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Abstract 

The spectrum of the random space vector pulse width modulation (SVPWM) strategy is 

extremely complicated due to the random variable. A new algorithm based on the Monte 

Carlo method is proposed to optimize and customize the frequency spectrum of the 

random SVPWM strategy. A universal theoretical spectrum computation method is given 

for the SVPWM strategy firstly. In addition, the key procedure of the proposed algorithm 

is presented. Finally, several computation examples are provided to verify the 

effectiveness and feasibility. The analysis and computation examples show that the 

proposed algorithm has several advantages, and the results verify its convenience and 

feasibility. 

 

Keywords: Space vector pulse width modulation, Monte Carlo, Maximum harmonic 
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1. Introduction 

In the motor controlling application, the undesirable harmonic inevitably results from 

the space vector pulse width modulation (SVPWM) strategy [1-2], which causes many 

problems, such as dynamic characteristic of the motor system, loss, electromagnetic 

compatibility and audible noise [3-11]. The deterministic SVPWM strategy presents 

cluster harmonics with very large amplitudes around the integer multiple switching 

frequencies, which makes the case more serious. Therefore, the random SVPWM strategy 

has been proposed and studied to suppress the harmonics with large amplitudes [4-12]. 

However, the spectrum of the random SVPWM strategy is extremely complicated due to 

the random variable, so it is difficult to accurately predict the maximum harmonic 

amplitude that is a key index to assess the performance of a modulation strategy. An 

efficient and effective algorithm is therefore needed of which the maximum 

harmonic amplitude and even the harmonic spectrum can be customized with high 

accuracy [13]. In this paper, a new algorithm based on the Monte Carlo method is 

proposed to customize and optimize the frequency spectrum of the random SVPWM 

strategy. Furthermore the maximum amplitude can be customized. The key steps of the 

algorithm are presented. Finally, the proposed algorithm is verified through several 

examples. 

 

2. Random SVPWM Strategy 

The 8 basic space vectors are shown in Figure 1(a), that are corresponding to the 

8 permissible states of the classic two-level inverter. For an arbitrary 

reference/command voltage vector, for example sU  residing in the first sextant, the 

on-state duration time 1T , 2T  and 0T  of the three basic vectors are determined by the 
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identical volt-second balance at the periodical time interval/switching period 
sT  

using Equation (1). The commonly used 7-segment pattern SVPWM strategy is shown 

in Figure 1(b).  
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(a) Basic Space Vectors (b) 7-segment SVPWM Pattern in the First Sextant 

Figure 1. Vector Diagram and Vector Summation Method 

Usually the switching pulse signals in Figure 1 (b), is symmetrical in the deterministic 

SVPWM strategy. That is to say, 1 7t t , 2 6t t , 3 5t t , and 1 7 4t t t  . However, the ratio 

of  1 7t t  to 4t  is controlled by a random variable 0R , the ratio of 1t  to 7t  is controlled by 

a random variable 1R , the ratio of 2t  to 6t  is controlled by a random variable 2R , and the 

ratio of 3t  to 5t  is controlled by a random variable 3R  in the random SVPWM strategy. 

The above relationship can be expressed as 
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where the duration time 
00T  and 

07T  are for 0U  and 7U , respectively. 
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3. Harmonic Frequency Spectrum Computation of SVPWM Strategy 

Any periodic signal ( )x t  with the period 0T  can be decomposed into the sum of a 

(possibly infinite) set of simple oscillating functions, namely sines and cosines (or, 

equivalently, complex exponentials), and therefore 
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where 
0 02π T  , and the Fourier coefficients are given by 
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Equation (4) can also be expressed as 

0j
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The coefficients kc  can also been given by 

0
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The three-phase switching signals that control the power switches in the upper arms of 

the inverter, for example the IGBTs (Insulated Gate Bipolar Transistors), are periodic, 

which are shown in Figure 1. Figure 2, shows the switching signal of one phase (that is 

Phase A, B or C) in a period 0T  and in a switching period sT . If there are N  switching 

periods sT  in a period 0T , the switching signal ( )x t  shown in Figure 2, can be 

decomposed into the sum of N square wave signals. 

1

( ) ( )
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The -thi square wave signal ( )ix t in a period 0T  is given by 
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Figure 2. Periodic Rectangular Pulse Signal in the Fundamental and 
Switching Periods 

According to Equation (8), the coefficients ( 1,2,3, )kic k   for ( )ix t  can be expressed 

as 
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Therefore the harmonic coefficients kc  for ( )x t  can be expressed as 
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So the amplitude for the -th ( 1,2,3, )k k   harmonic can be computed as 
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4. Harmonic Spectrum Customization and Optimization Algorithm 

Based on the accurate theoretical harmonic spectrum (that can be expediently given by 

Equation (12)), the harmonic amplitudes and the maximum amplitude can be computed 

using Equation (13). A harmonic amplitude customization and optimization algorithm 

(using the Monte Carlo method) is proposed to aid in selecting the random numbers 

shown Equations (2) and (3). The algorithm is shown in Figure 3 and as follows. 
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Figure 3. Harmonic Amplitude Customization and Optimization Algorithm 
for the SVPWM Strategy 

Step 1: Set the customization and optimization parameters: the maximum iteration 

number Q , and the required maximum harmonic amplitude maxA . Set the loop variable q  

to 0. The variable q  controls the iteration number. 

Step 2: Generate the random numbers for the random variables in Equations (2) and (3). 

The number of the random variables depends on the random strategy. For example, the 

random zero-vector distribution SVPWM (RZDPWM) scheme requires one random 

variable 0R , and the random pulse position SVPWM (RPPPWM) scheme requires 3 

random variables 1R , 2R  and 3R . If the four variables 0R , 1R , 2R  and 3R  are randomized, 

a hybrid random SVPWM (HRPWM) scheme is gotten. 

Step 3: Compute the duration time in Equation (3). First of all, the sextant order 

number where the reference/command sU  resides is determined. In addition, the duration 

time 1T , 2T  and 0T  is computed. Finally, it  ( 1,2,3,4,5,6,7i  ) is computed using Equations 

(2) and (3) based on the generated random number in Step 2. 

Step 4: Compute the coefficients using Equation (12). The leading edge bt  and the 

trailing edges et  of the rectangular pulse shown in Figure 1 and Figure 2 are determined 

by it  ( 1,2,3,4,5,6,7i  ) in Equation (3). Then ( 1,2,3, )kc k   is computed using a loop 

procedure. 

Step 5: Compute the amplitudes using Equation (13) using the harmonic coefficients 

given in Step 4. 
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Step 6: Compute the maximum amplitude  max 1,2,3,
maxq k k

A A


 . The harmonic needs 

to be truncated in the actual computation. 

Step 7: Store the maximum amplitude max qA  in an array. 

Step 8: Judge the iterative termination or continuation. If max maxqA A  and q Q , the 

iteration continues, 1q q   and go to Step 2; or else, the iteration terminates. 

The above algorithm customizes the harmonic amplitude-frequency characteristic 

through controlling the maximum harmonic amplitude in Step 6, 7 and 8. Through 

controlling all the harmonic amplitudes, another algorithm is gotten. As shown in Figure 3, 

through setting a maximum curve of the amplitude-frequency characteristic max ( )A k , the 

computed amplitude kA  given by Equation (13) is compared with max ( )A k . If max ( )kA A k , 

the random numbers generated in Step 2 satisfy the customization requirement. Or else, 

the new random numbers should be generated, and the iteration continues. 

 

5. Examples and Results 
 

5.1. Computation Example 1: Harmonic Spectrum for the Deterministic SVPWM 

The DC bus voltage 
DCU  is 100V, the fundamental wave frequency is 60Hz, and the 

switching frequency is 2160Hz. The maximum harmonic amplitudes of the line AB 

voltage are computed using Equation (13) and shown in Figure 4, corresponding to the 

modulation index from 0.05 to 1.15 for the deterministic SVPWM strategy. That is to say, 

0R , 1R , 2R  and 3R  are set as 0.5, which is always called the symmetrical 7-segment 

SVPWM strategy. The harmonic spectra of the line voltage AB are shown in Figure 5, 

and Figure 6, given that the modulation indexes M are 0.6 and 0.9, respectively. Figure 5, 

and Figure 6, show that the harmonics with the maximum amplitudes, for example 0.662 

and 0.345 for the modulation indexes M are 0.6 and 0.9 respectively, appear around the 

double switching frequencies, for example 72nd harmonic here. This is because of that the 

pulses shown in Figure 1, are symmetrical in each switching period.  
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Figure. 4. Maximum Harmonic Amplitudes of the Line AB Voltage for the 
Deterministic SVPWM Strategy 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 12, (2016) 

 

 

Copyright ⓒ 2016 SERSC   141 

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Harmonic Number

M
a
g

n
it

u
d

e
 o

f 
h

a
rm

o
n

ic
(o

f 
fu

n
d

a
m

e
n

ta
l)

  
  
 

 

(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure 5. The Computation Results for the Symmetrical 7-Segment SVPWM 
Strategy and the Modulation Index 0.6 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure 6. The Computation Results for the Symmetrical 7-Segment SVPWM 
Strategy and the Modulation Index 0.9 
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5.2. Computation Example 2: Random Zero-vector Distribution SVPWM 

The test computation example described by Section 5.1 with the same previous 

parameters is used again but now with that the duration time ratio 
0R  (in Equation (2)) of 

the two zero basic vectors is a random variable. In theory the random variable 0R  can be 

absolutely randomized with infinitely many real numbers which, however, actually is 

unnecessary or unpractical. The random variable is represented using the pseudorandom 

numbers which are always generated using the certain algorithm or the predefined array 

stored in the read-only memory in the practical application. The pseudorandom number 

generator can usually only generate a finite number of random numbers. So does the 

predefined array. The pseudorandom number therefore is periodical with the period PR . 

There are S  periods PR  in a fundamental period 0T . Given that the maximum iteration 

number Q =5000, the values of the random variable 0R  are drawn from the uniform 

distribution in the open interval (0,1), the computation results are shown in Figure 8, for 

the pseudorandom number periods are 3, 6 and 9 that are corresponding to 12S  , 6S   

and 4S  , respectively. The maximum harmonic amplitudes and the corresponding 

random numbers for 0R  are given in Table 1, and Table 2, to an accuracy of four decimal 

places. Figure 9, and Figure 10, show the harmonic spectra for the modulation indexes 

M are 0.6 and 0.9 respectively. 
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Figure 7. Relationship between the Fundamental Period and the 
Pseudorandom Number Period for the RZDPWM Scheme 
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Figure 8. Maximum Harmonic Amplitudes of the Line AB Voltage for the 
RZDPWM Scheme with 5000 Iterations 
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Table 1. Maximum Amplitudes and the 3 Random Numbers for RZDPWM 

Modulation 

index M 

Maximum 

amplitude 
3 random numbers for 

0R  

0.05 0.4556 0.7900 0.3185 0.5341 

0.10 0.4356 0.6290 0.8537 0.5014 

0.15 0.4398 0.6132 0.8826 0.5250 

0.20 0.4236 0.8729 0.4609 0.6533 

0.25 0.4252 0.3253 0.8421 0.6170 

0.30 0.4061 0.8830 0.4288 0.6963 

0.35 0.3877 0.4359 0.7209 0.9071 

0.40 0.3615 0.7479 0.8990 0.3838 

0.45 0.3536 0.9238 0.3809 0.7643 

0.50 0.3322 0.3070 0.0120 0.7856 

0.55 0.3126 0.0365 0.7781 0.2352 

0.60 0.2868 0.1808 0.0023 0.7634 

0.65 0.2845 0.1262 0.7980 0.0048 

0.70 0.2710 0.0161 0.0665 0.8221 

0.75 0.2632 0.0139 0.0150 0.8263 

0.80 0.2547 0.0187 0.9456 0.0294 

0.85 0.2428 0.9482 0.9950 0.0028 

0.90 0.2361 0.9911 0.0203 0.9960 

0.95 0.2280 0.9606 0.9819 0.0232 

1.00 0.2035 0.9733 0.9471 0.0187 

1.05 0.1968 0.0199 0.0146 0.0240 

1.10 0.2051 0.0042 0.0169 0.0281 

1.15 0.2119 0.3840 0.0099 0.0134 

 

From Figures 8, 9, and 10, it can be found that the RZDPWM scheme has excellent 

performance in suppressing the harmonic amplitude peak (or the maximum harmonic 

amplitude). The maximum harmonic amplitude is suppressed by more than 50 percent 

compared with the deterministic SVPWM strategy given that the pseudorandom number 

period is 4 and the modulation index is less than 0.7. The suppressing effect for the period 

9 is more outstanding than the periods 6 and 3. The performance goes more and more 

excellent with the pseudorandom number period PR  becoming larger and larger on the 

whole, for example 3 to 9 in Figure 8, the reason of which is that more pseudorandom 

numbers means more degrees of freedom for searching the minimum harmonic amplitude 

peak. The proposed customization algorithm can be defined as a constrained optimization 

problem expressed as Equation (14). 

Table 2. Maximum Amplitudes and the 6 Random Numbers for RZDPWM 

Modulation 

index M 

Maximum 

amplitude 
6 random numbers for 0R  

0.05 0.3675 0.8421 0.7030 0.6584 0.8747 0.4738 0.0799 

0.10 0.3436 0.3428 0.1707 0.1899 0.8808 0.0670 0.5779 

0.15 0.3482 0.6910 0.4789 0.3010 0.8754 0.5706 0.8880 

0.20 0.3283 0.5169 0.8232 0.5473 0.2632 0.0947 0.7807 

0.25 0.3075 0.8660 0.5769 0.2408 0.4430 0.1705 0.1514 

0.30 0.3138 0.8586 0.9413 0.2394 0.7529 0.3733 0.5461 

0.35 0.3017 0.9370 0.3963 0.5480 0.1460 0.3425 0.0215 

0.40 0.2826 0.8598 0.0601 0.1065 0.4329 0.1726 0.6114 

0.45 0.2732 0.6393 0.8979 0.9983 0.1190 0.7889 0.3567 

0.50 0.2642 0.4758 0.9550 0.8731 0.5198 0.0442 0.9011 

0.55 0.2631 0.8340 0.3571 0.7465 0.0432 0.0230 0.0328 
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0.60 0.2387 0.0124 0.9172 0.3471 0.6942 0.9768 0.9221 

0.65 0.2378 0.9310 0.8719 0.0137 0.9380 0.0498 0.8364 

0.70 0.2607 0.9067 0.9804 0.9278 0.9959 0.0141 0.4241 

0.75 0.2621 0.9951 0.0391 0.1958 0.9011 0.1082 0.9777 

0.80 0.2512 0.9019 0.9975 0.9542 0.0566 0.9400 0.0097 

0.85 0.2551 0.9603 0.9834 0.9264 0.0261 0.0638 0.9374 

0.90 0.2534 0.9984 0.0970 0.9723 0.7401 0.8486 0.9846 

0.95 0.2298 0.9992 0.9776 0.5559 0.9810 0.0108 0.9540 

1.00 0.2048 0.9902 0.9785 0.5124 0.1301 0.0064 0.9665 

1.05 0.1980 0.0516 0.0516 0.2872 0.0406 0.0030 0.0517 

1.10 0.2054 0.4065 0.0979 0.0011 0.0841 0.1097 0.0228 

1.15 0.2119 0.9256 0.0059 0.0529 0.6870 0.0640 0.0130 
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
    (14) 

There are PR  independently optimization variables in Equation (14). The most 

excellent case is that the number of the independently optimization variables is equal to 

the number of the switching periods in a fundamental period, for example 

2160Hz/60Hz=36 in this example. It should be pointed out that the maximum harmonic 

amplitude suppressing effect increases insignificant if the pseudorandom period 

PR increases to a certain value. The RZDPWM scheme has advantageous maximum 

harmonic amplitude suppressing effect for the small modulation index from Figure 8, 

because the total duration time 0T  (that is 00T + 07T ) for the zero vectors 0U  and 7U  is long 

enough for randomization to suppress the harmonic amplitude peak. 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure 9. The Optimization Results for the RZDPWM Scheme with 6 Random 
Numbers (0.0124, 0.9172, 0.3471, 0.6942, 0.9768, 0.9221) and the Modulation 

Index 0.6 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure  10. The Optimization Results for the RZDPWM Scheme with 6 
Random Numbers (0.9984, 0.0970, 0.9723, 0.7401, 0.8486, 0.9846) and the 

Modulation Index 0.9 

5.3. Computation Example 3: Random Pulse Position SVPWM 

The test computation example described by Section 5.2 with the same previous 

parameters is used again but now with that the three variables 1R , 2R  and 3R  (that control 

the three-phase pulse position in Equation (2)) are set as random variables. The values of 

the three random variables are drawn from the uniform distribution in the open interval 

(0,1), the computation results are shown in Figure 11, for the pseudorandom number 

periods are 3, 6 and 9 respectively. The maximum harmonic amplitude is 0.2119 and the 

corresponding random numbers ([ 1R ],[ 2R ],[ 3R ]) are ([0.0663, 0.9081, 0.2587, 0.2357, 

0.9942, 0.9117], [0.6007, 0.2791, 0.1201, 0.9638, 0.2492, 0.5071],  [0.2986, 0.0741, 

0.3158, 0.6488, 0.7784, 0.0880]) for the modulation index 0.6, and the harmonic spectrum 

is shown in Figure 12. The maximum harmonic amplitude is 0.2119 and the 

corresponding random numbers ([ 1R ], [ 2R ],[ 3R ]) are ([0.3844, 0.9123, 0.1749, 0.8407, 

0.9176, 0.0238], [0.1863, 0.6193, 0.0428, 0.7177, 0.9029, 0.7287],  [0.5901, 0.2796, 

0.3435, 0.6943, 0.0775, 0.9492]) for the modulation index 0.9, and the harmonic spectrum 

is shown in Figure 13. 
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Figure 11. Maximum Harmonic Amplitudes of the Line AB Voltage for the 
RPPPWM Scheme with 5000 Iterations 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 

0 20 40 60 80 100 120 140
1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1     

Harmonic Number

M
a

g
n

it
u

d
e

 o
f 

H
a

rm
o

n
ic

(o
f 

fu
n

d
a

m
e

n
ta

l)

 

(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure 12. The Optimization Results for the RPPPWM Scheme with 6 
Random Numbers and the Modulation Index 0.6 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure  13. The Optimization Results for the RPPPWM Scheme with 6 
Random Numbers and the Modulation Index 0.9 
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5.4. Computation Example 3: Hybrid Random SVPWM 

The test computation example described by Section 5.2 with the same previous 

parameters is used again but now with that the four variables 
0R , 

1R , 
2R  and 

3R  (in 

Equations (2) and (3)) are set as random variables. The values of the four random 

variables are drawn from the uniform distribution in the open interval (0,1), the 

computation results are shown in Figure 14, for the pseudorandom number periods are 3, 

6 and 9 respectively. The maximum harmonic amplitude is 0.2119 and the corresponding 

random numbers ([ 0R ], [ 1R ],[ 2R ],[ 3R ]) are ([0.4687, 0.4645, 0.1601, 0.8044, 0.7551, 

0.2509], [0.0331, 0.8106, 0.4949, 0.4908, 0.8258, 0.5000], [0.2506, 0.6706, 0.6850, 

0.3265, 0.3559, 0.2176], [0.9724, 0.1274, 0.7654, 0.1125, 0.5090, 0.0450]) for the 

modulation index 0.6, and the harmonic spectrum is shown in Figure 15. The maximum 

harmonic amplitude is 0.2119 and the corresponding random numbers ([ 0R ], 

[ 1R ],[ 2R ],[ 3R ]) are ([0.7422, 0.2701, 0.9815, 0.1340, 0.3200, 0.2784], [0.9393, 0.7642, 

0.8166, 0.7795, 0.3424, 0.1445], [0.5973, 0.7775, 0.4597, 0.0691, 0.8175, 0.2905], 

[0.1799, 0.3396, 0.5625, 0.5375, 0.2763, 0.3257],) for the modulation index 0.9, and the 

harmonic spectrum is shown in Figure 16. 
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Figure  14. Maximum Harmonic Amplitudes of the Line AB Voltage for the 
HRPWM Scheme with 5000 Iterations 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure 15. The Optimization Results for the HRPWM Scheme with 6 Random 
Numbers and the Modulation Index 0.6 
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(a) Harmonic Spectra of the Line Voltage AB Plotted Using the Linear Scale 
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(b) Harmonic Spectra of the Line Voltage AB Plotted Using a Base 10 Logarithmic Scale 
for the Magnitude-axis and a Linear Scale for the Harmonic Number-axis 

Figure  16. The Optimization Results for the HRPWM Scheme with 6 
Random Numbers and the Modulation Index 0.9 

5.5. Comparison of Several Different Modulation Strategies 

The maximum harmonic amplitudes in comparison mode for the deterministic 

SVPWM strategy and three schemes of the random SVPWM strategy are shown in Figure 

17. In order to be intuitively compared, the maximum harmonic amplitudes are revealed 

in three different aspects: the absolute amplitudes in Figure 17(a), the relative amplitudes 

in Figure 17(b), and the decrease amount of the amplitude in Figure 17(c). It should be 

noticed that the computation accuracy based on the Monte Carlo method highly depends 

on the maximum iteration number. The identical results cannot be gotten for the random 

strategy during the two runs of the proposed algorithm because of the randomization.  
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Based on the computation results from 5000 iterations for the Monte Carlo method, 

some valuable findings can be made. The random SVPWM strategy has outstanding 

effects on suppressing the maximum harmonic amplitude/magnitude and spreading the 

harmonic spectrum to a wide range. The maximum harmonic amplitude is reduced by 

more than 40% compared with the deterministic strategy. The RPPPWM scheme has the 

most excellent performance because it makes full use of the degrees of freedom of the 

zero vector distribution and the pulse positioning. However, it seems that (a) the 

RZDPWM has more excellent performance than RPPPWM for that the modulation index 

is smaller than 0.5 from Figure 17, and (b), there is no notable difference between the 

RPPPWM and HRPWM schemes. There are 4 optimization variables for the RPPPWM 

scheme while only one optimization variable for the RZDPWM scheme and 3 

optimization variables for the RPPPWM scheme, which makes it more difficult in finding 

the maximum value for the RPPPWM objective function. If a large iteration number is 

adopted, the maximum harmonic amplitudes of the HRPWM scheme should be smaller 

than the RZDPWM and RPPPWM schemes. The RZDPWM scheme has excellent 

performance for the small modulation index, while RPPPWM scheme has the opposite 

characteristic. The HRPWM scheme has excellent performance over the entire linear 

modulation range with the modulation index from 0 to 2 3 . The performance of the 

RZDPWM scheme grows worse and worse with the modulation index becoming larger 

and larger because the duration time for the zero vector, meanwhile, becomes shorter and 

shorter. The obvious modulation index threshold is 0.55 that can be found in Figure  17. 

This threshold value is most likely 0.577, half of the maximum linear modulation 

index 2 3 , which needs further study. If the customization function for the maximum 

amplitude is shown in Figure 17(a), the customization procedure can be accomplished 

within 5000 iterations based on the proposed algorithm. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

M
a

g
n

it
u

d
e

 o
f 

H
a

rm
o

n
ic

 
(o

f 
U

d
c
/2

)

Modulation Index

 

 

Deterministic SVPWM RZDPWM RPPPWM HRPWM

Customization function

 

(a) Absolute Amplitude to Udc/2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

Modulation Index

M
a

g
n

it
u

d
e

 o
f 

H
a

rm
o

n
ic

(o
f 

fu
n

d
a

m
e

n
ta

l)

 

 

Deterministic SVPWM

RZDPWM(9 numbers)

RPPPWM(9 numbers)

HRPWM  (9 numbers)

 

(b) Relative Amplitude to the Fundamental 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 12, (2016) 

 

 

150                                                                                                           Copyright ⓒ 2016 SERSC 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

20

40

60

80

Modulation Index

M
a

g
n

it
u

d
e

 D
s
e

c
re

a
s
e

o
f 

H
a

rm
o

n
ic

(%
,o

f 
d

e
te

rm
in

is
ti
c
 S

V
P

W
M

)

 

 

RZDPWM(9 numbers)

RPPPWM(9 numbers)

HRPWM(9 numbers)

 

(c) Amplitude Decrease to the Fundamental of the Deterministic Strategy 

Figure 17. Maximum Harmonic Amplitudes of the Line AB Voltage for 
Several Different Strategies with 5000 Iterations 

6. Conclusions 

A harmonic optimization and customization algorithm is proposed for the random 

SVPWM strategy. The theoretical spectrum computation method is given for the 

SVPWM strategy and the corresponding formulas are presented firstly. In addition, the 

key procedure of the proposed algorithm is presented. Finally, several computation 

examples are provided to verify the effectiveness and feasibility. The results and analysis 

show that the proposed algorithm has several advantages. Firstly, the algorithm is based 

on the assumption that the random variable (in the random strategy) is implemented by 

the periodical pseudorandom number, so it has sufficient convenience to analyze the 

harmonic spectrum using the Fourier series for the periodical function. The assumption is 

consistent with the practical application. In addition, the optimization and customization 

algorithm is realized using the Monte Carlo method. This is highly convenient and 

feasible because the objective function is extremely complicated and the traditional 

optimization method does not work efficiently for this case. The random sampling 

characteristic of the Monte Carlo method is efficiently made full use of to find the 

maximum harmonic amplitude. Finally, the proposed algorithm is proved efficient 

through test examples. In theory, the extremely high accuracy can be gotten through a 

large enough iteration number and using the engineering computation software package. 

For example, the powerful functions and high precision features of MATLAB can be 

made full use of. However, it should be noticed that the harmonic characteristic is 

extremely complicated and this study only analyzes the case for some fundamental 

frequency and switching frequency. Our future study is to work on the universal law that 

can assess the maximum harmonic amplitude to an arbitrary frequency. 
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