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Abstract 

This paper studies the optimal linear estimation problem for systems with multiple 

packet dropouts and multiplicative noises. When the current measurement is lost, the 

popular zero-input compensation mechanism is used for compensation. Based on the 

zero-input compensator, the optimal linear estimators including filter, predictor and 

smoother in the linear minimum variance sense are given by innovation analysis 

approach. The proposed estimators can reduce the computational cost compared to the 

existing augmented estimators based on the hold-input mechanism. The performances of 

the two kinds of estimators are compared in terms of two simulation examples. The 

conclusion is that neither of the two compensation mechanisms can be claimed to be 

superior to the other. 
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1. Introduction 

Recently, the control and estimation problem for networked control system have 

received much attention due to their wide applications in target tracking, 

environmental monitoring, and communication [1-4]. Because of the communication 

noise, interference or congestion, random packet dropouts could occur in data 

transmissions, which is challenging for filtering of the system. 

For systems with packet dropouts, from the literatures, there are two popular 

compensation mechanisms: the hold-input and the zero-input mechanism. The 

former means that the latest measurement or control signal received is used whereas 

the latter adopts zero value whenever the current signal is lost.  The two 

compensators are straight forward and easy to implement. Based on the hold-input 

compensator, the stabilization problem of networked controls by a switched system 

approach [5], the optimal H2 filtering problem by LIM approach [6], the optimal 

linear estimation and steady-state estimation problem by innovation analysis 

approach [7-8] are investigated, respectively.  Based on the zero-input compensator, 

the optimal filtering problem for systems with multi -step random delays and 

multiple packet dropouts are studied in [9].  Further, the possible packet dropouts 

for a rehabilitation system [10] and for T-S fuzzy dynamic systems [11] are tackled, 

respectively.  

In many practical systems, there often exist various uncertainties due to the 

unknown or partially unknown parameters and environmental disturbances . The 
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uncertainties can be approximated mathematically by an additive noise or a 

multiplicative noise [12-16]. These systems are widely used in target tracking, 

detection, signal processing and other areas. Thus the research on systems with 

multiple packet dropouts and various stochastic uncertainties such as additive noise 

and multiplicative noise has the important practical significance. For such system, 

many results have been proposed, including the robust filter [13] for system with 

missing measurements, the distributed fusion filter [14] for multi-rate system, the 

linear augmented filter [15] and full-order filter [16] based on the hold-input 

compensator.  

Motivated by the above literatures, in this paper, we investigate the optimal linear 

estimation problem for systems with multiple packet dropouts and stochastic 

multiplicative noise. First, we derive the optimal linear one-step predictor based on the 

zero-input mechanism by applying the innovation analysis approach. Then, we give the 

optimal linear filter and smoother based on the proposed one-step predictor. Compared to 

the augmented estimators based on the hold-input mechanism [15], the proposed filter can 

reduce the computational burden. Finally, we use two examples to compare the estimation 

performance of the above two estimators. The results show that neither of the two 

compensators always outperforms the other. 

 

2. Problem Formulation  

Consider the following linear discrete-time system modeled by 

1( 1) ( ( ) ) ( ) ( )x t t x t w t                                                                                 (1) 

1( ) ( ( ) ) ( ) ( )y t H t H x t v t                                                                                                   (2) 

where ( ) nx t  is the state, ( ) my t   is the sensor output.  ,   and H are constant 

matrices. ( ) rw t   and ( ) mv t   are correlated zero-mean white noises with covariance 

matrices  TE[ ( ) ( )]= ww t w t Q  , TE[ ( ) ( )]= vv t v t Q  and TE[ ( ) ( )]=w t v t S . Multiplicative noises ( )t  

and  ( )t are scalar white noise sequences that are uncorrelated with other random 

variables and are introduced for the structured perturbation in system and measurement 

matrices. They are of zero-mean with variance matrices Q  and Q . The initial state (0)x  

is independent of ( )w t  and ( )v t , and has 0E{ (0)}=x   and T

0 0 0E{( (0) )( (0) ) }=x x    . 

We assume that there exist possible consecutive packet dropouts during the data 

transmission from the sensor to the estimator over a network. Then, a compensation 

measurement is needed at the estimator when the current measurement is not available. 

Here, we consider the zero-input compensation method: 

( ) ( ) ( )zy t t y t

                                                                   

(3) 

where ( )t is an i.i.d Bernoulli process with { ( ) 1}P t    and { ( ) 0} 1P t    . The 

subscripts z in the compensation measurements indicates the zero-input mechanism. 

Remark 1: From (3), we see that if ( ) 0t  , i.e., the current measurement is lost, zero 

is used for compensation. 

 

3. Optimal Linear Estimators Based on the Zero-Input Compensator 

In this section, we will give the optimal linear estimators including filter, predictor and 

smoother based on the zero-input compensation mechanism by the innovation analysis 

approach. 
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3.1. Linear One-Step Predictor 

In this subsection, we shall derive the optimal linear one-step predictor.  

Theorem 1.  For system  (1)-(3), the optimal linear one-step predictor  is given by 

ˆ ˆ( 1| ) ( | 1) ( ) ( )z z z zx t t x t t L t t                                                                                          (4) 

ˆ( ) ( ) ( | 1)z z zt y t Hx t t                                                                                                     (5) 

T 1( ) ( ( | 1) ) ( )
zz zL t P t t H S Q t                                                                                        (6) 

T 2 T T

1 1( ) (1 ) ( ) ( | 1) ( )
z v zQ t Hq t H Q HP t t H Q H q t H                                                (7) 

T T T

1 1( 1) ( ) ( ) wq t q t Q q t Q                                                                                    (8) 

T T T T

1 1( 1| ) ( ( ) ) ( | 1)( ( ) ) ( ) (1 ) ( ) ( ) ( )z z z z z zP t t L t H P t t L t H Q q t L t Hq t H L t                

T T T T T T T

1 1(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z z z v z w z zQ L t H q t H L t L t Q L t Q L t S SL t                           (9) 

where ( )z t is the innovation sequence with variance ( )
z

Q t , ( )zL t is prediction gain matrix, 

( | 1)zP t t  is the one-step prediction error variance matrix, ( )q t  is the state second-order 

moment matrix of the system state ( )x t .The initial values are 0
ˆ (0 | 1)zx   , 0(0 | 1)zP    

and T

0 0 0(0)q     . 

Proof: By projection [17], we have (4) and (5). The gain matrix ( )zL t is defined as:  

T 1( ) E[ ( 1) ( )] ( )
zz zL t x t t Q t                                                                                                 (10) 

Substituting (3) into (5), ( )z t  can be rewrite as  

1( ) [ ( ) ] ( ) ( ) ( ) ( ) ( | 1) ( ) ( )z zt t Hx t t t H x t Hx t t t v t                                                      (11) 

where the error is denoted by ˆ( | 1) ( ) ( | 1)z zx t t x t x t t    . From (1) and E[ ( )] 0t  , we 

have  

T T TE[ ( 1) ( )] E[ ( ) ( )] E[ ( ) ( )]z z zx t t x t t w t t        

From (11), and using E[ ( ) ] 0t   , E[ ( )] 0t  , ( ) ( )x t v t , ˆ( | 1) ( | 1)z zx t t x t t   , 

( | 1) ( )zx t t v t  , and ( | 1) ( )zx t t w t  , where the symbol “ ”denotes orthogonality, we 

have 

T T T TE[ ( ) ( )] E[ ( | 1) ( | 1)] ( | 1)z z z zx t t x t t x t t H P t t H       , TE[ ( ) ( )]zw t t S                   (12) 

Substituting (12) into (10) yields (6). By substituting (11) into T( ) E[ ( ) ( )]
z z zQ t t t    and 

using 2E[( ( ) ) ] (1 )t      , we obtain (7). From state Equation (1), E[ ( )] 0t  and 

( ) ( )x t w t , we obtain the state second-order moment matrix T( ) E[ ( ) ( )]q t x t x t of 

state ( )x t as follows: 

T T T

1 1( 1) E[( ( ) ) ( ) ( )( ( ) ) ] wq t t x t x t t Q                                                               (13) 

From (13), and noting E[ ( )] 0t  , we obtain (8). 

Next, we derive the one-step prediction error variance matrix 
T( 1| ) E[ ( 1| ) ( 1| )]z z zP t t x t t x t t    . By subtracting (4) from ( 1)x t  yields the error 

equation 
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ˆ( 1| ) ( 1) ( 1| ) ( ( ) ) ( | 1)z z z zx t t x t x t t L t H x t t          

1( ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z z zt L t Hx t t t L t Hx t t x t w t L t t v t                                   (14) 

From (14), we have (9). 

In the following text, we shall derive the N-step predictor, filter and N-smoother 

based on the obtained one-step predictor.  

 

3.2. Optimal Linear N-Step (N>1) Predictor 

Theorem 2.  For system  (1)-(3), the optimal linear N-step predictor  is given by 

ˆ ˆ( | ) ( | 1)z zx t N t x t N t                                                                                               (15) 

The N-step prediction error covariance is given by 

T T T

1 1( | ) ( 1| ) ( 1)z z wP t N t P t N t Q Q q t N                                                     (16) 

where the initial values ˆ ( 1| )zx t t , ( 1| )zP t t  and ( 1)q t N  are computed by Theorem 1. 

Proof: This proof is analogous to [7] and is omitted here. 

Next, we will give the optimal linear filter and N-step (N > 1) smoother. 

 

3.3. Optimal Linear Filter and Smoother 

Theorem 3.  For system  (1)-(3), the optimal N-step smoother (N>0) and linear filter 

(N=0) are given by 

ˆ ˆ( | ) ( | 1) ( ) ( )z z z zx t t N x t t N K t N t N                                                                       (17) 

where the corresponding gain matrices are given by 

T 1( ) ( ) ( )
zzK t N M t N H Q t N                                                                                       (18) 

T( ) ( 1)( ( 1) )zM t N M t N L t N H                                                                           (19) 

and the estimation error covariance matrices are computed by 

T( | ) ( | 1) ( ) ( ) ( )
zz z z zP t t N P t t N K t N Q t N K t N                                                       (20) 

where the initial values ˆ ( | 1)zx t t  and ( | 1)zP t t  are computed by Theorem 1. 

Proof: From projection theory [17], we obtain (17), where the gain matrices ( )zK t N are 

defined as 

T 1( ) E[ ( ) ( )] ( )
zz zK t N x t t N Q t N                                                                                     (21) 

By replacing t  of (11) with t N , we have the innovation at moment t N  as 

1( ) [ ( ) ] ( ) ( ) ( ) ( )z t N t N Hx t N t N t N H x t N              

( | 1) ( ) ( )zHx t N t N t N v t N                                                                                    (22) 

By defining T( ) E[ ( ) ( | 1)]M t N x t x t N t N     and using ( ) ( )x t v t N  , 

E[ ( ) ] 0t N     and E[ ( )] 0t N   , we obtain T TE[ ( ) ( )] ( )x t t N M t N H    . 

Substituting it into (21), the gain matrices (18) are obtained. Next, we compute ( )M t N . 

From (14), we have 

( | 1) ( ( 1) ) ( 1| 2)z z zx t N t N L t N H x t N t N             
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( ( 1) ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)z zt N L t N Hx t N t N t N L t N Hx t N                     

1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)zt N x t N w t N L t N t N v t N                                       (23) 

By applying E[ ( 1) ] 0t N     , E[ ( 1)] 0t N    , ( ) ( 1)x t w t N   and 

( ) ( 1)x t v t N    ( 1N  ), we get (19). 

Next, we derive the estimation error variance matrices ( | )zP t t N   
TE[ ( | ) ( | )]z zx t t N x t t N  . By subtracting (17) from ( )x t  yields  

ˆ( | ) ( ) ( | ) ( | 1) ( ) ( )z z z z zx t t N x t x t t N x t t N K t N t N                                             (24) 

Rewrite (24) as 

( | ) ( ) ( ) ( | 1)z z z zx t t N K t N t N x t t N        

Using ( | ) ( )z zx t t N t N   , we have 

T( | ) ( ) ( ) ( ) ( | 1)
zz z z zP t t N K t N Q t N K t N P t t N                                                        (25) 

From (25), we have (20). 

Remark 3. From Theorems 1-3, the computational cost of the proposed estimators 

under the zero-input mechanism has the order of magnitude 3(( ) )O n . Compared with the 

augmented estimators with the magnitude 3(( ) )O n m under the hold-input mechanism in 

[15], the computational cost can be reduced.

   

4. Simulation Example 

In this section, we give two examples to show the effectiveness of the proposed 

estimators.  

Example 1: Consider the numerical example in [15]. 

0.8 0 0.1 0.05 1
( 1) ( ) ( ) ( )

0.9 0.2 0.2 0.1 0.5
x t t x t w t

      
         

      
                                                     (26) 

 ( ) [1 2] ( )[1 2] ( ) ( )z t t x t v t                                                                                      (27) 

where the white noise ( )w t  of mean 0 and variance 1 is correlated with ( )v t , and they 

satisfy the relation ( ) ( ) ( )v t cw t t   where white noise ( )t  of mean 0 and variance 1 is 

uncorrelated with ( )w t  and the correlation coefficient 1c  . In the simulation, we set 

2Q   and 2Q  . 

The tracking performances of the estimators with 0.8  are shown in Figures 1-3. The 

corresponding estimation error variances are shown in Figure 4. From Figures 1-4, we see 

that the smoother gives the best performance while the predictor is the worst. 
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Figure 1. The Tracking Performance of the Filter with 0.8   

 

Figure 2. The Tracking Performance of the Predictor with 0.8   

 

Figure 3. The Tracking Performance of the Smoother with 0.8   

 

Figure 4. Estimation Error Variances with 0.8  . 
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Figure 5, shows the estimation error variances against   ranging from 0.1 to 1. Figure 

6, shows the filtering error variances against Q  and Q  ranging from 0 to 2. It is clear 

that the proposed filter performs better for larger   and smaller Q  and Q . 

 

Figure 5. Estimation Error Variances with 2Q  , 2Q  , 0.1 1   

 

Figure 6. Filtering Error Variances with 0 , 2Q Q   , 0.8   

To compare the performance of the proposed filter under the zero-input mechanism 

and the augmented filter under the hold-input mechanism, the filtering error variances of 

the two filters with 0.8   are shown in Figure 7. It can be seen that the hold-input 

mechanism performs better than the zero-input mechanism. 

 

 

Figure 7. Filtering Error Variances of the Two Filters 
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0.9226 0.6330 0

1 0 0

0 1 0



 
 


 
  

,
1

0.1 0.05 0.1

0.2 0.1 0.25

0 0.3 0.2



 
 


 
  

, 

0.5

0

0.2



 
 


 
  

,
 

 23.738 20.287 0H   ,     1 0.2 0.15 0.1H                                                             (28) 

Other parameters are the same as example 1. The filtering error variances of the two 

mechanisms with respect to arrival rate 0.8   are shown in Figure 8. It can be seen that 

the zero-input mechanism performs better than the hold-input mechanism. Hence, the 

conclusion is that neither of the two compensators always outperforms the other. On the 

other hand, the proposed estimators can reduce the computational cost. 

 

 

Figure 8. Comparison Curves of Filtering Error Variance of the Two 
Compensation Mechanisms 

5. Conclusion 

In this article, the optimal linear estimation problem for system with random packet 

dropouts and stochastic uncertainties of multiplicative noises is investigated. The zero-

input compensator is used to design the estimators in the linear minimum variance sense. 

The comparison of the estimation performance of the proposed estimators under the zero-

input compensator and the augmented estimators under the hold-input compensator is 

given in simulation example section. It can be concluded from the simulation results that 

neither of the two compensators always outperforms the other. Hence, it is necessary to 

design an optimal compensator. This is also a research topic in the future. 
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