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Abstract 

In nature, the observed Chaos phenomenas were often mixed with noise, the existence 

of noise made the prediction of chaotic time series generate large errors. Chaotic time 

series had the characteristic of broadband, which liked noise. So there were some 

limitations with the traditional method of de-noising. But the wavelet threshold de-noising 

method had the characteristic of the multi-resolution analysis, and its computational 

quantity was smaller and the noise filtering effect was better. On the other hand, for 

different types of signals, with different wavelet base functions and threshold rules, it 

might have a different effect on the de-noising effect. In order to search for the optimal 

selection of those parameters, firstly this paper constructed a simulated Lorenz noisy 

signal, and used this signal to do the de-noising experiment, used the SNR and RMSE as 

the evaluating indicator, and finally obtained the matching combination of those 

parameters. At the end of this paper, the de-noising simulation was carried out using 

China's Shijiao station runoff time series data from 1960 to 1970 in China, and the final 

results showed the effectiveness of the proposed method in this paper. 
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1. Introduction 

The research showed that most of the phenomena in nature such as runoff, sunspot 

number, rainfall and so on had certain chaotic characteristics. The chaotic time series was 

the result of the chaotic phenomena recorded in fixed interval. The chaotic characteristics 

of the system could be studied from any single variable time series in the records of the 

system, then the development trend of the chaos phenomena could be forecasted [1]. But 

the actual observed time series often contained noise, the existence of noise made the self-

similarity characteristic of the chaotic attractors in the system destroyed. As a result, even 

if the initial conditions were slight different, it would be enlarged in the evolution of time 

scale. These slight differences of the initial conditions were often caused by noise. So it is 

important to solve the problem that how to eliminate the noise effectively and to improve 

the accuracy. 

The traditional de-noising method was that, the input data was performed by the 

method of spectrum analysis or Fourier transform, the noise was regarded as a high 

frequency component, which could be removed from the data. But the chaotic time series 

had the characteristic of broadband and been similar to noise, the spectrum of the signal 

and the spectrum of noise were often overlapped. In the past, chaotic de-noising methods 

generally aimed at the chaotic system with already known dynamics characteristics. 

Those de-noising methods were performed by comparing attractors and predicted 
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trajectory of the system, such as the construction cost function method and the 

probabilistic method [2-3]. But most of these methods were built on the basis that the 

noise spectral amplitude was very small, but the spectrum of chaotic time series signal 

was wide. Because the spectral amplitude of the noise and the spectral amplitude of the 

signal were often in the same order of magnitude, the traditional de-noising methods were 

not ideal [4]. Wavelet analysis was a kind of analytical method both in time domain and 

in frequency domain. At the same time, it also had the characteristics of multi-resolution 

analysis at different scales [5]. Therefore, this paper started from the characteristics of the 

chaotic time signal and used different wavelet basis functions and different threshold rules 

for de-noising simulation experiment. The signal to noise ratio (SNR) and the root mean 

square error (RMSE) were used as the evaluation criteria to detect the effect of wavelet 

de-noising on chaotic time series, and finally obtained the best combination of wavelet 

function and threshold rule. 

 

2. De-Noising Principle and Evaluation Rules 
 

2.1. The Principle of Wavelet Multi-Resolution Analysis and Threshold De-Noising 

Method 

The de-noising method based on wavelet analysis was established on the basis of 

wavelet multi-resolution analysis, the idea was to construct some orthogonal wavelet 

basis functions on space  2L R  with different frequency. Through those orthogonal 

wavelet basis functions we could decompose the low frequency space, and make the 

decomposition scale of space  2L R  higher. The core of the method was to construct a 

sequence  
j j Z

V  in the space satisfying the following conditions [6]. 
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In Equation (5) the formula   t  was the scale function. Its function system 

       / 2

,
2 2 , ,j j

j k
t t k j k Z was standardized orthogonal, meanwhile it was the 

standard orthogonal basis of the space j
V . In this way, the space  2L R  could be 

decomposed into a set of mutually contained subspaces [7], so the space 0
V  could be 

approximated as follows, that is: 

     
0 1 1 2 2 1

V V W V W W                                                                                        (1) 

The j
W  represented the orthogonal complement of j

V  in space j - 1
V . For j

W , we could 

also get that  
0

( )t W  made       / 2

,
2 2j j

j n
t t n  constitute the standard 

orthogonal basis functions of space j
V . If 

j j
f V  represented the function system of 

resolution 2 j  used to approximate the space  2L R , 
j j

g W represented the 

approximation error [8]. Then we could get: 
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Any function   2f L R  could be fully reconstructed by the low frequency functions 

system of resolution 2 j  and the high frequency functions of the 

resolution    2 1i i j . Due to the different characteristics of the probability 

distribution of the wavelet decomposition coefficients in different frequency bands of the 

noise and the chaotic signals, so the frequency distribution of the noise was stronger in 

some frequency bands and the chaotic signal was stronger in the other part of the 

frequency bands. Therefore, the wavelet coefficients of noise could be removed according 

to their distribution characteristics in the frequency bands. Then the wavelet 

reconstruction of the signal could be carried out according to the processed coefficients, 

which achieved the purpose of de-noising. 

Assuming that the wavelet decomposition coefficient was 
i , the threshold value 

was . There were two kinds of threshold function, as following [9-13]: 

  

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The first one was the hard threshold rule, as a result, the wavelet coefficients of this 

method were not continuous in place  , and there might be a local vibration after de-

noising. Therefore, in this paper, we used the second one called the soft threshold rule, 

and its de-noising process was mainly divided into 3 steps, that was [14]: 

Step1. Obtaining the initial wavelet coefficients ,i j
w  though wavelet multi-scale 

decomposition of the noisy signals; 

Step2. Using the threshold rule above to deal with the initial wavelet decomposed 

coefficients ,i j
w  and obtaining the new wavelet coefficients ,i j

w ;  

Step3. The new wavelet coefficients were used to reconstruct the signal to get the pure 

signal. 

 

2.2. De-Noising Effect Evaluation 

In the process of simulation experiment, this paper used the SNR and RMSE value as 

the standard to measure the de-noising effect of the simulated noisy data. The SNR 

represented the signal to noise ratio, which meant the ratio of the useful signal power to 

the noise power, its expression was [15-17]: 
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As the same, RMSE represented the square root of the sum of the square of values 

which were the observed value minus the true value divided by of the number of 

observations N, whose expression was: 

 
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2

k k
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s - g

N
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N

                                                                                                    (6) 

From the above expressions it could been seen that the greater of the SNR, the smaller 

of the RMSE, the better of the de-noising effect. 
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3. Simulation Experiment and Analysis 

In this paper, we used different wavelet basis functions and threshold functions to deal 

with the noise of chaotic time series generated by Lorenz system and China's Shijiao 

station runoff time series data in China, comparing with the SNR and RMSE of the de-

noised signal and the original signal to determine the effectiveness of de-noising process, 

the analysis process was as follows. 

 

3.1. The Original Signal and Noisy Signal of Lorenz System 

The dynamical equation of Lorenz chaotic system was shown in the Formula (7): 

 




  




  



 


dx
x y

dt

dy
x y xz

dt

dz
xy bz

dt

                                                                                                          (7) 

In the above equation,   
8

10, 28,
3

b  at this time, the system was in the form 

of chaos. The 4 order Runge-Kutta method could been used to solve the problem. And 

took the first 3000 points of the X axis of the Lorenz system as the simulation signals of 

the chaotic signal, as shown in Figure 1. Took the noisy Lorenz sequence signal who’s 

SNR equaled to 15 as contrast sequence, as shown in Figure 2. 

 

 

Figure 1. The Original  x t   Sequence of Lorenz System 

 

Figure 2. Lorenz Sequence  x t  with White Noise 
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For Lorenz system, when the embedding dimension m  was 5 and the delay time   was 

1, the sequence could be reconstructed well in phase space. At the same time, the wavelet 

decomposition scale J  should be less than or equal to m, and less than the average period 

of data track. Therefore, this paper took the wavelet decomposition scale 4J   , and 

carried on the 4 layer wavelet decomposition. 

 

3.2. Basis Functions and Threshold Rules 

The wavelet function we decided to select the symlets wavelet basis functions system 

which had the characteristic of better orthogonal symmetry and compact support. Symlets 

wavelet system was usually expressed as symN (N=2, 3... 8). And the threshold rule was 

selected by 4 kinds of classical threshold rules, as follows: 

(1) Soft threshold rule based on Stein's unbiased risk estimation. The method was to 

rearrange the decomposition coefficients of each layer according to the square of those 

coefficients from small to large order, though the process we could get the following 

vector: 

 
1 2
, , ,

n
W w w w                                                                                                             (8) 

N  was the number of wavelet coefficients after decomposition, and then constructed 

another vector R, the element was: 
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The minimum value in the sequence ri  was the risk vector ri , and the corresponding 

wavelet coefficients were mi n
w . At the same time,   represented the mean square 

deviation of noise  x t . The Stein's unbiased risk estimation of the threshold value could 

be calculated (10): 


1 mi n

T w                                                                                                                      (10) 

(2) Heuristic threshold rule. The heuristic threshold combined the results of the 

unbiased risk estimation threshold rule and the fixed threshold de-noising rule. The basic 

idea was using the fixed threshold de-noising rule if the signal to noise was relatively 

large, otherwise, using unbiased risk estimation threshold de-noising rule. Making 
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(3) Fixed threshold rule. If the length of the noise signal  x t  was N  , the mean 

square deviation of the noise  x t  was expressed by , and the fixed threshold value 

could been calculated by the following method: 

 
3

2 l nT N                                                                                                                (12) 

(4) The extreme value threshold rule. The threshold value was calculated by using the 

minimax principle, and the minimum mean square error could be obtained by using this 

method, its expression was: 
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3.3. Simulation of Noisy Chaotic Signal De-Noising Process 

In the simulation experiment, the simulation experiment were processed by different 

wavelet basis functions and threshold functions. And finally getting the signal after de-

noising, according to the evaluation rules to select the relatively optimal parameters. First 

we selected the sym2 wavelet function, and then selected the above four threshold rules 

for signal de-noising, the de-noising effect was shown in Figure 3. 

 

 

Figure 3. Comparison of the De-Noising Effect of the Four Threshold Rules 
Based on Sym2 Wavelet Function 

The SNR of the original chaotic noisy signal was 15, and the RMSE value was 2.25. 

The de-noising effect of the four threshold rules were shown in Table 1. It could be seen 

that the heuristic de-noising effect was the best, followed by the unbiased risk, the fixed 

de-noising effect was the worst. 

Table 1. Comparison of the De-Noising Effect of Sym2 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 21.6 1.06 1 

unbiased 21.21 1.10 2 

fixed 15.16 2.21 4 

Extreme Value 17.04 1.78 3 

 

For symN (N=3, 4,... 8) wavelet basis functions, the final SNR and RMSE results could 

also been calculated with different Threshold rules , as shown in Table 2- Table 7: 
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Table 2. Comparison of the De-Noising Effect of Sym3 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 20.87 1.14 2 

unbiased 21.78 1.03 1 

fixed 15.87 2.04 4 

Extreme Value 18.48 1.51 3 

Table 3. Comparison of the De-Noising Effect of Sym4 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 21.47 1.07 2 

unbiased 22.09 0.99 1 

fixed 15.92 2.02 4 

Extreme Value 18.3 1.54 3 

Table 4. Comparison of the De-Noising Effect of Sym5 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 22.03 1.00 2 

unbiased 22.50 0.95 1 

fixed 16.88 1.81 4 

Extreme Value 18.90 1.43 3 

Table 5. Comparison of the De-Noising Effect of Sym6 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 22.56 0.94 2 

unbiased 22.67 0.93 1 

fixed 16.32 1.93 4 

Extreme Value 18.88 1.44 3 

Table 6. Comparison of the De-Noising Effect of Sym7 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 22.52 0.94 2 

unbiased 22.77 0.92 1 

fixed 16.30 1.94 4 

Extreme Value 18.98 1.42 3 
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Table 7. Comparison of the De-Noising Effect of Sym8 Wavelet Function 
Matching 4 Kinds of Threshold Function According to the SNR and RMSE 

Value 

Threshold rule SNR RMSE De-noising effect order 

Heuristic 22.88 0.91 1 

unbiased 22.52 0.94 2 

fixed 16.15 1.97 4 

Extreme Value 18.52 1.50 3 

It could be seen from the results that the use of sym6 wavelet basis functions, 

meanwhile selecting the heuristic and unbiased threshold function for chaotic noisy 

signals the de-noising effect was better. The fixed and extreme threshold de-noising effect 

was relatively poor. 

 

4. Real Chaotic Noisy Signal De-Noising 

This paper used China's Shijiao station runoff time series data as the actual chaotic 

noisy signal. The runoff data seemed non-stability in time, but it also had the orderly 

regularity and chaos characteristics. At present, many researches had indicated that the 

hydrological time series had some chaotic characteristics. The chaos prediction method 

coud be used to predict hydrological series. This paper was intended to evaluate whether 

or not it could significantly improve the chaotic characteristics by using the method of 

this paper, and improve the accuracy of the prediction. Therefore, this paper analyzed the 

statistical data of the 132 groups of monthly average runoff data in the hydrological 

station from 1960 to 1970. The hydrologic runoff data recorded during the period are 

shown in Figure 4. 

 

 

Figure 4. Monthly Mean Runoff Data of the Hydrologic Station in 132 Months 

4.1. Determining the Time Delay and Embedding Dimension of the Reconstructed 

Phase Space 

To predict the chaotic time series, we must first determine the spatial time delay. Self-

correlation function method was often used to calculate spatial time delay. The method 

was to take the log time that made the self-correlation function through or near the zero 

point at the first time. At this time, the time delay was the minimum value to make the 

new sequence to achieve linearly independent. 
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Figure 5. Self-Correlation Function of the Runoff Data 

As could be seen from Figure 5, when the time delay was 3, its autocorrelation function 

was reduced near to 0, so the time delay of the sequence was 3. 

Embedding dimension was usually implemented by the G-P algorithm. The embedding 

dimension was assigned 2, 3, 4… respectively. For each of the embedding dimensions, 

calculated the value of  I n r  and  I n Cr , and fitted the slope of the data, which was the 

correlation dimension of the chaotic system. The following figure was the 

   I n r I n Cr  correlation diagram obtained by the G-P algorithm in the case of 

different embedding dimensions. 

 

 

Figure 6.    I n r I n Cr  Diagram of the Original Data When the Time Delay 

was 3 in the Case of Different Embedding Dimensions. 

With the increase of the embedding dimension, when m=12, the correlation dimension 

was no longer increased and reached saturation, as shown in Figure 7. 
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Figure 7. Relation between System Correlation Dimension and Embedding 
Dimension 

The above research showed that the time series had chaotic characteristics, at the same 

time, m=12 was the minimum embedding dimension of the phase space of the data. On 

the other hand, the Wolf method was also used to calculate the maximum Lyapunov 

exponent of the monthly runoff series data, which was 0.3329>0, and this also showed 

that the system had some chaotic characteristics. 

 

4.2. Prediction Effect Evaluation 

 

 

Figure 8. De-Noised Monthly Mean Runoff Data of Hydrologic Station during 
132 Months 

Using RBF neural network to predict the original data, at the same time, took the first 

66 numbers as the sample sequence, and the last 66 number as the prediction sequence. 

Compared the RMSE value between the predicted data and the original data, and get its 

RMSE value was 2.29, the result is shown in Figure 9(1). Meanwhile we used the method 

of this paper to deal with the same de-noised original data, the de-noising results as shown 

in Figure 9(2). 
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Figure 9. Comparison of the Predicted Effect of the Runoff Before and After 
De-Noising 

Recalculated the RMSE value of the predicted value, and its value was 0.31, the 

prediction effect is better. 

 

5. Conclusion 

A lot of experimental data had to be de-noising processed. For different characteristics 

of the noisy signal, if we chose different wavelet basis function and threshold rules, then 

the de-noising effect was not the same. In this paper, wavelet theory was combined with 

the de-noising process for the single time variable of chaotic system, and solved the 

problem of the parameter selection of wavelet de-noising in chaotic system. Used SNR 

and RMSE to evaluate the de-noising effect. And used the chaotic time series generated 

by the Lorenz system and the chaotic time series of the hydrologic runoff data to perform 

the de-noising simulation. The experimental results showed that this method could 

improve the chaotic characteristics of time series and improve the accuracy of prediction. 
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