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Abstract 

Distribution Fields (DFs) for tracking achieved a better performance than traditional 

algorithms due to its special representation that allows smoothing the objective function 

without destroying information about pixel values. DFs descriptor can satisfy both the 

specificity and smooth landscape requirements of a good tracking algorithm. In this 

paper, we evaluate the Gray code in original DFs algorithm by replacing the pixel values 

using Gray code instead of original binary code. Experimental results show that the Gray 

code can improve the tracking efficiency in certain way. 
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1. Introduction 

Traditional tracking algorithms usually smooth the objective function to blur the image 

to guarantee the gradient descent of the alignment function reach the global optimum. 

However, blurring the image destroys image information. Recently, Laura and Erik 

proposed a new representation in target tracking called Distributed Fields(DFs). DFs 

descriptor can satisfy both the specificity and smooth landscape requirements of a good 

tracking algorithm without higher order statistics or temporal information [9], and using 

feature selection [10-12]. The kernel-based framework of DFs includes spatial 

information in it which resolves ambiguity and overcomes the under-sensitivity to spatial 

structure. It has a wider basin of attraction around a target's location and tracker built from 

this descriptor also outperforms other state-of-art trackers. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Information Preserved Using Smoothing on a DF. (a)  An Original 
Cameraman Image. (b) Image Smoothed with Traditional Blur. (c) Patch of Image (b) 

Where There Central Bar Ysed to be. (d) Layer of the DF Corresponding to the 
Intensity Value of the Bar. (e) Collection of Patches of the DF under the Location of 
the Central Bar. When an Image is Blurred, the New Pixel Values are a Combination 
of the Neighboring Pixels Around them, and All the Information is Collapsed into a 

Single Number 
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2. Description of Distribution Fields 

A distribution field (DF) is simply an array of probability distributions, one for 

each location in a “field”. The probability distribution at each location defines the 

probability of each feature value at the location. 

For example, if the feature space is gray-scale intensity, then at each pixel there 

is a probability distribution over the values 0-255. 

 

2.1. Representation 

A DF is represented as a matrix d with (2+N) dimensions, where the first two 

dimensions are the width and height of the image, and the other N dimensions index the 

feature space that we choose. For example, if the feature space is intensity, then an image 

of size m n yields a 3D DF of size m n b, where b is the number of intensity feature 

values, or bins. For a higher dimensional feature space, such as two-dimensional gradient 

measurements or normalized RG color distributions, we can build a 2D distribution at 

each pixel location, yielding a DF of four dimensions. It can be describes as following: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Feature Space is Gray-Scale Intensity, then at Each Pixel there 
is a Probability Distribution Over the Values 0-255 

Therefore the distribution field of an image patch yields a high-order tensor. Some 

multiple channel filter techniques (e.g., Gabor and PPBTF) can be viewed as distribution 

fields if they are normalized (PS: probability distribution: non-negative values, the sum of 

all values is equal to one). 

 

2.2. Construction 

Exploding an image into a DF results in a Kronecker delta function at each pixel 

location. In particular, exploding an image I into d with as many bins as features values is 

defined by  

1 ( , )
( , , )

0

if I i j k
d i j k

otherwise


 


                                                                           (1) 

where i and j index the row and column of the image, and k indexes the possible values 

of the pixel. We call the collection of bins at a fixed depth k a layer. This produces a 

probability distribution at each pixel since the sum of the components of each column is 

1. The left side of Figure 3, shows the results of computing this DF for the well-known 

“cameraman” image. At this point, the DF representation contains exactly the same 

information as the original representation, albeit in a larger representation.  

The bilateral filter [7] introduced a way of smoothing an image such that both 

proximity in space and feature value are taken into account to preserve image detail, 
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which is similar to blurring using DFs. The blurring of distribution fields has the same 

benefits as blurring images [8], but few of the drawbacks. No information has been lost 

about the value of pixels in the original image. We now show how to “spread” the 

information in the image without destroying the brightness values as occurs with 

traditional blurring. The right side of Figure 3, shows a smoothed version of the DF on the 

left. The 3D DF has simply been convolved with a 2D Gaussian filter which spreads out 

in the x and y dimensions, but not in the feature dimension. That is, each layer k of the 

smoothed DF sdf is computed as  

),(* yxhdfdfs                                                                                                               (2) 

where h(x, y)  is a 2D Gaussian kernel of standard deviation s ,and “ * ” is the 

convolution operator. 

Prior to convolution, we could interpret any value of 1 in layer L of a DF to mean 

“there is a pixel of value L at this location in the original image.” After convolution, the 

semantics of the smoothed DF is, for any non-zero value in a layer L, “there is a pixel of 

value L somewhere near this location in the original image.” Thus, the convolution has 

introduced positional uncertainty into the representation. A 

critical point is that no information has been lost about the value of pixels in the 

original image, only about their position. This is because there has been no mixing of 

pixel values during the convolution process. 

The feature convolution also has introduced some uncertainty. This allows the model to 

explain small changes due to subpixel motion, shadows, and changes in brightness. In a 

grayscale image, this smoothing is a 1D Gaussian filter over the third dimension. Each of 

the columns of sdf can be smoothed to produce ssdf as 

* ( )ss sdf df h z                                                                                                               (3) 

where h(z)  is a 1D Gaussian kernel of standard deviation f
. 

In summary, exploding an image into a DF and smoothing it can be viewed as 

introducing uncertainty about the object appearance. A DF is then a compact 

representation of the image itself and a set of its “neighboring” images. These images are 

the result of transforming the original image with small changes in appearance and in 

location. These are weighted according to the simple assumption that the most likely 

event is that the image will stay the same, and larger changes are less likely. 

 

2.3. Comparison 

The comparison between DFs that different images yield can be done with any distance 

function. In this paper we use the L1 distance between the two arrays 
1d and 

2d as: 

1 1 2 1 2

, ,

( , ) | ( , , ) ( , , ) |
i j k

L d d d i j k d i j k                                                                                  (4) 

Searching for the target in a new frame consists of building a new DF by also 

exploding and smoothing the new frame, and following the direction where the gradient 

of the
1L descends. 

 

2.4. Combination 

Combining the information of several DFs can also be useful. In tracking we combine 

the DF of initial model and the DFs of new observations using a component-wise convex 

combination of them, which also yields a DF: 

),,()1(),,(),,( 11 kjidkjidkjid ttt                                                                     (5) 
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By combining DFs of different instances of the same object we build a non-parametric 

data-driven model of the distribution at each pixel. 

 

Figure 3. Left. Exploding an Image into a Distribution Field. (The Original 
Image is Shown Superimposed on the DF for Clarity.) The Number of 

Brightness Levels (or Layers) has been Quantized to 8 with Respect to 
Feature Values. Right. Smoothing Distribution Fields 

3. Gray Code in Distributed Fields for Tracking 

Before tracking, we will convert the binary code into gray code. A model of the target 

is created by exploding the image that contains the target into a DF and smoothing it. 

Searching for the target in a new frame consists of building a new DF by also exploding 

and smoothing the new frame, and following the direction where the gradient of the L1 

difference between the DF of the model and the underlying part of the bigger DF 

representing the new frame descends. Once a local minimum is reached, the model of the 

target is updated, using a linear combination of the model and the new observation, as in 

Equation 4. For better performance, we use a hierarchical approach. Instead of using a 

single DF to represent the target, we use a small set of DFs, where each of them is built 

using an increasing value of the parameter s , which regulates the amount of spatial blur. 

These DFs contain information at different frequencies. At each frame, we use a coarse-

to-fine strategy. The most smoothed DF is used to start the search, until it reaches a local 

minimum. This position is the start for the search in the second DF. 

Parameter b corresponding to the number of bins was chosen, for speed, as the smallest 

power of two that does not hurt the performance of the videos. This is b = 16. 

f
=10 is also the case for  =0.95, whose method for choosing the value of the two 

parameters is using leave-one-out cross validation. 

 

Algorithm 1 Tracking with distribution fields 

Input: V = video sequence. 

I = patch containing target in frame 1. 

s  = set of spatial smoothing parameters.  

f  = brightness smoothing parameter . 

b = number of brightness bins (b = 16). 

 = mixing parameter ( = 0.95). 

Output: fyx ),(  {Positions of target at each video frame f in V } 

1. Initialize convert binary code into gray code 

2: Initialize ||,...1,**)(exp )( sfis

i

moel ihhIloded   

3: Initialize target location (x, y) to center of patch I. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC   41 

4: for f = 2 ->|V | do 

5: for i = 1 ->|
s |do 

6: 
fis

i
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7: 
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9: end for 

10: ),()1(modmod yxddd felel    

11: end for 

 

4. Gray Code in Distribution Fields for Tracking 

In this paper, we integrate the Gray code into DFs descriptor. Experimental results 

show that the Gray code can improve the tracking efficiency for a large part of standard 

tracking data sets. 

Table 1. Original Code and Gray Code by Bit Width 

Value Original Code Gray Code 

0 0000 0000 0000 0000 

1 0000 0001 0000 0001 

2 0000 0010 0000 0011 

3 0000 0011 0000 0010 

4 0000 0100 0000 0110 

5 0000 0101 0000 0111 

6 0000 0110 0000 0101 

7 0000 0111 0000 0100 

… … … 

 

4.1. Proposed Descriptor 

The Gray code [2] is a binary numeral system where two successive values differ in 

only one bit (binary digit) as shown in Table 1. Gray code has been widely used in many 

fields. For example, in hardware design it can be used to eliminate the error occurs 

between logic states transition. In this paper, we use the Gray code instead of the original 

code to construct the DF of the target area and the image. The construction of DF layers 

still use previous DFs method [1]. 

To reduce the complexity of Gray code generation,we use look-up table for Gray code 

indexing. The Gray code of original code is stored in fixed look-up table. The index of 

Gray code can directly located by the original code value which only increase the memory 

usage without increase the computation. After construct the Gray code based DF layers, 

we perform 2D and 1D Gaussion filtering in spatial and brightness respectively. We use 

the same tracking algorithm and the same parameters as depicted in paper [1]. 

 

4.2. Experimental Results 

The proposed descriptor is implemented in DFs reference software [6]. All the tracking 

data sets are from standard library. We compare the performance of our algorithm to other 

four algorithms: original DFs [1], MIL [3], PROST [4] and MKT [5]. Their experimental 

results are simply taken from paper [1]. We use two different metrics for the analysis of 

the tracking results: the percentage of frames correctly tracked Table 2, and the mean 

distance to the ground truth Table 3. It can be seen from Table 2, our proposed algorithm 

outperform the original DFs algorithm for all the test series except the video "sylvester". 
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The performance of video "girl" is greatly improved which cause our algorithm even 

ourperform the PROST. 

Table 2. Percentage of Correctly Tracked Frames 

Video Gray DFs DFs[1] PROST MIL MKT 

david 100.00 100.00 80 58.91 30.43 

sylvester 61.71 66.79 74 73.88 20.90 

girl 97.03 73.00 89 55.20 7.00 

faceocc 100.00 100.00 100 77.28 6.21 

coke11 76.27 75.86 — 17.93 27.59 

dollar 100.00 100.00 — 90.76 15.38 

cliffbar 87.88 87.69 — 72.31 — 

twinnings 69.15 69.15 
   

Table 3. Mean Distance to the Ground Truth 

Video Gray DFs DFs[1] PROST MIL MKT 

david 10.24 9.97 15.30 23.45 98.62 

sylvester 28.00 15.92 10.60 10.62 49.24 

girl 20.99 21.57 19.00 32.76 105.05 

faceocc 4.14 5 7.00 27.28 102.47 

coke11 6.63 7.19 — 20.85 20.33 

dollar 5.23 5.26 — 15.15 81.26 

cliffbar 7.25 7.77 — 12.23 — 

twinnings 12.75 13.20 
   

 

4.3. Result Analysis 

 

    
(a)                                (b)                              (c)                               (d) 

(e)                               (f)                             (g)                                (h) 

   
(i)                                             (j)                                          (k) 

Figure 4. Sample Frames. Overcome Limited Occlusions (g,h), Moderate 
Changes in Illumination and the Light (a,b,c,d). Drift Darstic(e,f), and the 

Changes in Appearance(i,j,k) 
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5. Conclusion 

In this paper, an improved Gray code based DFs descriptor is proposed. It achieved a 

better tracking performance for most tracking data sets. The experimental results show 

that the proposed representation can be a good complementation of current DFs 

algorithm. This paper also remind us a good assumption that the descriptor which can 

keep more information in each layer will achieve a better performance. 
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