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Abstract 

Traditional gas source localization algorithms are usually based on gas steady-state 

diffusion model which ignores the factor of the time, it is difficult to meet the practical 

application conditions. In order to solve this problem, we propose an effective gas source 

localization method based multiple population genetic algorithm(MPGA) to estimate the 

location of gas-leakage source via wireless sensor network. In this paper, we first build a 

gas unsteady-state diffusion model without wind based on the gas diffusion theory, and 

then we transfer the gas source location problem into a global optimization problem with 

the measured information of sensor nodes. Finally, we use MPGA to solve the 

optimization problem and obtain the location of the gas source. The simulation results 

show that the proposed method can quickly obtain the location of the gas source, and has 

the higher positioning accuracy as compared with tradition localization algorithms. 

 

Keywords: Gas source location, wireless sensor network, gas unsteady-state diffusion 

model, MPGA 

 

1. Introduction 

Gas source localization (GSL) is an important and challenging task in environmental 

monitoring. Harmful gas leaks from unknown sites will cause the serious environment 

pollution, which is unexpected, critical, various and difficult to solve, and very different 

from other environmental incidents. The problem of source localization using sensor 

network was firstly formulated in the seminal work of Nehorai et. al., [1]. Since then, 

wireless sensor networks (WSNs) have found their successful applications such as 

searching and positioning of toxic and hazardous gas leak source, dangerous 

environmental monitoring, detection and early warning of fire sources and other 

occasions in GSL, and it becomes an important research area [2-6].  

Over the past decade, extensive studies focus on the location of gas-leakage source 

using WSNs. Nehorai and co-workers [7-9] proposed several methods for detection and 

localization of biochemical point sources, both static and moving, in the context of 

concentrated vs. distributed and batch vs. sequential processing. They modeled the 

dispersion of the contaminant in a rather simplistic manner using a diffusion mechanism 

and ignoring the turbulence. In 2005, Matthes et. al., [10] proposed a two-step procedure 

where first the sets of points on which the source can be located is estimated for each 

sensor (based on the concentration measurements and the diffusion model), followed by 

the determination of the intersection of these sets of points. However, the gathering of 

concentration measurements at sink nodes was in conflict with the scheme of distributed 

models. In [11], Keats et. al., solved the gas source localization problem for the case of 

transient release using the Markov chain Monte Carlo batch approach based on the adjoint 

diffusion model. Most of above GSL algorithms are based on gas steady-state diffusion 

model, because of ignoring the factor of the time, it is difficult to achieve the early 

warning and obtain rapid solution in practical applications. In this paper, we consider the 
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time factor in the process of gas leakage and propose an estimation method of gas source 

location using multiple population genetic algorithm(MPGA) based on a gas unsteady-

state diffusion model without wind. We first derive a gas unsteady-state diffusion model 

without wind based on the gas diffusion theory and build the gas concentration perception 

model of indoor environment for sensor nodes. Then the gas source location problem is 

transferred into a global optimization problem with the measured information of sensor 

nodes. We solve the optimization problem using the MPGA, and obtain the unknown 

parameters of the gas source. Since the logical shift cycle crossover operation is 

introduced to the algorithm which increases the diversity of individuals and improves the 

effectiveness of the algorithm.  

The rest of this paper is organized as follows. In Section 2, we describe the diffusion 

model and measurement model. In Section 3, we present the proposed estimation method 

of the gas source location based on the MPGA. The performance of the proposed method 

is illustrated by the simulation experiments in Section 4. Conclusions are given in Section 

5. 

 

2. Problem Statement 

We consider a WSN which consists of a data fusion center and sensor nodes 

iN , [1, ]i n  
, each sensor node evenly deployed within a square region in a windless 

indoor environment at location ( , )j jx y , and there is only one gas leakage source 

which diffuses with constant velocity at an unknown location ( , )s sx y . Each sensor 

node can measure the gas concentration and communicate with the data fusion 

center. It is assumed that only when the gas concentration exceeds the threshold 

value
hT , the node can obtain the measurement of the gas concentration and transfer 

it to the data fusion center. Otherwise, the sensor node is scheduled to hibernate. All 

sensor nodes obtain the synchronization, and the gas concentration is measured 

synchronously in a period, {1,2,3..., }k T  , T  is total acquisition time. 

 

2.1. Gas Unsteady-State Diffusion Model 

It is assumed that the gas from the gas-leakage source is released to spread 

around with some diffusion coefficient. According to the Fick's law [12], we obtain: 

f k C


                                                                                                                             (1) 

=-
C

f
t


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
                                                                                                                       (2) 

where ( , , ; )C C x y z t is the gas concentration at the location  , ,l x y z and time k , in 

units of 3mg m , ( , , ; )f f x y z t  is the diffusion flux , in units of 3g mm , k is the 

diffusion coefficient , in units of m2/s. Then the diffusion equation can be written: 

2=
C
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where 
2 2 2

2 2 2
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  
. 

It is assumed that the location of gas source is ( , , )s s s sl x y z , releasing gas at constant 

rate of Q  /mg s  ，starting at time 
0t . Then the gas concentration at location ( , , )l x y z  

can be obtained: 
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where    
2-= 2 dyy

x
erfc x e



 is the complementary error function, | |sl l  is the 

Euclidean distance from the location l  to the location sl , when only considering the level 

of gas concentration, that is 0z  . Then the Equation (4) can be converted to the 

following equation: 
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where 2 2| | ( ) ( )s s sl l x x y y     , 0t t t   , the other parameters is defined in the 

Equation (4). 

 

2.2. Sensor Measurement Model 

In actual measurement process, noise superposition of the measurements is inevitable. 

Therefore, the concentration k

jr which the gas source obtained from the jth sensor node at 

time 
kt  based on the diffusion model discussed previous can be expressed by Equation 

(6). 
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where 2 2| | ( ) ( )l l x x y y
j s j s j s
     is the distance of the jth sensor node to the gas 

source location ( , )s sx y , 
0t is the time while gas source begin to leak, kt is the sampling 

time, Q is the strength of gas leakage, and 2~ ( , )j j jv N u  is the node measurement 

noise independent of time and space. 

 

3. Gas Source Localization Method Based on MPGA 
 

3.1. Optimization Objective Function 

Assuming that the measurements of each sensor node transmission are independent of 

each other, the joint probability density function is written as 

1
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where =[x , , , ]s sy Q t   is unknown parameters of gas source, 1 2[ ... ... ]k k k k k T

j NR r r r r  , here 
k

jr is the jth sensor measurements at kt time, 1 2[ ... ... ]k k k k k T

j NC c c c c  , here k

jc  is the theoretical 

value of the jth sensor measurements, 1 2 j[ ... ]T

Nu u u u u   , here ju is the noise mean value of 

the jth sensor measurement, and 2 2 2 2

1 2[ , , , , , ]j ndiag       is the diagonal matrix, here 

{1,2..., }j n , 2

j is the variance of the noise of jth sensor measurement. 

Taking log of the joint probability Function (7), we can obtain the following likelihood 

function: 



International Journal of Signal Processing, Image Processing and Pattern Recognition  

Vol. 9, No. 11, (2016) 

 

 

356                                                                                                           Copyright ⓒ 2016 SERSC 

2

2
1

( ) ln ( | )

1
ln(2 ) ( )

2 2

k

n
k k

j j j

j j

L f R

n
r c u

 




 

     
                                                    (8)  

If the number of sensor nodes and measurement samples tends to infinity, the estimated 

parameter   is consistent estimation of unknown parameters quantity   [13]. The 

maximum problem is equivalent to the following minimization: 
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There is the same Gaussian noise in all the sensor nodes, that is 0ju  , and 2 2

j  . 

Then the Formula (9) is equal to: 
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We impose some constraints in the practical applications and obtain the following 

optimization problem:  
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Taking the partial derivative with respect to each component of the unknown 

parameters , and taking partial derivative equal to 0, we can get: 
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where 
m is the mth element of ， {1,2,3,4}m  . 
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3.2. Steps for Gas Source Localization Method Based on MPGA 

The basic genetic algorithm easily captures the local optimal solution and has a low 

speed rate. However, MPGA can obtain the global optimal solution and has a high speed 

rate, and can avoid the deficiency. The flow chart of MPGA is shown as Figure 1.  
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Figure 1. Flow Chart of MPGA 

The steps of gas source localization method based on MPGA can be described as 

follows: 

Step 1: collect the measurement data 

When the gas concentration is greater than the threshold, the sensor node is activated, 

and the collected data is uploaded to the data center. 

Step 2: According to node measurement data from multiple sensor nodes, Data center 

can locate the gas source based on MPGA. It is as follows: 

(a) The objective function is built based on gas diffusion model by selecting the 

maximum measurement value. We can determine the search scope of unknown 

parameters [ , , , ]s sx y Q t . 

(b) Initialize parameters of various populations. The population size is M , the 

maximum generation of optimal individual preservation is MAXgen , the maximum 

evolution generation is N . Meanwhile, each population will be endowed with different 

control parameters. 

(c) Set different crossover probability ( Pc ) and mutation probability ( Pm ) with each 

population, which can be crossover and mutation independently. 

(d) Contact immigration between various populations with every fixed generation 

( _immigrant gen ). Exchange information between populations using immigrant operator, 

and select optimal parameters [ , , , ]s sx y Q t  of each generation by artificial selection 

operator and save it to optimal individual of the essence in population. 

(e) Check the stop criterion. Whether the optimal individual generations of the essence 

in population is reached MAXgen  or the population is reached the maximum iterations of 

N , it will stop. Otherwise, go to Step 3, else re go to Step (c). 

Step 3: Output the parameter value 

If the optimization process is over, the best individual in the essence of 

population is the optimal solution which consists of the location of gas leakage 

source, the gas source strength and the time. 
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4. Simulation Results 

For all subsequent experiments, we assume that the monitoring region is 50 50m m in a 

windless warehouse where evenly distributed 64 sensor nodes arranged in 8 8 . The 

location of each node is known as ( , )j jx y , and the coordinate of gas source is assumed of 

(8 ,11 )m m . It is assumed that gas source began to leak at 0t  . Figure 2, shows that the 

location of sensor node and gas leakage source. Here, '○' represents sensor nodes, '△'  

represents a hypothetical leak gas source. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Localization Scenario 

The specific parameters of simulation experiment are assumed as shown in the 

following table 

Table 1. Experimental Parameters 

The Parameters Select value 

Measurement of noise  ~ 0,0.001N  

Gas source strength =1000mg/sQ  

Sensor threshold =5 /mg s  

Diffusion coefficient 2=0.08 /k m s  

Population size M=10  

Individuals in each population =20n  

Maximum iterations =400N  

Maximum generation of 

 optimal individual 

preservation 

=10MAXgen  

Maximum crossover 

probability 

_ max 0.9Pc   

Minimum crossover 

probability 
_ min 0.7Pc   

Maximum mutation 

probability  

_ max 0.07Pm   

Minimum mutation probability _ min 0.001Pm   

 

4.1. Analysis of Convergence and Error for this Method 

We can verify performance of the proposed method under the conditions of the 

unknown strength, the location and the leakage time of the gas source in MATLAB 
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platform simulation environment. In order to describe the impact of various factors on 

location results clearly and evaluate the error of location, the root mean square error 

(RMSE) is considered. The RMSE is a key performance indicator to evaluate the 

accuracy of the localization method 

2 2

1

1
(( ) ( ) )

m
t t

s s s s

t

RMSE x x x y
m 

                                                                   (14) 

where m is the number of Mote Carlo simulation experiment, ( , )t t

s sx y
 
is the predicted gas 

source location information obtained from the t times simulation results, and ( , )s sx y  is the 

real location of gas leakage source. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Convergence Result of Function Value 

Figure 3, shows the convergence of function value, versus the number of 

iterations. From the figure the optimal value of function is gradually close to the 

theoretical optimal value 0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Location Errors 

Figure 4, shows the positioning error results of simulation 50 times. As shown from the 

figure, the average localization error is about 0.7m. 

In order to eliminate the difference caused by this process on the performance of the 

algorithm, the statistical analysis of 50 simulation results was as shown in Table 2. 
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Table 2. Simulation Experiment Results 

The 

paramet

ers 

The real 

value 

The 

maximum 

deviation 

value 

RMS

E 

The average 

operation time 

Xs 8m 1.77m 

0.67

m 
17.313s 

Ys 11m 1.25m 

Q 1000 /mg s  283.1 /mg s  

t  40s 14.7s 

 

Table 2, shows that the unknown parameters of the gas source can be estimated exactly 

by our proposed method. From the simulation results, we can see that the average running 

time of the proposed method in this paper is small. 

 

4.2. Performance Comparison between MPGA and Genetic Algorithm (GA) 

In order to verify the performance of MPGA, we compare the performance of MPGA 

and GA. The total number of GA is 200 which are same as the MPGA, and other 

simulation parameters set as shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Convergence Comparison of GA and MPGA 

Figure 5, shows the convergence of MPGA and GA. From the Figure 5, we can see that 

the global convergence and stability of MPGA are better than those of GA. Therefore， 

we use MPGA to solve complex optimization problems involved in the function of this 

paper. 

 

4.3. Comparison of Gas Localization Based on MPGA and Centroid Algorithm (CA) 

Under the same conditions of noise, we compare the positioning errors of gas source 

localization based on MPGA and CA. In the experiment, we select four sensor nodes 

which the measured concentration value is the maximum to participate location and 

carries on 50 times of simulation experiment, and other simulation parameters as shown 

in Table 1. 

 

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 9, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC   361 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison for Location Errors of two algorithms 

Figure 6, shows the positioning error curve of two algorithms. From the Figure 6, we 

can see that the position error of the gas source localization based on MPGA is 

significantly less than the error of CA. 

 

4.3. Influence of Environmental Noise 

Noise in practical application is inevitable, so we analyze the impact of environmental 

noise to this algorithm. For each scenario, 50 simulation runs are used to obtain each 

simulation point. The noise is assumed that  1 ~ 0,0.01N ，  2 ~ 0,0.1N ，  3 ~ 0,0.5N ，

 4 ~ 0,1N ，  5 ~ 0,5N ，  6 ~ 0,10N , and other simulation parameters as shown in 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Impact of Environmental Noise on the Performance of Algorithm 

Figure 7, shows the positioning error curve with the noise intensity changed.  

From Figure 7, the increasing of the measurement noise, the positioning accuracy 

decrease. In the same noise, the larger the value of node measurements is, the higher 

signal-to-noise ratio is. Therefore, we use as far as possible the nodes with large 

measurement value to participate location. 

 

5. Conclusions 

In this paper, we investigate the gas source localization method using wireless sensor 

network. Most gas source localization algorithms are based on stable-state gas diffusion 

model which ignores the factor of the time, it is difficult to meet the practical application 

conditions. Account for this problem we propose a novel gas source localization method 
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based on MPGA. The unsteady-state gas diffusion model without wind based on the gas 

diffusion theory and gas concentration perception model of indoor environment for sensor 

nodes are first built, and the gas source location problem is transferred into a global 

optimization problem with the measured information of sensor nodes, we use MPGA to 

solve the global optimization problem.  

The simulation experiments results show that the proposed method can effectively 

estimate the unknown parameters of the gas source, and the convergence speed of this 

algorithm is fast, the average running time is short. As compared with the traditional 

algorithm the proposed method enjoys a significantly improved performance. 
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