enable the capture of input video images for analysis. Figure 5,

shows a block diagram of the system.

Figure 5. Image Processing System Design Block Diagram

4.1. Laplacian Operator by HLS Description

High-Level Synthesis (HLS) compiler provides the same functionality for C/C++

programs targeted to FPGA. HLS shares key technology with processor compilers for the

interpretation, analysis, and optimization of C/C++ programs. The main difference is in

the execution target of the application. By targeting an FPGA as the execution fabric,

HLS enables a software engineer to optimize code for throughout, power, and latency

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

266 Copyright ⓒ 2016 SERSC

without the need to address the performance bottleneck of a single memory space and

limited computational resources. This allows the implementation of computationally

intensive software algorithms into actual products, not just functionality demonstrators.

Laplacian operator data flow diagram using HLS described as shown in Figure 6. We

can see from the diagram, and the direction of the arrow indicates the dependence of the

data. In each clock cycle, data parallel operations in the cell. A pixel represented by 24bit

is entered into the algorithm module through the AXI4-Stream interface. First, the data is

processed by gray scale. Then, these data are stored in the cache, and the data window is

composed of the cache and the new data. In the end, the data is converted to 8 bit pixels,

and the data is written back to the DDR3. Part of the code of the Laplacian operator by

HLS description is shown in Figure 7.

Line Buffer 0

Line Buffer 1

RGB2GRAY

AXI4 Stream

24bit Pixel

00 0201

10 1211

20 2221

Laplacian

Fir

AXI4 Stream

8bit gray value

Figure 6. Laplacian Operator Data Description Block Diagram

Figure 7. Part of the Code of Laplacian Operator by HLS Description

4.2. Laplacian Operator Verification by HLS Description

This design is divided into two steps to verify the Laplacian operator. The first step is

the C language simulation, using HLS design tools to complete the functional verification

of the operator. The second step is the co simulation of C and RTL. In this step, according

to the testing code written in C language, HDL testing vector is generated by HLS tools.

Based on the generated HDL testing vector, the RTL level simulation is performed to

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

Copyright ⓒ 2016 SERSC 267

verify the correctness of the Laplacian operator. Part of the testing code is shown in

Figure 8,

Figure 8. Part of the Testing Code of Laplacian Operator

The hardware platform is shown in Figure 9. The input and output of the image,

respectively, are the HDMI interface and VGA interface. The image is displayed in the

HDMI interface, and edge detection image is displayed in the VGA interface. The

experimental results are shown in Figure 10.

Figure 9. Experimental Hardware Testing Platform

(a) Original Image (b) Laplacian "Edge"

Figure 10. Experimental Hardware Testing Results

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

268 Copyright ⓒ 2016 SERSC

Laplacian operator is implemented by Vivado HLS tool, and the hardware consumption of

resources is shown in Table 1. We can see from Table 1, Zynq XC7Z020 SoC can be

completely achieved Laplacian operator.

Table 1. Hardware Resource Consumption of Laplacian Operator

Name BRAM_18K DSP48E FF LUT

Expression - - - -

FIFO 0 - 73 280

Instance 2 12 910 580

Memory - - - -

Multiplexer - - - -

Register - - 6 -

Total 2 12 1007 884

Available 120 82 35200 17600

Utilization 1 13 2 5

5. Conclusion

Laplacian operator is useful for the edge detection. General enhancement techniques

are difficult to determine the position of the edge lines for steep edges and slowly varying

edges. However, the operator can be determined by the zero crossing point of the two

differential positive and negative peaks. Therefore, Laplacian operator is especially

suitable for the purpose of isolated points and isolated lines in the image. However,

Laplacian edge detection algorithm is a very complex process, and the hardware

implementation is very difficult. In order to meet the fast hardware implementation of

image processing algorithms, Zynq-7000 SOC is used as a hardware implementation by

Vivado HLS tool. The measured results of the hardware of the operator indicated that, the

embedded hardware accelerated image based on Zynq-7000 can not only realize software

programming and hardware programmable combination, but also improve the embedded

system flexibility, scalability. These advantages accelerate embedded image processing

product design time.

Acknowledgments

We would like to thank professor Wang for stimulating discussions with respect to the

topic of this paper and laboratory equipment. Moreover, we greatly appreciate the

reviewers’ comments that lead to an improved presentation of the results.

References

[1] L. Maggiani, C. Bourrasset, M. Petracca, F. Berry, P. Pagano and C. Salvadori, “HOG-Dot: A Parallel

Kernel-Based Gradient Extraction for Embedded Image Processing”, IEEE Signal Processing Letters.,

vol. 22, no. 11, (2015), pp. 2132-2136.

[2] R. Lerm, D. Doering, R. H. A. Rech, A. Rettberg and C. E. Pereira, “A model-based design space

exploration for embedded image processing in industrial applications”, Proceedings of the 12th

International Conference on Industrial Informatics, Porto Alegre, Brazil, (2014) July 27-30.

[3] L. Thieling, A. Schuer, G. Hartung and G. Buchel, “Embedded image processing system for cloud-based

applications”, Proceedings of the 21th International Conference on Systems, Signals and Image

Processing, Dubrovnik, Croatia, (2014) May 12-15.

[4] J. Silva, V. Sklyarov and I. Skliarova, “Comparison of On-chip Communications in Zynq-7000 All

Programmable Systems-on-Chip”, IEEE Signal Processing Letters., vol. 7, no. 1, (2015), pp. 31-34.

[5] Xilinx, “Zynq-7000 All Programmable SoC Technical Reference Manual”, [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf.

[6] Y. Nie, Z. Ma and L. Jing, “Research on the Design of Multi-Core Embedded System Based on

Microblaze”, International Journal of Control & Automation., vol. 8, no. 12, (2015), pp. 425-434.

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

Copyright ⓒ 2016 SERSC 269

[7] A. Aquino, M. E. Gegúndez-Arias and D. Marín, “Detecting the optic disc boundary in digital fundus

images using morphological, edge detection, and feature extraction techniques”, IEEE Transactions on

Medical Imaging., vol. 29, no. 11, (2010), pp. 1860-1869.

[8] L. Xu and Y. Li, “Multi-Scale Edge Detection of Rice Internal Damage Based on Computer Vision”,

Proceedings of International Conference on Automation and Logistics, Qingdao, China, (2008)

September 1-3.

[9] S. G. Javed, A. Majid and N. Kausar, “Combining Robust Statistical and 1D Laplacian Operators Using

Genetic Programming to Detect and Remove Impulse Noise from Images”, Proceedings of the 13th

International Conference on Frontiers of Information Technology, Islamabad, Pakistan, (2015)

December 1-3.

[10] S. A. Coleman, B. W. Scotney and S. Suganthan, “Edge detecting for range data using Laplacian

operators”, IEEE Transactions on Image Processing., vol. 19, no. 11, (2010), pp. 2814-2824.

[11] S. C. Tai and S. M. Yang, “A fast method for image noise estimation using Laplacian operator and

adaptive edge detection”, Proceedings of the 3th International Symposium on International Symposium

on International Symposium on Communications, Control, and Signal Processing, St. Julians, Malta,

(2008) March 12-14.

[12] B. Gardiner, S. A. Coleman and B. W. Scotney, “Multiscale Edge Detection Using a Finite Element

Framework for Hexagonal Pixel-Based Images”, IEEE Transactions on Image Processing., vol. 25, no. 4,

(2016), pp. 1849-1861.

Authors

Gang Li, he is a lecturer of department of Computer Science at

Jining Normal University, China. He received the M.S. degree in

College of Computer Science at Inner Mongolia University, China.

His main research interests are image processing, education

informatization, computer network.

Ruixiang Huang, she is a lecturer of department of Mechanical

and Electrical Technology at Ulanqab Vocational College, China.

She received the B.S. degree in Inner Mongolia Normal University in

2005, China. Her main research interests are image processing,

electronic technology, UAV applications.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 9, No. 12, (2016)

270 Copyright ⓒ 2016 SERSC

